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ABSTRACT 

The state of development in expert systems indicates they are advancing to become a main stream of 
applied information technology.  In this recent area of applied research, an engineering researcher is 
often faced with the difficult question of how much background material should be understood in order 
to adequately assess or apply the technology in question to solve a particular problem.  This paper 
presents a concise original analytical review of the expert systems approach with a view to aiding 
development of expert system applications in engineering. As a result, some useful guidelines are 
revealed. 
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 خصملال

ينبىء التطور الحاصل في نظم الخبرة بأنهم يحثون الخطى لكي يصبحوا أحد المناحي الرئيسية في تقنيـة المعلومـات                   
في هذا المجال الحديث من البحث التطبيقي غالباً مايجابه الباحث الهندسي بالسؤال الصعب بخصوص الخلفية               .  التطبيقية

ه الورقة استعراض و تحليل أصـلي       تقدم هذ .  نية موضع السؤال لحل مشكلة معينة     المعرفية اللازمة لتقييم أو تطبيق التق     
يتجلى من خلال ذلك الاستعراض     .  دقيق لاسلوب نظم الخبرة وذلك للمساعدة في تطوير التطبيقات الهندسية المناسبة           و

 .التحليلي بعض الإرشادات أو الموجهات المفيدة بهذا الشأن
 
 

1. INTRODUCTION 

Artificial intelligence (AI) is a computer science discipline concerned with creating intelligent 
programs, i.e., programs that behave in manners that would be considered intelligent when 
observed in humans (Waterman 1986).  Research aimed at creating such programs has 
evolved into systems that address different human cognitive and perceptive abilities.  One 
class of such systems is known as knowledge-based or expert systems.  These are AI 
programs designed to solve problems or perform tasks at human experts levels. 
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Expert systems represent a new approach to solving certain kinds of problems by computers.  
In this recent area of applied research, an engineering researcher is often faced with the 
difficult question of how much background material should be understood in order to 
adequately assess or apply the technology in question to solve a particular problem.  The 
expert systems approach involves both technological and methodological issues, general 
familiarity with them cannot be taken for granted at the present.  Furthermore, as one would 
expect in the case of a new and emerging technology, the body of literature dealing with 
expert systems is large and is marked with proliferation and lack of consistent use of the 
terms.  This situation has not been helped by the ambiguity of some AI jargon. 

This paper then presents a concise original review and analysis of the expert systems approach 
with a view to aiding development of expert system applications in engineering.  It attempts to 
sort through the profusion and jargon to get at the underlying concepts to provide the 
engineering researcher with an understanding of the principles behind expert systems.  The 
information presented is based on insights gained through keen interest in expert systems 
since they burst into the scene in mid-1980s, a comprehensive critical review and analysis of 
the literature dealing with those systems and their potential applications, and actual practical 
experiences gained through a Ph.D. research conducted to develop an expert system in the 
domain of civil engineering.  The important principles and concepts that underlay the general 
approach are discussed with an engineering application in mind. Since this is not intended to 
be a complete or extensive introduction to the field of expert systems, the interested reader is 
referred to the references for a fuller discussion of the approach. 

Following this introduction, section two traces expert systems to their origin in the search for 
computer intelligence.  Section three summarizes useful ways of looking at an expert system 
including its definitions, features, and characteristics.  The architecture and structure of a 
system along with available tools for building it are also discussed.  The process and stages of 
developing a system are reviewed in Section four.  Section five reviews weaknesses of today’s 
systems and potential capabilities of tomorrow’s.  Section six briefly discusses expert system 
applications in engineering, in particular some difficulties in development of certain 
engineering applications.  The paper concludes with a section highlighting key issues that 
would be of interest to engineering researchers wishing to apply the technology of expert 
systems in their respective fields of specialization.  

2. ORIGIN:  A BRIEF HISTORY OF AI AND EXPERT SYSTEMS 

Although the dream of duplicating human intelligence in machines can be traced far back in 
history, the serious search to create such machines is of a much shorter time span.  The 
summer of 1956 is widely acknowledged as the official birth of the research program.  The 
place is Dartmouth where scientists engaged in thinking about how to create intelligent 
machines conferred.  The term ‘artificial intelligence’ was coined in the course of naming the 
conference (Parsaye and Chignell 1988).  Ideas and deliberations about human intelligence 
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which were presented at that conference along with the availability of the computer in the late 
1940s led some scientists to speculate that the dream of intelligent machines is realizable in 
the form of computer systems.  The chief engineering-oriented goal of AI was set to develop 
programs that can solve problems ordinarily thought of as requiring human intelligence (Duda 
and Shortliffe 1983). 

Following the Dartmouth conference, AI research was dominated by the belief that human 
intelligence is largely due to the ability to reason.  So in the 1960s research efforts were 
focused on finding general reasoning methods and using them to create general-purpose 
problem solving programs.  Developing those programs proved to be very difficult and 
ultimately produced little success.  This eventually led to the view that the more general-
purpose a program is made to be, the more poorly it appeared to perform on any particular 
problem (Waterman 1986). 

In reaction, AI researchers decided to modify their quest for intelligent programs.  Instead of 
creating general-purpose programs, they concentrated on developing general methods to apply 
in more specialized programs.  More specifically, researchers sought general ways to improve 
on two key aspects of problem-solving: representation, the process of formulating a problem 
so as to render it easy to solve, and search, the process of navigating through the space of 
possible solutions to find an acceptable one (Waterman 1986).  General methods to formulate 
problems as search spaces and techniques to efficiently explore the spaces for solutions were 
developed in the 1970s.  They were then used in programs to solve specific problems, mostly 
games and puzzles. 

This group of programs performed better than their predecessors.  Some were quite capable of 
solving problems at levels comparable to human beings.  This led to optimistic projections 
about their performance when applied to real world problems.  Some researchers were quick 
to point out that the problems these programs dealt with are characterized by uniform 
structures and small search spaces.  No sooner trials to adopt those programs in real life 
applications began than limits of their power started to show.  Ultimately, this led to the view 
that general problem-solving even when augmented with efficiency search techniques is too 
weak to solve most of real world problems (Hayes-Roth et al. 1983). 

Faced with this limitation, a group of AI scientists chose another tack to make programs 
intelligent. They embarked on creating a special-purpose program to solve a real world 
problem using specific knowledge obtained from human experts.  This attempt proved 
successful.  It resulted in a very specialized program capable of rivaling expert humans at 
solving the problem.  Similar programs were soon to follow.  By the late 1970s, several of 
them were born, leading to the recognition of the primacy of knowledge in intelligent 
problem-solving.  Thus was the inception of the knowledge-based expert systems approach. 
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3. WHAT IS AN EXPERT SYSTEM? 

Success of the latest attempts at creating intelligent problem solvers led to the realization 
which many now regard as the major conceptual breakthrough in AI research so far.  To be 
intelligent, a program should be provided with a large amount of high-quality specific 
knowledge about some problem domain (Waterman 1986).  Those intelligent programs are 
known as ‘knowledge-based systems’ or ‘expert systems’.  There is no precise or widely 
endorsed definition, in the classical sense, of either of these phrases.  In fact, very often they 
are used as synonyms.  The purpose of this section is to illustrate what these two terms as a 
unified concept mean.  Before that, there is a useful distinction which needs to be clarified. 

A knowledge-based system is a computer program that employs knowledge to solve a 
problem ordinarily requiring human intelligence (Hayes-Roth 1984; Jackson 1999).  If the 
system achieves high-performance in a problem domain that, for a human, requires years of 
special education and experience, then it is called an expert system (Hayes-Roth et al. 1983; 
Jackson 1999).  More strictly, an expert system models the knowledge of an actual human 
expert in a particular domain and solves domain problems at expert levels (Mullarkey 1987).  
An expert system is a knowledge-based system per se.  The former is a special case of the 
latter.  Whereas an expert system uses expert knowledge, a knowledge-based system employs 
human knowledge, though not necessarily expertise (Hayes-Roth 1984; Jackson 1999).  In 
this sense, expert systems are a super subset of knowledge-based systems. 

Some of the early systems are truly expert systems in the strict meaning of the term given 
above. They were intended to prove that AI techniques can be applied to solve problems at 
human expert levels, thereby establishing the field of expert systems.  Those systems were 
characterized by the significant resources, human and otherwise, spent to develop them.  Most 
of  today’s so-called expert systems are more appropriately described as knowledge-based 
systems.  They are useful but hardly rival human experts in performance.  The two terms can 
be used interchangeably provided that the important distinction mentioned above is clear. 

3.1 Architecture and Structure 

3.1.1. Architecture 
 
A schematic of a rule-based expert system is shown in Figure 1.  The basic architecture of 
consists of three main components: the knowledge base, context, and inference engine.  The 
focal component is the knowledge base where knowledge specific to a particular domain of 
application is stored.  The bits and pieces of domain knowledge acquired from a human expert 
or some other source must be appropriately formulated for use by other parts of the system for 
problem solving purposes. 
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The context, also referred to as short-term or working memory, is a transient and dynamic part 
of the knowledge base.  It holds factual knowledge about the specific problem the system is 
currently trying to solve.  Initially, the context contains the given facts that define the case’s 
parameters.  As the system reasons, the context expands to include information derived in the 
course of solving the problem at hand. 

Upon solving the problem, the context comprises the given and intermediately inferred facts 
as well as the solution. 

 

The component of the system which performs the reasoning task is known as the inference 
engine.  It contains general problem-solving knowledge.  The engine typically consists of a 
change monitor; detects changes in the context requiring attention, a pattern matcher; 
compares the context and the knowledge base, a scheduler; decides which action to execute 
next, a processor; fires the required actions, and a knowledge modifier; modifies the 
knowledge base as specified by the executed actions (McGartland and Hendrickson 1985).  
Another part not yet as common is called a consistency enforcer which modifies previously 
drawn conclusions when their bases of support are altered (Hayes-Roth et al. 1983; Jackson 
1999).  These interrelated parts operate on the knowledge base and the context to solve 
domain problems. 

A complete system will also include three other highly desirable components: the user 
interface, explanation facility, and knowledge acquisition module.  The system communicates 
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Figure 1  Components of an Expert System.
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with its user through the user interface.  In relation to conventional user interfaces, this is a 
highly interactive and transparent one.  Domain-oriented language and means are used to 
exchange information with the user. Additional unconventional capability required of this 
interface is to allow the system to provide the user with explanations and justifications of its 
behavior. 

The explanation facility equips the system with the ability to explain its reasoning and justify 
its actions. On request by the user, a system can ideally answer ‘how’ and ‘why’ questions.  
The explanations provided by most current systems consist of a backward trace of the steps 
used to arrive at a particular conclusion.  More advanced systems can additionally explain 
why a certain conclusion was not reached and justify their requests for additional information. 
The explanation facility is also useful as a debugging tool during system development. 

The last and least developed component is the knowledge acquisition module.  It is meant to 
allow initially entering knowledge into the system and later enlarging and maintaining the 
knowledge base.  At present, this component exists rudimentarily in the form of a knowledge 
base editor.  The editor facilitates entering already formalized knowledge.  Although, the 
ultimate goal for this component is to allow knowledge obtained from some source to be 
added directly, this goal has not been achieved at the present time.  Current research on 
automating knowledge acquisition, carried out in another field of AI, i.e., machine learning, 
needs to produce more results before the knowledge acquisition module becomes a full 
fledged component of expert systems. 
 
3.1.2. Structure 
 
To produce an expert system structure, conceptual design decisions must be made at least at 
two levels. There are no hard and fast rules for making those decisions.  At either level, many 
design options are available.  However, the design principles developed to date are not 
sufficient enough for a structured approach that characterizes the choices in terms of a 
particular problem domain.  As a result, design of an expert system has to proceed 
pragmatically. 

Hayes-Roth (1984) provides a framework that summarizes most of what is known about high-
level system design.  The framework relates design principles and high-level prescriptions in 
terms of problem characteristics.  Essentially, the most typical structure is presented and 
various embellishments are added to it as problem complexity increases in various 
dimensions.  Problem characteristics that are considered significant in this respect are the size 
of the search space and the nature of the available data and knowledge. 

Decisions must also be made at a lower design level.  The key questions here are how to 
represent and reason with knowledge.  The answers, respectively, determine the structures of 
the knowledge base and inference engine.  A knowledge representation formalism(s) and a 
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problem-solving strategy(ies) need to be selected.  Available techniques for representing 
knowledge include facts, rules, frames, objects, semantic networks, and formal logic.  The 
most commonly used problem-solving strategies are forward-chaining (data-driven) and 
backward-chaining (goal-driven).  Maher and Allen (1987), Dym and Levitt (1991), and 
Jackson (1999) provide a review of some common strategies.  To complete design, various 
decisions need to be also made regarding the other architectural components of a system.  The 
most mature and common structure today is the production (rule-based) system’s.  Where 
knowledge is represented as rules (productions) and a backward-chaining strategy is, 
typically, employed.  Structural differences have been reflected in the available system-
building software tools through specific design choices.  Thus, in applied expert systems 
research the task of conceptual design becomes largely a matter of identifying appropriate 
techniques and then selecting a tool which implements them. 
 
3.1.3 Expert Systems Building Tools 

Expert systems techniques have been implemented, to a lesser or greater extent, in tools for 
building the systems.  Many of those tools are commercially available.  A catalogue of most 
of them can be found in Waterman (1986), Jackson (1999), and Darlington (2000).  They vary 
in many respects.  In terms of sophistication, they can be divided into four somewhat 
overlapping major categories: AI programming languages, general-purpose representation 
languages, expert system shells, and special-purpose development environments (Mullarkey 
1987; Darlington 2000). 

The most basic tools are the symbolic languages of AI.  The most used are Lisp and Prolog.  
These languages are distinguished from the traditional ones by the special features offered for 
representing and manipulating symbolic descriptions.  Those features are the low-level 
primitives in knowledge-based programming.  AI languages provide a developer with 
complete flexibility in designing and implementing a system.  The second category refers to 
higher level, typically Lisp-based, languages for knowledge representation.  They can be 
classified according to the four major paradigms of knowledge representation: rule-based, 
frame-based, object-oriented, and logic-based.  A typical tool in this class offers one or more 
ready-made structures for representing domain knowledge.  As with AI languages, the 
developer must implement the rest of a system’s structure from basic constructs. 

Expert system shells are frameworks that aid in rapid development of expert system 
applications.  This group of tools normally consists of skeletal systems, classical expert 
systems stripped down of their knowledge bases, and the direct commercial derivatives of 
those systems.  They are simply expert systems with empty knowledge bases.  A shell usually 
offers a ready inference engine complete with built-in support facilities (i.e., a user-interface, 
an explanation facility, and a knowledge acquisition module).  A developer can build a system 
from the shell by filling the empty knowledge base with domain-specific knowledge.  A shell 
reduces and constrains the design options available.  Most restrictions arise from the 
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predefined structures of the inference engine and the knowledge base. Provided a shell is used 
for a problem similar in type to that for which a shell was originally designed, the shell can 
speed and simplify the application development process. 

Finally, the special-purpose environments denotes tools designed to aid in developing expert 
systems for different domains and types of problems.  Expert system development 
environments are hybrid (distinguish them from shells) in that they contain different structural 
mechanisms that implement many expert system techniques.  Development environments are 
also distinguished in that they usually require dedicated AI hardware (e.g., Lisp machines) to 
run on.  A typical environment provides multiple structures for knowledge representation, 
inference, and control.  It also provides extensive development aids including a user interface 
building facility, an inspector, a browser, editors, and a debugger.  As such, an environment 
offers a great deal of flexibility in designing a system.  The structure of a system can be 
produced by nominating and combining appropriate mechanisms and facilities. 
 
3.1.4 Selecting an Expert System Building Tool 
 
Selection of the right tool to build an expert system is a difficult and critical decision.  The 
decision is difficult in part because many criteria are involved and in part because an 
appropriate tool needs to be chosen at an early stage, where, especially in the case of a first 
time developer, the issues involved in representing and applying knowledge of the domain of 
interest are not well defined.  Better understanding comes from experimenting with the tool as 
well as deeper analysis of the domain knowledge.  The choice is critical because a tool cannot 
only speed up but also facilitate or hinder system development.  Two approaches to choosing 
a suitable tool are common.  One is more of a hacker approach whereas the other is more 
principled. 

The first approach employs the so-called consultation or problem-solving paradigm, a 
conception of how problems of a particular type are solved in different domains.  A particular 
paradigm is a good indicator of what techniques should be used to represent knowledge, 
perform inference, and control reasoning.  A set of potential tools can be identified by 
matching the consultation paradigm of the problem of interest with those of available tools.  
The second approach relies on characteristics of the problem domain to identify solution 
features from among the problem-solving techniques of expert systems.  The desired features 
are then used to identify a set of potential tools (Hayes-Roth et al. 1983; Waterman 1986; 
Darlington 2000).  Neither approach goes as far as recommending a particular tool.  Rather, 
the strategy is to identify a set of potential tools based on necessary tool features and then 
select a particular tool from the set on the basis of other attributes or considerations. 

Many criteria are involved in the choice of an appropriate tool.  They are discussed in 
Gevarter (1987) and Mullarkey (1987) in general and in Gowri et al. (1988) and Moselhi and 
Nicholas (1988) as they relate to specific engineering domains in particular.  The predominant 
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consideration is the selection of a tool whose built-in structures closely match, or rather allow 
a close match, with the characteristics of the problem at hand. 

3.2 Features and Characteristics 

3.2.1 Main Features 
 
An expert system tries to emulate expert problem-solving behavior in a specific problem 
domain.  To do so, the system needs to have the domain knowledge which underlies that 
behavior.  This knowledge is usually of two sorts: public and private (Hayes-Roth et al. 1983). 
Public knowledge includes definitional, factual, and theoretical information and is widely 
available in published literature on the subject of application.  Expert knowledge contains 
more than just this public portion.  A human expert often relies on private knowledge to solve 
or simplify a problem in his domain.  This latter portion consists largely of heuristic rules and 
tend to be held privately by an expert or his organization. Building an expert system requires 
both sorts of knowledge to be uncovered, gathered and formalized. 

Knowledge of either sort does not come neatly, pre-assembled, or ready for use.  It must be 
first analyzed and then represented in a form the system can use to solve a problem.  Therein 
lies most of the beneficial features of an expert system.  It provides a new alternative for 
accumulating and codifying knowledge about a problem domain.  Relative to traditional 
means such as textbooks and algorithmic programs, knowledge collected and encoded in an 
expert system is more explicit, accessible, and useful. Besides the direct benefits obtainable 
from activating knowledge for problem solving, the system makes domain knowledge, 
especially private knowledge, readily available for test and evaluation.  This in turn fuels the 
process of refining and improving domain knowledge.  “An expert system acts as a 
systematising repository over time of the knowledge accumulated by many specialists of 
diverse experience.  Hence it can and does ultimately attain a level of consultant expertise 
exceeding that of any single one of its ‘tutors’” (Michie 1980 p. 369). 

Another feature of an expert system concerns the way it stores and processes knowledge.  
Domain knowledge in the system is stored explicitly rather than implicitly or abstractly as in 
algorithmic programming.  This provides for a most distinguishing feature; namely 
transparency.  Unlike the ‘black box’ nature of algorithmic programs, an expert system is able 
to make its reasoning explicit merely by retracing its problem-solving steps.  Knowledge of a 
domain is encoded in human-like modular form, typically as individual facts and rules each 
representing an independent chunk, and separated from the means for its use.  How that 
knowledge is used to solve domain problems is the responsibility of the inference engine.  
Depending on the current problem-solving status in the context, the inference engine selects 
relevant pieces of knowledge from the knowledge base and regulates the order in which they 
are applied in accordance with its control strategy.  Thus, in contrast to the rigid and static 
control structure of an algorithmic program, the control mechanism of an expert system is 
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flexible and dynamic.  The separation of domain knowledge from control has several 
beneficial consequences.  The system can be developed incrementally over an extended 
period.  Stored knowledge can be modified and new knowledge added without influencing, at 
least in principle, the control structure. 

A final attractive feature of an expert system is what Waterman (1986) calls its predictive 
modeling power.  The system serves as a knowledge-based problem-solving model in the 
particular domain of application.  A user can change a problem’s parameters and observe their 
effects.  The user may also experiment with the various structures of the system.  This model 
has the unique advantages of being able to explain how the changes led to the effects and 
closer to the way human experts in the domain solve problems. 
 
3.2.2 Basic Characteristics 

AI researchers have a more sophisticated view of expert systems.  To them, an expert system 
is a computer program defined by several basic characteristics.  These properties are briefly 
reviewed here based on a similar and more detailed discussion elsewhere (Brachman et al. 
1983; Waterman 1986; Jackson 1999; Darlington 2000). 

An expert system strives to solve a problem as well as human experts.  To behave like an 
expert in this respect means producing good solutions efficiently (Brachman et al. 1983).  This 
requires the expertise a human uses to solve the problem.  The emphasis of the work in expert 
systems so far has been on capturing the heuristic aspect of this expertise. The system 
employs symbolic reasoning and representation to solve a problem.  It uses symbols to 
represent concepts and states in the domain, uses symbol structures to represent relations 
among the concepts, and reason by manipulating the symbols. 

Another quality the system should have is robustness.  It should behave intelligently or 
degrade gracefully when presented with problems beyond its scope or when given erroneous, 
inconsistent, or incomplete data or knowledge (Waterman 1986).  To attain this quality the 
system needs to have deep and broad knowledge about its domain.  It also needs general 
problem-solving methods to use this knowledge when its heuristics fail. 

An expert system deals with a complex problem.  AI researchers believe that a problem has to 
be complicated enough to be a good candidate for an expert system application.  Problem 
complexity tends to follow from the nature of expert tasks.  Computationally, a complex 
problem is often interpreted as one that does not have tractable or pure algorithmic solutions, 
or generally, one which is not amenable to such an approach.  The system should have a 
problem reformulation capability.  It should be capable of taking a problem stated in lay terms 
and transforming it into a form amenable to processing by its heuristic rules. 

An expert system should possess knowledge about itself, that is, it should know about its 
structure and operation.  The system needs this ‘meta-knowledge’ (i.e., knowledge about 
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knowledge) to reason about itself in various forms not the least of which to explain its 
behavior.  A final characteristic concerns the types of problems.  Expert systems have been 
used to solve problems that span the spectrum of problem types (Dym and Levitt 1991) and 
involve at least one of the following tasks: diagnosis, interpretation, monitoring, prediction, 
instruction, planning, design, and control (Jackson 1999; Darlington 2000). 

It is noted here that an expert system fully exhibiting all of these characteristics does not yet 
exist.  The characteristics represent main defining dimensions AI researchers have used to 
characterize a true expert system.  Existing systems vary with respect to these dimensions in 
terms of both the extent of coverage as well as degree of achievement.  In fact, as the same 
researchers point out (Brachman et al. 1983), no existing system comes close to achieving the 
goal on more than one dimension. 

With the preceding discussion of features and characteristics in mind, the attributes which 
differentiate expert systems from other types of programs can be stated.  Maher and Allen 
(1987) and Darlington (2000) list some of the characteristics that distinguish expert systems 
from conventional programs, whereas Darlington (2000) contrasts expert systems and 
decision support systems. 

A final way of understanding what are expert systems is to compare them to their human 
counterparts. More specifically, to contrast the natural expertise as it exists in human beings 
with the artificial one of expert systems.  Waterman (1986) and Darlington (2000) list the 
advantages and disadvantages of artificial expertise relative to those of the natural one. 

4. CONSTRUCTING AN EXPERT SYSTEM 

The new expert system technology has not advanced to the stage where a well-defined 
detailed process for developing a system can be articulated.  For those wishing to apply the 
technology, there is pragmatic advice emerging from consensus based on experience to date.  
The process of developing an expert system  is known as knowledge engineering.  It has many 
similarities with the conventional software development process, i.e., software engineering.  
There are, however, some distinctions. 

Two roles are traditionally distinguished in expert system development:  that of the domain 
expert and system developer.  The role of the domain expert is to provide the expertise 
required to solve domain problems.  The system developer is historically an AI researcher 
referred to as knowledge engineer.  His role is to assess suitability of the application, acquire 
knowledge, and build the system. 

At the heart of engineering knowledge of a domain is the complex process called knowledge 
acquisition: extracting, organizing, and structuring domain knowledge for use by the system to 
help solve domain problems (Waterman 1986).  The process involves a collaborative effort 
between the domain expert and knowledge engineer to uncover the expert knowledge and 
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express it in a computational form.  For a variety of reasons (Stockley 1987), knowledge 
acquisition is widely acknowledged to be the bottleneck in system development (Jackson 
1999).  The currently popular case-based reasoning is a promising research direction for 
widening this bottleneck. 

A distinguishing characteristic of expert system development process concerns its iterative 
evolutionary nature.  A system is developed by an incremental prototyping methodology.  
A first prototype is produced usually for a portion of the problem considered.  This is a 
demonstration prototype normally used in two ways: to assess the possibility of applying the 
technology to the problem at hand and test the effectiveness of design decisions.  
A prototyping cycle can then be entered into to increase the system performance and coverage 
of the problem.  In terms of stages, an expert system evolves from being a demonstration 
prototype to research prototype, field prototype, production prototype, and commercial system 
(Waterman 1986). 

Several phase models of the process of developing an expert system project have been 
suggested (e.g., Rehak and Fenves 1985; Parsaye and Chignell 1988; Darlington 2000).  The 
most widely mentioned is the one presented by Buchanan et al. (1983) and Jackson (1999), in 
which five highly interrelated major phases in the process are described: identification, 
conceptualization, formalization, implementation, and testing.  Identification involves 
identifying the domain expert who will collaborate in constructing the system, defining the 
problem and its scope, identifying its characteristics and sub-problems, determining the 
generic reasoning tasks involved, identifying the required resources and knowledge sources, 
and setting the goals or objectives of constructing the system. 

During conceptualization, the knowledge engineer interacts with the human expert to extract 
domain knowledge and characterize the problem-solving process.  Other sources of 
knowledge such as textbooks, handbooks, manuals, and reports are also utilized in this 
endeavor.  Key domain entities, their attributes, and their relations used to describe the 
problem and its solution are made explicit.  Subtasks, information flow, constraints, and 
strategies are also identified.  The totality of this information represents a conceptual model of 
the problem domain. 

This model is mapped in the formalization phase into a more formal one based on known 
means for representing and processing knowledge.  The knowledge engineer identifies likely 
needed techniques for representing knowledge, performing inference, and controlling 
reasoning.  The knowledge engineer then selects an appropriate tool for the problem from 
those available for building expert systems.  In implementation, the various ingredients of the 
problem-solving expertise made explicit during the conceptualization phase are organized and 
structured in terms of the techniques seemed appropriate.  This formalized knowledge is then 
encoded in the tool chosen to construct the system.  The result is an executable prototype 
program. 
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Testing involves evaluating the performance of the prototype system.  The program is first 
tested on two or three examples to ensure that it can run from beginning to end.  It is then 
presented with a variety of test examples for further probing.  The tests will almost certainly 
reveal weaknesses and deficiencies in the prototype.  The knowledge engineer revises the 
prototype to overcome the shortcomings.  This could entail refining the knowledge base, 
adjusting the control flow, reformulating the concepts and relationships, redesigning the 
knowledge and control structures, and even redefining the scope of the initial problem. 

Expert system development is not a one-pass or sequential process.  Except for the fact that 
problem identification occurs first and testing last, there is constant jumping between and 
iteration within the development phases before the initial prototype is produced.  The 
prototype will show if the expert systems approach is appropriate for the problem considered. 
If it is, a gradual and protracted development cycle can be entered into to broaden and deepen 
the system coverage of the problem. 

5. LIMITATIONS AND EXPECTATIONS OF EXPERT SYSTEMS 

Current expert systems are sometimes referred to as first generation.  Most of them especially 
those in routine use today are rule-based, their knowledge is represented uniformly as rules.  
When assessed with respect to expertness’ dimensions that AI researchers feel a system 
should be expected to exhibit, first generation systems are acknowledged to fall short on a 
number of the dimensions (e.g., Brachman et al. 1983; Steels 1990).  This section reviews 
some of the main shortcomings and present research attempts at overcoming them.  Although 
expert systems have been used to solve a variety of problems, most success has been achieved 
more in certain types of problems than others.  In terms of the derivation-formation spectrum 
of problem-solving tasks (Dym and Levitt 1991), expert systems have shown to be more 
successful and easier to develop for problems falling toward the derivation (e.g., diagnosis and 
selection) than the formation (e.g., planning and design) end of the spectrum. 

First generation systems tend to be narrow; they lack the breadth of knowledge domains 
experts have, brittle; they degrade rather sharply at the edges of their knowledge and do not 
recognize their limits, and shallow; they rely on purely heuristic knowledge.  Often those 
heuristics are high-level rules of thumb an expert garnered from many years’ experience or 
compiled from first principles in a domain.  The high-level character of expert rules affords a 
system with reducing its search space thereby producing its solutions efficiently.  The 
efficiency, however, comes at the expense of the system’s ability to explain itself and perform 
robustly (Brachman et al. 1983).  As each rule is typically an abstraction of many basic 
principles and inference steps, a system using high-level rules cannot explain its results in 
terms of the fundamentals of its domain.  Furthermore, the more basic inferences are 
condensed in one large inferential leap, represented by a high-level rule, the more fragile that 
leap tends to be.  The ability of a system to recognize small variations in its inference patterns 
diminishes as the level at which those patterns are expressed increases.  Small differences that 
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the system otherwise can recognize, through examination of basic inference steps, and 
therefore match against go undetected.  In effect, a near mismatch is considered as a complete 
one, contributing to the fragility of the system.  Other well known shortcomings of 
contemporary systems are that they use relatively stylized input-output languages, require 
qualified users for successful operation, and they lack commonsense.  The so-called second 
generation or deep expert systems are intended to overcome these shortcomings mainly 
through the use of ‘self-knowledge’ and ‘deep’ reasoning (Steels 1985). 

Some researchers believe that self-knowledge to be the most potentially important and 
innovative quality a system can have.  Current systems use self-knowledge in providing basic 
explanations and justifications of their behavior.  Usually, this involves some sort of rule-
tracing as mentioned earlier. Yet simply displaying the rules invoked in the course of solving 
a specific problem instance is the least adequate form of explanation.  To truly act like a 
human expert in this regard, a system needs to explain the rationale behind its decisions and 
even to tailor its explanations to perceived needs of its user.  This calls for linking the 
heuristics with their underlying fundamental principles as justifications and constructing and 
tailoring of explanations out of those principles.  Besides explanation, other potential uses of 
self-knowledge relate to a system’s capability to modify itself by, for instance, restructuring 
and reorganizing its knowledge base (Lenat et al. 1983). 

A deep system has more understanding of its heuristics in the form of a model of deeper 
principles of a domain.  It also has the ability to utilize either kind of knowledge (i.e., surface 
or deep) as the situation warrants (Steels 1985).  As such, it has the potential to degrade 
gradually at the periphery of its knowledge, know when a given problem is beyond its scope 
or capability, recognize erroneous data or knowledge, check consistency and completeness of 
its knowledge base, and even to learn from its experience.  A deeper and more self-
knowledgeable system promises also to widen the bottleneck of knowledge acquisition and 
tune its interface to the qualification of a user. 

The shortcomings of contemporary systems are the subjects of on-going mostly basic research 
and they characterize limits of what can be achieved with currently available tools and 
techniques.  Despite its limitations, current technology has resulted in systems that solve 
complex practical problems.  Some of those systems are quite successful, performing in 
carefully selected narrowly defined problem domains at levels that truly rival those of human 
experts.  The additional techniques currently under investigation in the field of expert systems, 
i.e., truth maintenance systems, belief revision, case-based reasoning, fuzzy logic, and 
dependency networks, and other fields of AI, i.e., natural language processing and machine 
learning, may lead to more versatile and powerful future systems.  For the present and from an 
application point of view, a developer should be content with a less ambitious view of expert 
systems than what AI researchers have in mind.  Duda and Shortliffe’s (1983 p. 266) assertion 
that “The goal of expert systems research is to provide tools that exploit new ways to encode 
and use knowledge to solve problems, not to duplicate intelligent human behaviour in all its 
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aspects.  The challenge at this stage of expert system development is therefore to constrain the 
problems addressed in realistic ways to allow useful solutions to real-world problems.” 
appears to still hold true. 

6. APPLICATIONS OF EXPERT SYSTEMS IN ENGINEERING 

Interest in applying expert systems technology in engineering has been growing at a 
phenomenal pace since its first introduction in the mid-1980s.  This is not surprising given 
that so many of engineering problems are highly dependent on experiential knowledge for 
successful solutions and these systems promise to make that knowledge widely available.  A 
staggering number of papers and research studies that discuss the relevance and potential of 
the technology in this area have been reported. As many have reported on the development of 
expert systems that address the various problems of the area.  For instance, Kempf (1989) of 
the Knowledge Applications Laboratory of Intel™ Corporation gives 160 references on the 
applications of expert systems in manufacturing planning and scheduling alone, covering only 
process planning and production scheduling.  It is not the intention here to present a state of 
the art review of the applications of expert systems in engineering. This is in part because, the 
number of applications or research projects is overwhelming and in part because good reviews 
are available in the literature.  One measure of this can be gained from searching the internet 
with the subject of expert systems and consulting recent conferences such as the 6th 
International Conference on the Application of Artificial Intelligence to Civil Engineering 
(2002) and the upcoming 7th International Conference on Intelligent Engineering Systems 
(2003).  Rather the intention is to mention two major sources of difficulty in applying current 
expert systems technology to certain engineering problems. 

Engineering planning, design, and control processes are often characterized by lack of 
complete and accurate data.  Due to incomplete input information at the start, the reasoning 
process is not continuous. Progressive availability of data necessitates incremental 
development of solutions.  This means that the reasoning process has to be interrupted until 
required information becomes available.  These aspects create a situation whereby the 
problem-solving status in the dynamically evolving context has to be known over time.  In 
light of the transient character of the context in existing expert system shells, this requirement 
represents a perplexing hurdle to overcome. 

Furthermore, these aspects mean partial solutions, or solutions of differing states, exist most 
of the time during the reasoning process.  Thus, the concern is not only with how to perform 
but also what has been performed, what needs to be, and when.  The answers to these 
questions are facilitated by the so-called control knowledge.  This is a conceptually distinct 
portion of knowledge of a domain.  It refers to how and when the operative domain 
knowledge is used, a form of  meta-knowledge.  Capturing control knowledge explicitly is 
more a characteristic of the second than the first generation of expert systems.  First 
generation systems encode this kind of knowledge implicitly in the form of the reasoning and 
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control strategies of the inference engine.  As the size or complexity of the search space 
increases, however, more of the control knowledge in a problem domain needs to be 
incorporated explicitly to help focus the search for solutions.  It is as if the states of the system 
are monitored to bring the relevant pieces of knowledge to bear at the proper context. 

The other major complicating characteristic is changes, often caused by data uncertainty.  
Their effect is that evolving solutions need to be revised based on the most current 
information.  In expert systems terms, this means that the reasoning involved is ‘non-
monotonic’.  Available techniques, collectively referred to as truth maintenance or belief 
revision system or facility, for dealing with non-monotonicity of reasoning are less developed. 
A sign of this is there seems to be no expert system shell expressly designed for planning or 
design applications. 

The discontinuity and non-monotonicity of reasoning are complicating characteristics that 
tend to limit the potential of expert systems to engineering diagnosis and selection problems.  
It might be added that future continuation of this research direction, in light of expected 
advances in expert systems technology, for the other engineering problems may be 
worthwhile. 

7. SUMMARY AND CONCLUSIONS 

Expert systems represent a new approach for dealing with important and difficult engineering 
problems. That is, practical problems which cannot be solved algorithmically because they, by 
their nature, resist the algorithmic approach or are not understood well enough to reduce to 
mathematical models or equations.  In such problems, conventional programs offer little help 
and expert humans are relied upon for satisfactory solutions.  Expert systems extend the range 
of computer applications to such expert problems. 

The approach provides practical means for organizing and structuring knowledge of a domain, 
including the isolated bits and pieces of scattered experiences and practices of the domain, for 
more practical use and towards better and deeper understanding.  Beside their ability to 
represent knowledge more naturally, the strength of expert systems lies in their selective 
application of knowledge which derives from their flexible and dynamic control structure.  
This contributes to the practicality of the approach and renders it perhaps the best available 
means especially in light of the progressive availability of data and the frequent changes 
involved in engineering planning, design, and control applications. 

Many engineering problems do not belong in the typical class of problems, i.e., diagnosis and 
selection, where expert systems have scored some success in emulating human experts 
problem-solving behavior. Rather, they tend to the more complex planning, design, and 
control problems where expert systems are relatively less successful and more difficult to 
develop.  For these latter problems, knowledge-based as opposed to expert systems are seen as 
a necessary first step.  They are developed toward increased understanding of a problem and 
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improving its solution in relation to emulating behavior of an actual human expert.  It seems 
to this less ambitious aim that the expert systems approach is being explored in engineering. 

Engineering problems characterized by incomplete and inaccurate process data present a 
challenge for the current expert systems technology.  One key aspect of this concerns the need 
to reconsider developed solutions in light of subsequent revisions.  Another is that of 
maintaining consistency of evolving solutions.  Evidently, expert systems techniques for 
dealing with these reasoning complexity aspects are relatively less developed.  Maturity of 
those techniques will increase the utility of expert systems in engineering. 
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