
The 6th Saudi Engineering Conference, KFUPM, Dhahran, December 2002 Vol. 1. 345

THE EXPERT SYSTEMS APPROACH: AN ENGINEERING
APPLICATION-ORIENTED PERSPECTIVE

Naief Turki Ibn-Homaid

Assistant professor, Department of Civil Engineering, King Saud University.
E-mail: bnhomaid@ksu.edu.sa

ABSTRACT

The state of development in expert systems indicates they are advancing to become a main stream of
applied information technology. In this recent area of applied research, an engineering researcher is
often faced with the difficult question of how much background material should be understood in order
to adequately assess or apply the technology in question to solve a particular problem. This paper
presents a concise original analytical review of the expert systems approach with a view to aiding
development of expert system applications in engineering. As a result, some useful guidelines are
revealed.

Keywords: expert systems, knowledge-based systems, expert system development, applications in
engineering, guidelines.

 خصملال

ينبىء التطور الحاصل في نظم الخبرة بأنهم يحثون الخطى لكي يصبحوا أحد المناحي الرئيسية في تقنيـة المعلومـات
في هذا المجال الحديث من البحث التطبيقي غالباً مايجابه الباحث الهندسي بالسؤال الصعب بخصوص الخلفية . التطبيقية

ه الورقة استعراض و تحليل أصـلي تقدم هذ . نية موضع السؤال لحل مشكلة معينة المعرفية اللازمة لتقييم أو تطبيق التق
يتجلى من خلال ذلك الاستعراض . دقيق لاسلوب نظم الخبرة وذلك للمساعدة في تطوير التطبيقات الهندسية المناسبة و

 .التحليلي بعض الإرشادات أو الموجهات المفيدة بهذا الشأن

1. INTRODUCTION

Artificial intelligence (AI) is a computer science discipline concerned with creating intelligent
programs, i.e., programs that behave in manners that would be considered intelligent when
observed in humans (Waterman 1986). Research aimed at creating such programs has
evolved into systems that address different human cognitive and perceptive abilities. One
class of such systems is known as knowledge-based or expert systems. These are AI
programs designed to solve problems or perform tasks at human experts levels.

Vol. 1. 346 Naief Turki Ibn-Homaid

Expert systems represent a new approach to solving certain kinds of problems by computers.
In this recent area of applied research, an engineering researcher is often faced with the
difficult question of how much background material should be understood in order to
adequately assess or apply the technology in question to solve a particular problem. The
expert systems approach involves both technological and methodological issues, general
familiarity with them cannot be taken for granted at the present. Furthermore, as one would
expect in the case of a new and emerging technology, the body of literature dealing with
expert systems is large and is marked with proliferation and lack of consistent use of the
terms. This situation has not been helped by the ambiguity of some AI jargon.

This paper then presents a concise original review and analysis of the expert systems approach
with a view to aiding development of expert system applications in engineering. It attempts to
sort through the profusion and jargon to get at the underlying concepts to provide the
engineering researcher with an understanding of the principles behind expert systems. The
information presented is based on insights gained through keen interest in expert systems
since they burst into the scene in mid-1980s, a comprehensive critical review and analysis of
the literature dealing with those systems and their potential applications, and actual practical
experiences gained through a Ph.D. research conducted to develop an expert system in the
domain of civil engineering. The important principles and concepts that underlay the general
approach are discussed with an engineering application in mind. Since this is not intended to
be a complete or extensive introduction to the field of expert systems, the interested reader is
referred to the references for a fuller discussion of the approach.

Following this introduction, section two traces expert systems to their origin in the search for
computer intelligence. Section three summarizes useful ways of looking at an expert system
including its definitions, features, and characteristics. The architecture and structure of a
system along with available tools for building it are also discussed. The process and stages of
developing a system are reviewed in Section four. Section five reviews weaknesses of today’s
systems and potential capabilities of tomorrow’s. Section six briefly discusses expert system
applications in engineering, in particular some difficulties in development of certain
engineering applications. The paper concludes with a section highlighting key issues that
would be of interest to engineering researchers wishing to apply the technology of expert
systems in their respective fields of specialization.

2. ORIGIN: A BRIEF HISTORY OF AI AND EXPERT SYSTEMS

Although the dream of duplicating human intelligence in machines can be traced far back in
history, the serious search to create such machines is of a much shorter time span. The
summer of 1956 is widely acknowledged as the official birth of the research program. The
place is Dartmouth where scientists engaged in thinking about how to create intelligent
machines conferred. The term ‘artificial intelligence’ was coined in the course of naming the
conference (Parsaye and Chignell 1988). Ideas and deliberations about human intelligence

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 347

which were presented at that conference along with the availability of the computer in the late
1940s led some scientists to speculate that the dream of intelligent machines is realizable in
the form of computer systems. The chief engineering-oriented goal of AI was set to develop
programs that can solve problems ordinarily thought of as requiring human intelligence (Duda
and Shortliffe 1983).

Following the Dartmouth conference, AI research was dominated by the belief that human
intelligence is largely due to the ability to reason. So in the 1960s research efforts were
focused on finding general reasoning methods and using them to create general-purpose
problem solving programs. Developing those programs proved to be very difficult and
ultimately produced little success. This eventually led to the view that the more general-
purpose a program is made to be, the more poorly it appeared to perform on any particular
problem (Waterman 1986).

In reaction, AI researchers decided to modify their quest for intelligent programs. Instead of
creating general-purpose programs, they concentrated on developing general methods to apply
in more specialized programs. More specifically, researchers sought general ways to improve
on two key aspects of problem-solving: representation, the process of formulating a problem
so as to render it easy to solve, and search, the process of navigating through the space of
possible solutions to find an acceptable one (Waterman 1986). General methods to formulate
problems as search spaces and techniques to efficiently explore the spaces for solutions were
developed in the 1970s. They were then used in programs to solve specific problems, mostly
games and puzzles.

This group of programs performed better than their predecessors. Some were quite capable of
solving problems at levels comparable to human beings. This led to optimistic projections
about their performance when applied to real world problems. Some researchers were quick
to point out that the problems these programs dealt with are characterized by uniform
structures and small search spaces. No sooner trials to adopt those programs in real life
applications began than limits of their power started to show. Ultimately, this led to the view
that general problem-solving even when augmented with efficiency search techniques is too
weak to solve most of real world problems (Hayes-Roth et al. 1983).

Faced with this limitation, a group of AI scientists chose another tack to make programs
intelligent. They embarked on creating a special-purpose program to solve a real world
problem using specific knowledge obtained from human experts. This attempt proved
successful. It resulted in a very specialized program capable of rivaling expert humans at
solving the problem. Similar programs were soon to follow. By the late 1970s, several of
them were born, leading to the recognition of the primacy of knowledge in intelligent
problem-solving. Thus was the inception of the knowledge-based expert systems approach.

Vol. 1. 348 Naief Turki Ibn-Homaid

3. WHAT IS AN EXPERT SYSTEM?

Success of the latest attempts at creating intelligent problem solvers led to the realization
which many now regard as the major conceptual breakthrough in AI research so far. To be
intelligent, a program should be provided with a large amount of high-quality specific
knowledge about some problem domain (Waterman 1986). Those intelligent programs are
known as ‘knowledge-based systems’ or ‘expert systems’. There is no precise or widely
endorsed definition, in the classical sense, of either of these phrases. In fact, very often they
are used as synonyms. The purpose of this section is to illustrate what these two terms as a
unified concept mean. Before that, there is a useful distinction which needs to be clarified.

A knowledge-based system is a computer program that employs knowledge to solve a
problem ordinarily requiring human intelligence (Hayes-Roth 1984; Jackson 1999). If the
system achieves high-performance in a problem domain that, for a human, requires years of
special education and experience, then it is called an expert system (Hayes-Roth et al. 1983;
Jackson 1999). More strictly, an expert system models the knowledge of an actual human
expert in a particular domain and solves domain problems at expert levels (Mullarkey 1987).
An expert system is a knowledge-based system per se. The former is a special case of the
latter. Whereas an expert system uses expert knowledge, a knowledge-based system employs
human knowledge, though not necessarily expertise (Hayes-Roth 1984; Jackson 1999). In
this sense, expert systems are a super subset of knowledge-based systems.

Some of the early systems are truly expert systems in the strict meaning of the term given
above. They were intended to prove that AI techniques can be applied to solve problems at
human expert levels, thereby establishing the field of expert systems. Those systems were
characterized by the significant resources, human and otherwise, spent to develop them. Most
of today’s so-called expert systems are more appropriately described as knowledge-based
systems. They are useful but hardly rival human experts in performance. The two terms can
be used interchangeably provided that the important distinction mentioned above is clear.

3.1 Architecture and Structure

3.1.1. Architecture

A schematic of a rule-based expert system is shown in Figure 1. The basic architecture of
consists of three main components: the knowledge base, context, and inference engine. The
focal component is the knowledge base where knowledge specific to a particular domain of
application is stored. The bits and pieces of domain knowledge acquired from a human expert
or some other source must be appropriately formulated for use by other parts of the system for
problem solving purposes.

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 349

The context, also referred to as short-term or working memory, is a transient and dynamic part
of the knowledge base. It holds factual knowledge about the specific problem the system is
currently trying to solve. Initially, the context contains the given facts that define the case’s
parameters. As the system reasons, the context expands to include information derived in the
course of solving the problem at hand.

Upon solving the problem, the context comprises the given and intermediately inferred facts
as well as the solution.

The component of the system which performs the reasoning task is known as the inference
engine. It contains general problem-solving knowledge. The engine typically consists of a
change monitor; detects changes in the context requiring attention, a pattern matcher;
compares the context and the knowledge base, a scheduler; decides which action to execute
next, a processor; fires the required actions, and a knowledge modifier; modifies the
knowledge base as specified by the executed actions (McGartland and Hendrickson 1985).
Another part not yet as common is called a consistency enforcer which modifies previously
drawn conclusions when their bases of support are altered (Hayes-Roth et al. 1983; Jackson
1999). These interrelated parts operate on the knowledge base and the context to solve
domain problems.

A complete system will also include three other highly desirable components: the user
interface, explanation facility, and knowledge acquisition module. The system communicates

KNOWLEDGE
BASE

CONTEXT

INFERENCE
ENGINE

 Change Monitor

Problem Description
(User Entered Facts)

Pattern Matcher

Problem Status
(Sys. Deduced Facts)

Scheduler

Processor

Knowledge Modifier

Factual Knowledge

Inference Rules

USER
INTERFACE

KNOWLEDGE
AQUISITION

EXPLANATION
FACILITY

USER

EXPERT
KNOWLEDGE

ENGINEER

Figure 1 Components of an Expert System.

Vol. 1. 350 Naief Turki Ibn-Homaid

with its user through the user interface. In relation to conventional user interfaces, this is a
highly interactive and transparent one. Domain-oriented language and means are used to
exchange information with the user. Additional unconventional capability required of this
interface is to allow the system to provide the user with explanations and justifications of its
behavior.

The explanation facility equips the system with the ability to explain its reasoning and justify
its actions. On request by the user, a system can ideally answer ‘how’ and ‘why’ questions.
The explanations provided by most current systems consist of a backward trace of the steps
used to arrive at a particular conclusion. More advanced systems can additionally explain
why a certain conclusion was not reached and justify their requests for additional information.
The explanation facility is also useful as a debugging tool during system development.

The last and least developed component is the knowledge acquisition module. It is meant to
allow initially entering knowledge into the system and later enlarging and maintaining the
knowledge base. At present, this component exists rudimentarily in the form of a knowledge
base editor. The editor facilitates entering already formalized knowledge. Although, the
ultimate goal for this component is to allow knowledge obtained from some source to be
added directly, this goal has not been achieved at the present time. Current research on
automating knowledge acquisition, carried out in another field of AI, i.e., machine learning,
needs to produce more results before the knowledge acquisition module becomes a full
fledged component of expert systems.

3.1.2. Structure

To produce an expert system structure, conceptual design decisions must be made at least at
two levels. There are no hard and fast rules for making those decisions. At either level, many
design options are available. However, the design principles developed to date are not
sufficient enough for a structured approach that characterizes the choices in terms of a
particular problem domain. As a result, design of an expert system has to proceed
pragmatically.

Hayes-Roth (1984) provides a framework that summarizes most of what is known about high-
level system design. The framework relates design principles and high-level prescriptions in
terms of problem characteristics. Essentially, the most typical structure is presented and
various embellishments are added to it as problem complexity increases in various
dimensions. Problem characteristics that are considered significant in this respect are the size
of the search space and the nature of the available data and knowledge.

Decisions must also be made at a lower design level. The key questions here are how to
represent and reason with knowledge. The answers, respectively, determine the structures of
the knowledge base and inference engine. A knowledge representation formalism(s) and a

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 351

problem-solving strategy(ies) need to be selected. Available techniques for representing
knowledge include facts, rules, frames, objects, semantic networks, and formal logic. The
most commonly used problem-solving strategies are forward-chaining (data-driven) and
backward-chaining (goal-driven). Maher and Allen (1987), Dym and Levitt (1991), and
Jackson (1999) provide a review of some common strategies. To complete design, various
decisions need to be also made regarding the other architectural components of a system. The
most mature and common structure today is the production (rule-based) system’s. Where
knowledge is represented as rules (productions) and a backward-chaining strategy is,
typically, employed. Structural differences have been reflected in the available system-
building software tools through specific design choices. Thus, in applied expert systems
research the task of conceptual design becomes largely a matter of identifying appropriate
techniques and then selecting a tool which implements them.

3.1.3 Expert Systems Building Tools

Expert systems techniques have been implemented, to a lesser or greater extent, in tools for
building the systems. Many of those tools are commercially available. A catalogue of most
of them can be found in Waterman (1986), Jackson (1999), and Darlington (2000). They vary
in many respects. In terms of sophistication, they can be divided into four somewhat
overlapping major categories: AI programming languages, general-purpose representation
languages, expert system shells, and special-purpose development environments (Mullarkey
1987; Darlington 2000).

The most basic tools are the symbolic languages of AI. The most used are Lisp and Prolog.
These languages are distinguished from the traditional ones by the special features offered for
representing and manipulating symbolic descriptions. Those features are the low-level
primitives in knowledge-based programming. AI languages provide a developer with
complete flexibility in designing and implementing a system. The second category refers to
higher level, typically Lisp-based, languages for knowledge representation. They can be
classified according to the four major paradigms of knowledge representation: rule-based,
frame-based, object-oriented, and logic-based. A typical tool in this class offers one or more
ready-made structures for representing domain knowledge. As with AI languages, the
developer must implement the rest of a system’s structure from basic constructs.

Expert system shells are frameworks that aid in rapid development of expert system
applications. This group of tools normally consists of skeletal systems, classical expert
systems stripped down of their knowledge bases, and the direct commercial derivatives of
those systems. They are simply expert systems with empty knowledge bases. A shell usually
offers a ready inference engine complete with built-in support facilities (i.e., a user-interface,
an explanation facility, and a knowledge acquisition module). A developer can build a system
from the shell by filling the empty knowledge base with domain-specific knowledge. A shell
reduces and constrains the design options available. Most restrictions arise from the

Vol. 1. 352 Naief Turki Ibn-Homaid

predefined structures of the inference engine and the knowledge base. Provided a shell is used
for a problem similar in type to that for which a shell was originally designed, the shell can
speed and simplify the application development process.

Finally, the special-purpose environments denotes tools designed to aid in developing expert
systems for different domains and types of problems. Expert system development
environments are hybrid (distinguish them from shells) in that they contain different structural
mechanisms that implement many expert system techniques. Development environments are
also distinguished in that they usually require dedicated AI hardware (e.g., Lisp machines) to
run on. A typical environment provides multiple structures for knowledge representation,
inference, and control. It also provides extensive development aids including a user interface
building facility, an inspector, a browser, editors, and a debugger. As such, an environment
offers a great deal of flexibility in designing a system. The structure of a system can be
produced by nominating and combining appropriate mechanisms and facilities.

3.1.4 Selecting an Expert System Building Tool

Selection of the right tool to build an expert system is a difficult and critical decision. The
decision is difficult in part because many criteria are involved and in part because an
appropriate tool needs to be chosen at an early stage, where, especially in the case of a first
time developer, the issues involved in representing and applying knowledge of the domain of
interest are not well defined. Better understanding comes from experimenting with the tool as
well as deeper analysis of the domain knowledge. The choice is critical because a tool cannot
only speed up but also facilitate or hinder system development. Two approaches to choosing
a suitable tool are common. One is more of a hacker approach whereas the other is more
principled.

The first approach employs the so-called consultation or problem-solving paradigm, a
conception of how problems of a particular type are solved in different domains. A particular
paradigm is a good indicator of what techniques should be used to represent knowledge,
perform inference, and control reasoning. A set of potential tools can be identified by
matching the consultation paradigm of the problem of interest with those of available tools.
The second approach relies on characteristics of the problem domain to identify solution
features from among the problem-solving techniques of expert systems. The desired features
are then used to identify a set of potential tools (Hayes-Roth et al. 1983; Waterman 1986;
Darlington 2000). Neither approach goes as far as recommending a particular tool. Rather,
the strategy is to identify a set of potential tools based on necessary tool features and then
select a particular tool from the set on the basis of other attributes or considerations.

Many criteria are involved in the choice of an appropriate tool. They are discussed in
Gevarter (1987) and Mullarkey (1987) in general and in Gowri et al. (1988) and Moselhi and
Nicholas (1988) as they relate to specific engineering domains in particular. The predominant

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 353

consideration is the selection of a tool whose built-in structures closely match, or rather allow
a close match, with the characteristics of the problem at hand.

3.2 Features and Characteristics

3.2.1 Main Features

An expert system tries to emulate expert problem-solving behavior in a specific problem
domain. To do so, the system needs to have the domain knowledge which underlies that
behavior. This knowledge is usually of two sorts: public and private (Hayes-Roth et al. 1983).
Public knowledge includes definitional, factual, and theoretical information and is widely
available in published literature on the subject of application. Expert knowledge contains
more than just this public portion. A human expert often relies on private knowledge to solve
or simplify a problem in his domain. This latter portion consists largely of heuristic rules and
tend to be held privately by an expert or his organization. Building an expert system requires
both sorts of knowledge to be uncovered, gathered and formalized.

Knowledge of either sort does not come neatly, pre-assembled, or ready for use. It must be
first analyzed and then represented in a form the system can use to solve a problem. Therein
lies most of the beneficial features of an expert system. It provides a new alternative for
accumulating and codifying knowledge about a problem domain. Relative to traditional
means such as textbooks and algorithmic programs, knowledge collected and encoded in an
expert system is more explicit, accessible, and useful. Besides the direct benefits obtainable
from activating knowledge for problem solving, the system makes domain knowledge,
especially private knowledge, readily available for test and evaluation. This in turn fuels the
process of refining and improving domain knowledge. “An expert system acts as a
systematising repository over time of the knowledge accumulated by many specialists of
diverse experience. Hence it can and does ultimately attain a level of consultant expertise
exceeding that of any single one of its ‘tutors’” (Michie 1980 p. 369).

Another feature of an expert system concerns the way it stores and processes knowledge.
Domain knowledge in the system is stored explicitly rather than implicitly or abstractly as in
algorithmic programming. This provides for a most distinguishing feature; namely
transparency. Unlike the ‘black box’ nature of algorithmic programs, an expert system is able
to make its reasoning explicit merely by retracing its problem-solving steps. Knowledge of a
domain is encoded in human-like modular form, typically as individual facts and rules each
representing an independent chunk, and separated from the means for its use. How that
knowledge is used to solve domain problems is the responsibility of the inference engine.
Depending on the current problem-solving status in the context, the inference engine selects
relevant pieces of knowledge from the knowledge base and regulates the order in which they
are applied in accordance with its control strategy. Thus, in contrast to the rigid and static
control structure of an algorithmic program, the control mechanism of an expert system is

Vol. 1. 354 Naief Turki Ibn-Homaid

flexible and dynamic. The separation of domain knowledge from control has several
beneficial consequences. The system can be developed incrementally over an extended
period. Stored knowledge can be modified and new knowledge added without influencing, at
least in principle, the control structure.

A final attractive feature of an expert system is what Waterman (1986) calls its predictive
modeling power. The system serves as a knowledge-based problem-solving model in the
particular domain of application. A user can change a problem’s parameters and observe their
effects. The user may also experiment with the various structures of the system. This model
has the unique advantages of being able to explain how the changes led to the effects and
closer to the way human experts in the domain solve problems.

3.2.2 Basic Characteristics

AI researchers have a more sophisticated view of expert systems. To them, an expert system
is a computer program defined by several basic characteristics. These properties are briefly
reviewed here based on a similar and more detailed discussion elsewhere (Brachman et al.
1983; Waterman 1986; Jackson 1999; Darlington 2000).

An expert system strives to solve a problem as well as human experts. To behave like an
expert in this respect means producing good solutions efficiently (Brachman et al. 1983). This
requires the expertise a human uses to solve the problem. The emphasis of the work in expert
systems so far has been on capturing the heuristic aspect of this expertise. The system
employs symbolic reasoning and representation to solve a problem. It uses symbols to
represent concepts and states in the domain, uses symbol structures to represent relations
among the concepts, and reason by manipulating the symbols.

Another quality the system should have is robustness. It should behave intelligently or
degrade gracefully when presented with problems beyond its scope or when given erroneous,
inconsistent, or incomplete data or knowledge (Waterman 1986). To attain this quality the
system needs to have deep and broad knowledge about its domain. It also needs general
problem-solving methods to use this knowledge when its heuristics fail.

An expert system deals with a complex problem. AI researchers believe that a problem has to
be complicated enough to be a good candidate for an expert system application. Problem
complexity tends to follow from the nature of expert tasks. Computationally, a complex
problem is often interpreted as one that does not have tractable or pure algorithmic solutions,
or generally, one which is not amenable to such an approach. The system should have a
problem reformulation capability. It should be capable of taking a problem stated in lay terms
and transforming it into a form amenable to processing by its heuristic rules.

An expert system should possess knowledge about itself, that is, it should know about its
structure and operation. The system needs this ‘meta-knowledge’ (i.e., knowledge about

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 355

knowledge) to reason about itself in various forms not the least of which to explain its
behavior. A final characteristic concerns the types of problems. Expert systems have been
used to solve problems that span the spectrum of problem types (Dym and Levitt 1991) and
involve at least one of the following tasks: diagnosis, interpretation, monitoring, prediction,
instruction, planning, design, and control (Jackson 1999; Darlington 2000).

It is noted here that an expert system fully exhibiting all of these characteristics does not yet
exist. The characteristics represent main defining dimensions AI researchers have used to
characterize a true expert system. Existing systems vary with respect to these dimensions in
terms of both the extent of coverage as well as degree of achievement. In fact, as the same
researchers point out (Brachman et al. 1983), no existing system comes close to achieving the
goal on more than one dimension.

With the preceding discussion of features and characteristics in mind, the attributes which
differentiate expert systems from other types of programs can be stated. Maher and Allen
(1987) and Darlington (2000) list some of the characteristics that distinguish expert systems
from conventional programs, whereas Darlington (2000) contrasts expert systems and
decision support systems.

A final way of understanding what are expert systems is to compare them to their human
counterparts. More specifically, to contrast the natural expertise as it exists in human beings
with the artificial one of expert systems. Waterman (1986) and Darlington (2000) list the
advantages and disadvantages of artificial expertise relative to those of the natural one.

4. CONSTRUCTING AN EXPERT SYSTEM

The new expert system technology has not advanced to the stage where a well-defined
detailed process for developing a system can be articulated. For those wishing to apply the
technology, there is pragmatic advice emerging from consensus based on experience to date.
The process of developing an expert system is known as knowledge engineering. It has many
similarities with the conventional software development process, i.e., software engineering.
There are, however, some distinctions.

Two roles are traditionally distinguished in expert system development: that of the domain
expert and system developer. The role of the domain expert is to provide the expertise
required to solve domain problems. The system developer is historically an AI researcher
referred to as knowledge engineer. His role is to assess suitability of the application, acquire
knowledge, and build the system.

At the heart of engineering knowledge of a domain is the complex process called knowledge
acquisition: extracting, organizing, and structuring domain knowledge for use by the system to
help solve domain problems (Waterman 1986). The process involves a collaborative effort
between the domain expert and knowledge engineer to uncover the expert knowledge and

Vol. 1. 356 Naief Turki Ibn-Homaid

express it in a computational form. For a variety of reasons (Stockley 1987), knowledge
acquisition is widely acknowledged to be the bottleneck in system development (Jackson
1999). The currently popular case-based reasoning is a promising research direction for
widening this bottleneck.

A distinguishing characteristic of expert system development process concerns its iterative
evolutionary nature. A system is developed by an incremental prototyping methodology.
A first prototype is produced usually for a portion of the problem considered. This is a
demonstration prototype normally used in two ways: to assess the possibility of applying the
technology to the problem at hand and test the effectiveness of design decisions.
A prototyping cycle can then be entered into to increase the system performance and coverage
of the problem. In terms of stages, an expert system evolves from being a demonstration
prototype to research prototype, field prototype, production prototype, and commercial system
(Waterman 1986).

Several phase models of the process of developing an expert system project have been
suggested (e.g., Rehak and Fenves 1985; Parsaye and Chignell 1988; Darlington 2000). The
most widely mentioned is the one presented by Buchanan et al. (1983) and Jackson (1999), in
which five highly interrelated major phases in the process are described: identification,
conceptualization, formalization, implementation, and testing. Identification involves
identifying the domain expert who will collaborate in constructing the system, defining the
problem and its scope, identifying its characteristics and sub-problems, determining the
generic reasoning tasks involved, identifying the required resources and knowledge sources,
and setting the goals or objectives of constructing the system.

During conceptualization, the knowledge engineer interacts with the human expert to extract
domain knowledge and characterize the problem-solving process. Other sources of
knowledge such as textbooks, handbooks, manuals, and reports are also utilized in this
endeavor. Key domain entities, their attributes, and their relations used to describe the
problem and its solution are made explicit. Subtasks, information flow, constraints, and
strategies are also identified. The totality of this information represents a conceptual model of
the problem domain.

This model is mapped in the formalization phase into a more formal one based on known
means for representing and processing knowledge. The knowledge engineer identifies likely
needed techniques for representing knowledge, performing inference, and controlling
reasoning. The knowledge engineer then selects an appropriate tool for the problem from
those available for building expert systems. In implementation, the various ingredients of the
problem-solving expertise made explicit during the conceptualization phase are organized and
structured in terms of the techniques seemed appropriate. This formalized knowledge is then
encoded in the tool chosen to construct the system. The result is an executable prototype
program.

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 357

Testing involves evaluating the performance of the prototype system. The program is first
tested on two or three examples to ensure that it can run from beginning to end. It is then
presented with a variety of test examples for further probing. The tests will almost certainly
reveal weaknesses and deficiencies in the prototype. The knowledge engineer revises the
prototype to overcome the shortcomings. This could entail refining the knowledge base,
adjusting the control flow, reformulating the concepts and relationships, redesigning the
knowledge and control structures, and even redefining the scope of the initial problem.

Expert system development is not a one-pass or sequential process. Except for the fact that
problem identification occurs first and testing last, there is constant jumping between and
iteration within the development phases before the initial prototype is produced. The
prototype will show if the expert systems approach is appropriate for the problem considered.
If it is, a gradual and protracted development cycle can be entered into to broaden and deepen
the system coverage of the problem.

5. LIMITATIONS AND EXPECTATIONS OF EXPERT SYSTEMS

Current expert systems are sometimes referred to as first generation. Most of them especially
those in routine use today are rule-based, their knowledge is represented uniformly as rules.
When assessed with respect to expertness’ dimensions that AI researchers feel a system
should be expected to exhibit, first generation systems are acknowledged to fall short on a
number of the dimensions (e.g., Brachman et al. 1983; Steels 1990). This section reviews
some of the main shortcomings and present research attempts at overcoming them. Although
expert systems have been used to solve a variety of problems, most success has been achieved
more in certain types of problems than others. In terms of the derivation-formation spectrum
of problem-solving tasks (Dym and Levitt 1991), expert systems have shown to be more
successful and easier to develop for problems falling toward the derivation (e.g., diagnosis and
selection) than the formation (e.g., planning and design) end of the spectrum.

First generation systems tend to be narrow; they lack the breadth of knowledge domains
experts have, brittle; they degrade rather sharply at the edges of their knowledge and do not
recognize their limits, and shallow; they rely on purely heuristic knowledge. Often those
heuristics are high-level rules of thumb an expert garnered from many years’ experience or
compiled from first principles in a domain. The high-level character of expert rules affords a
system with reducing its search space thereby producing its solutions efficiently. The
efficiency, however, comes at the expense of the system’s ability to explain itself and perform
robustly (Brachman et al. 1983). As each rule is typically an abstraction of many basic
principles and inference steps, a system using high-level rules cannot explain its results in
terms of the fundamentals of its domain. Furthermore, the more basic inferences are
condensed in one large inferential leap, represented by a high-level rule, the more fragile that
leap tends to be. The ability of a system to recognize small variations in its inference patterns
diminishes as the level at which those patterns are expressed increases. Small differences that

Vol. 1. 358 Naief Turki Ibn-Homaid

the system otherwise can recognize, through examination of basic inference steps, and
therefore match against go undetected. In effect, a near mismatch is considered as a complete
one, contributing to the fragility of the system. Other well known shortcomings of
contemporary systems are that they use relatively stylized input-output languages, require
qualified users for successful operation, and they lack commonsense. The so-called second
generation or deep expert systems are intended to overcome these shortcomings mainly
through the use of ‘self-knowledge’ and ‘deep’ reasoning (Steels 1985).

Some researchers believe that self-knowledge to be the most potentially important and
innovative quality a system can have. Current systems use self-knowledge in providing basic
explanations and justifications of their behavior. Usually, this involves some sort of rule-
tracing as mentioned earlier. Yet simply displaying the rules invoked in the course of solving
a specific problem instance is the least adequate form of explanation. To truly act like a
human expert in this regard, a system needs to explain the rationale behind its decisions and
even to tailor its explanations to perceived needs of its user. This calls for linking the
heuristics with their underlying fundamental principles as justifications and constructing and
tailoring of explanations out of those principles. Besides explanation, other potential uses of
self-knowledge relate to a system’s capability to modify itself by, for instance, restructuring
and reorganizing its knowledge base (Lenat et al. 1983).

A deep system has more understanding of its heuristics in the form of a model of deeper
principles of a domain. It also has the ability to utilize either kind of knowledge (i.e., surface
or deep) as the situation warrants (Steels 1985). As such, it has the potential to degrade
gradually at the periphery of its knowledge, know when a given problem is beyond its scope
or capability, recognize erroneous data or knowledge, check consistency and completeness of
its knowledge base, and even to learn from its experience. A deeper and more self-
knowledgeable system promises also to widen the bottleneck of knowledge acquisition and
tune its interface to the qualification of a user.

The shortcomings of contemporary systems are the subjects of on-going mostly basic research
and they characterize limits of what can be achieved with currently available tools and
techniques. Despite its limitations, current technology has resulted in systems that solve
complex practical problems. Some of those systems are quite successful, performing in
carefully selected narrowly defined problem domains at levels that truly rival those of human
experts. The additional techniques currently under investigation in the field of expert systems,
i.e., truth maintenance systems, belief revision, case-based reasoning, fuzzy logic, and
dependency networks, and other fields of AI, i.e., natural language processing and machine
learning, may lead to more versatile and powerful future systems. For the present and from an
application point of view, a developer should be content with a less ambitious view of expert
systems than what AI researchers have in mind. Duda and Shortliffe’s (1983 p. 266) assertion
that “The goal of expert systems research is to provide tools that exploit new ways to encode
and use knowledge to solve problems, not to duplicate intelligent human behaviour in all its

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 359

aspects. The challenge at this stage of expert system development is therefore to constrain the
problems addressed in realistic ways to allow useful solutions to real-world problems.”
appears to still hold true.

6. APPLICATIONS OF EXPERT SYSTEMS IN ENGINEERING

Interest in applying expert systems technology in engineering has been growing at a
phenomenal pace since its first introduction in the mid-1980s. This is not surprising given
that so many of engineering problems are highly dependent on experiential knowledge for
successful solutions and these systems promise to make that knowledge widely available. A
staggering number of papers and research studies that discuss the relevance and potential of
the technology in this area have been reported. As many have reported on the development of
expert systems that address the various problems of the area. For instance, Kempf (1989) of
the Knowledge Applications Laboratory of Intel™ Corporation gives 160 references on the
applications of expert systems in manufacturing planning and scheduling alone, covering only
process planning and production scheduling. It is not the intention here to present a state of
the art review of the applications of expert systems in engineering. This is in part because, the
number of applications or research projects is overwhelming and in part because good reviews
are available in the literature. One measure of this can be gained from searching the internet
with the subject of expert systems and consulting recent conferences such as the 6th
International Conference on the Application of Artificial Intelligence to Civil Engineering
(2002) and the upcoming 7th International Conference on Intelligent Engineering Systems
(2003). Rather the intention is to mention two major sources of difficulty in applying current
expert systems technology to certain engineering problems.

Engineering planning, design, and control processes are often characterized by lack of
complete and accurate data. Due to incomplete input information at the start, the reasoning
process is not continuous. Progressive availability of data necessitates incremental
development of solutions. This means that the reasoning process has to be interrupted until
required information becomes available. These aspects create a situation whereby the
problem-solving status in the dynamically evolving context has to be known over time. In
light of the transient character of the context in existing expert system shells, this requirement
represents a perplexing hurdle to overcome.

Furthermore, these aspects mean partial solutions, or solutions of differing states, exist most
of the time during the reasoning process. Thus, the concern is not only with how to perform
but also what has been performed, what needs to be, and when. The answers to these
questions are facilitated by the so-called control knowledge. This is a conceptually distinct
portion of knowledge of a domain. It refers to how and when the operative domain
knowledge is used, a form of meta-knowledge. Capturing control knowledge explicitly is
more a characteristic of the second than the first generation of expert systems. First
generation systems encode this kind of knowledge implicitly in the form of the reasoning and

Vol. 1. 360 Naief Turki Ibn-Homaid

control strategies of the inference engine. As the size or complexity of the search space
increases, however, more of the control knowledge in a problem domain needs to be
incorporated explicitly to help focus the search for solutions. It is as if the states of the system
are monitored to bring the relevant pieces of knowledge to bear at the proper context.

The other major complicating characteristic is changes, often caused by data uncertainty.
Their effect is that evolving solutions need to be revised based on the most current
information. In expert systems terms, this means that the reasoning involved is ‘non-
monotonic’. Available techniques, collectively referred to as truth maintenance or belief
revision system or facility, for dealing with non-monotonicity of reasoning are less developed.
A sign of this is there seems to be no expert system shell expressly designed for planning or
design applications.

The discontinuity and non-monotonicity of reasoning are complicating characteristics that
tend to limit the potential of expert systems to engineering diagnosis and selection problems.
It might be added that future continuation of this research direction, in light of expected
advances in expert systems technology, for the other engineering problems may be
worthwhile.

7. SUMMARY AND CONCLUSIONS

Expert systems represent a new approach for dealing with important and difficult engineering
problems. That is, practical problems which cannot be solved algorithmically because they, by
their nature, resist the algorithmic approach or are not understood well enough to reduce to
mathematical models or equations. In such problems, conventional programs offer little help
and expert humans are relied upon for satisfactory solutions. Expert systems extend the range
of computer applications to such expert problems.

The approach provides practical means for organizing and structuring knowledge of a domain,
including the isolated bits and pieces of scattered experiences and practices of the domain, for
more practical use and towards better and deeper understanding. Beside their ability to
represent knowledge more naturally, the strength of expert systems lies in their selective
application of knowledge which derives from their flexible and dynamic control structure.
This contributes to the practicality of the approach and renders it perhaps the best available
means especially in light of the progressive availability of data and the frequent changes
involved in engineering planning, design, and control applications.

Many engineering problems do not belong in the typical class of problems, i.e., diagnosis and
selection, where expert systems have scored some success in emulating human experts
problem-solving behavior. Rather, they tend to the more complex planning, design, and
control problems where expert systems are relatively less successful and more difficult to
develop. For these latter problems, knowledge-based as opposed to expert systems are seen as
a necessary first step. They are developed toward increased understanding of a problem and

The Expert Systems Approach: An Engineering Application-Oriented Perspective Vol. 1. 361

improving its solution in relation to emulating behavior of an actual human expert. It seems
to this less ambitious aim that the expert systems approach is being explored in engineering.

Engineering problems characterized by incomplete and inaccurate process data present a
challenge for the current expert systems technology. One key aspect of this concerns the need
to reconsider developed solutions in light of subsequent revisions. Another is that of
maintaining consistency of evolving solutions. Evidently, expert systems techniques for
dealing with these reasoning complexity aspects are relatively less developed. Maturity of
those techniques will increase the utility of expert systems in engineering.

REFERENCES

1. Brachman, R.J., Amarel, S., Engelman, R.S., et al. 1983. What Are Expert Systems? Building
Expert Systems, Hays-Roth, F., Waterman, D.A., and Lenat, D.B., eds. Addision-Welsey,
Reading, MA, 31-57.

2. Buchanan, B.G., Barstow, D., Bechtel, R., et al. 1983. Constructing an Expert System.
Building Expert Systems, Hays-Roth, F., Waterman, D.A., and Lenat, D.B., eds. Addision-
Welsey, Reading, MA, 127-167.

3. Darlington, K. 2000. The Essence of Expert Systems, Prentice Hall, Don Mills, Ontario,
Canada.

4. Duda, R.O., and Shortliffe, E.H. 1983. Expert Systems Research. Science, 220(4594),
261-268.

5. Dym, C.L., and Levitt, R.E. 1991. Knowledge-Based Systems in Engineering, McGraw-Hill,
New York, NY.

6. Gevarter, W.B. 1987. The Nature and Evaluation of Commercial Expert System Building
Tools. Computer, IEEE, may, 24-41.

7. Gowri, K., Bedard, C., and Fazio, P. 1988. Evaluation of Knowledge-Based System
Development Tools for Building Engineering Design. Proceedings of the Third International
Conference on Computing in Civil Engineering, Aug. 10-12, Vancouver, B.C., 430-438.

8. Hays-Roth, F. 1984. The Knowledge-based Expert System: A Tutorial. Computer, IEEE,
17(9), Sep., 11-28.

9. Hays-Roth, F., Waterman, D.A., and Lenat, D.B. 1983. An Overview of Expert Systems.
Building Expert Systems, Hays-Roth, F., Waterman, D.A., and Lenat, D.B., eds. Addision-
Welsey, Reading, MA, 3-29.

10. Jackson, P. 1999. Introduction to Expert Systems, Addison-Wesley, Don Mills, Ontario,
Canada.

11. Kempf, K. 1989. Manufacturing Planning and Scheduling: Where We Are and Where We
Need To Be. Extended Abstract of an Invited Presentation, IEEE, 14-19.

12. Lenat, D., Davis, R., Doyle, J., et al. 1983. Reasoning about Reasoning. Building Expert
Systems, Hays-Roth, F., Waterman, D.A., and Lenat, D.B., eds. Addision-Welsey, Reading,
MA, 219-239.

Vol. 1. 362 Naief Turki Ibn-Homaid

13. Maher, M.L., and Allen, R. 1987. Expert Systems Components. Expert Systems for Civil
Engineers: Technology and Application, Maher M.L., ed. ASCE, 3-14.

14. McGartland, M.J., and Hendrickson, C.T. 1985. Expert Systems for Construction Project
Monitoring, Journal of Construction Engineering and Management, ASCE, 111(3), 293-307.

15. Michie, D. 1980. Expert systems. The Computer Journal, 23(4).

16. Moselhi, O., and Nicholas, M.J. 1988. Expert System Tools for Construction Planning and
Control. Microcomputers in Civil Engineering, 3, 75-80.

17. Mullarkey, P.W. 1987. Languages and Tools for Building Expert Systems. Expert Systems for
Civil Engineers: Technology and Application, Maher M.L., ed. ASCE, 15-34.

18. Parsaye, K., and Chignell M. 1988. Expert Systems for Experts. John Wiley & Sons, Inc.,
New York, NY.

19. Rehak, D.R., and Fenves, S.J. 1985. Expert Systems in Civil Engineering, Construction
Management, and Construction Robotics. Annual Research Review, Robotics Institute,
Carnegie-Mellon University, Pittsburgh, PA, 51-66.

20. Steels, L. 1985. Second Generation Expert Systems. Journal of Future Generation Computer
Systems, 1(4) 213-221.

21. Steels, L. 1990. Components of Expertise. AI Magazine, Summer, 28-49.

22. Stockley, J.E. 1987. Knowledge Acquisition for Expert Systems. Building Cost Modelling and
Computers, 477-489.

23. Waterman, D.A. 1986. A Guide to Expert Systems, Addison-Wesley, Don Mills, Ontario,
Canada.

	Table Of Contents:
	Search:
	Author Index:
	Top:

