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ABSTRACT 
 
This study explores the performance of space trusses when used as impact energy absorbers.  Space trusses 
exist as structural elements in civilian and military establishments.  This paper reviews the most common 
shapes of collapsible energy absorbers and highlights the different modes of deformation of thin tubes.  
Experimental study includes crushing of 27 low-carbon steel space trusses of different diameters and 
different aspect ratios between two rigid parallel plates at quasi-static loading condition.  Obtained results 
illustrate the deformation mode of the space trusses and highlight the relatively low efficiency of the 
absorber. 
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 ملخصال

توجد الهياكل الفراغية في المنشئات .  تكشف هذه الدراسة عن إمكانية استخدام الجملونات الفراغية كماصات لطاقة الارتطام

تراجع هذه الورقة أهم الأشكال المستخدمة كماصات تهشمية للطاقة وتلقي الضوء على نماذج تحطم .  المدنية والعسكرية

تمثل هذه الهياكل .  هيكلا فراغيا مصنوعا من الصلب قليل الكربون٢٧المعملية تحوي تحطيم التجارب .  الأسطوانات الرقيقة

النتائج المستقاة تبين أنمطة الانهيار للهياكل .  عدة أقطار وعدة أحجام تم تحطيمها بين سطحين متوازيين عند حالة شبه السكون

 .الفراغية وتبين الكفاءة القليلة نسبيا للماص
 
1. INTRODUCTION 
 
Functions of structural elements need to be redefined to include the safe design of members to 
withstand impact forces during crash events in an attempt to minimize human losses.  Thus, 
efforts need to be made to understand the behavior of common shapes of structures under 
impact loading and large deformation. 
 
Impact studies in the vehicle industry are well known and well developed [Averill et al. 2001]. 
 However, it is becoming apparent that, in the future, other fields of industry need to look at 
their structural elements from energy absorption consideration [Valenti, 1999].  The current 
trend in producing lighter structures, like plastics and fiberglass composites, puts greater 

 



Vol. 3.  64 Abdulmalik Ali Aljinaidi Alghamdi 

 

demands on the designer to avoid working in the elastic zone alone and ignoring the plastic 
behavior of the structure under large displacement. Thus, with the advances in composite 
materials it is expected that results of composite crashworthiness research will lead to 
absorbers with variable directional energy absorption. 
 
2. ENERGY ABSORBERS 
 
Impact engineering has been a hot subject in the second half of the last century.  Efforts have 
been made towards better understanding of failure modes and energy dissipation patterns 
during impact in common structures.  The common objective of researchers is to build safer 
structures and evaluate existing ones from energy absorption point of view in order to reduce 
losses in human and material resources in crash events. Application of impact engineering 
includes areas such as aircraft crashworthiness, nuclear reactor safety, crash barrier design, 
offshore structures, oil tankers [Valenti, 1999] and collision damage to road bridges 
[Alghamdi, 2000]. 
 

2.1 Definition 

An energy absorber is a system that converts, totally or partially, kinetic energy into another 
form of energy.  Energy converted is either reversible, like pressure energy in compressible 
fluids and elastic strain energy in solids, or irreversible, like plastic deformation energy 
[Alghamdi, 2001a]. 
 
The designer of the collapsible impact energy absorber is required to come up with a system 
of thin structure that absorbs the majority of the kinetic energy of moving bodies within the 
system itself in an irreversible manner.  The selection of the proper absorber depends on 
factors such as material properties, absorber shape, absorber structural inertia, loading rate and 
allowable displacement patterns [Johnson and Reid, 1978]. 
 
Deformable energy absorbers include items such as steel drums [Carney and Pothen, 1988], 
three-dimensional tubular cells [Alghamdi, 2001b], circular tubes [Alexander, 1960], two-
dimensional tubular rings [Reid et al., 1984], square tubes [Nannucci et al. 1999], frusta 
[Alghamdi, et al. 2001], corrugated tubes [Singace and El-Sobky, 1997], and sandwich plates 
[Corbett and Reid, 1993] 
 
Thin tubes can be deformed in different modes of deformation such as axial crushing 
[Alexander, 1960], tube inversion [Al-Hassani et al., 1972], lateral indentation [Watson et al., 
1976], lateral crushing [Johnson, et al. 1977], tube splitting [Stronge et al., 1984] and tube 
nosing [Reid and Harrigan, 1998].  Also, thin circular tubes have been tested when filled with 
foam [Nahas, 1993] and wood [Reddy and Al-Hassani, 1993]. 
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3. ABSORBER SHAPE 

Researchers have suggested absorbers with different shapes since the pioneering work of 
Alexander in early 1960s. Common proposed shapes are listed below: 

a. Cubic rod cell made of 12 low carbon steel rods welded together, see Alghamdi, 
(2000). 

b. Frusta (truncated circular cones) that have wide ranges of applications in the field of 
armament and military industries, see Alghamdi, (1991). 

c. Multicorner Columns such as square tubes and honeycomb cells, see Wu and Jiang 
(1997). 

d. Polygonal cross-section cylinders subjected to axial loading, see Mamalis et al., 
(1991a). 

e. Three-dimensional tubular cell made of 12 thin tubes welded together to form a 
cubic cell, see Alghamdi, (2001). 

f. Tubes represent the most common shape of collapsible impact energy absorbers, 
because of their high frequency of occurrence as structural elements, see Reid, (1993). 

g. Sandwich plates especially in the transportation industry, see Worrall (1990). 

h. Single-hat thin walled sections, see White and Jones, (1999). 

i. Spherical shells under axial crushing between rigid plates, see Gupta et al., (1999). 

j. Struts such as road guardrail terminals, see Reid and Sicking (1998). 

k. W-structure made of 4 rods connected by 3 elbows, see Johnson and Reid, (1978). 
 

4. THE PROPOSED SYSTEM 

Each absorber has its own characteristics under impulsive loading.  The deformation pattern is 
extremely complex and the degree of complexity increases as the shape becomes more 
complex. The study of plastic deformation in energy absorbers accounts for geometrical 
changes, such as tube diameter, for axially loaded tubes, and interaction between various 
modes of deformation as well as strain hardening and strain rate effects. 
 
In this paper the energy absorption of a common structural member is being introduced and 
investigated experimentally.  The proposed shape is a tetrahedron space truss made of six 
identical solid low-carbon steel rods welded together, see Figure 1.  Space trusses can be 
found in different applications including: 1) Space stations, 2) satellites, 3) armory 
applications and 4) civilian application in structural industry especially in bridges. 
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The aim of this paper is to investigate the crushing behavior of the space truss under static 
loading case. This includes: 

a. Studying the effect of rod diameter on the absorbed energy 

b. Studying the effect of aspect ratio (space truss length/space truss diameter) on 
the absorbed energy 

c. Determining the energy density per unit mass of the absorber 

d. Predicting an empirical average crushing force in terms of the system physical 
properties such as yield strength and basic geometries like rod diameter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic Drawing of the Space Truss. 
 
 

5. EXPERIMENTAL WORK 

Twenty-seven absorbers made of low-carbon steel rods with yield strength Sy= 250 MPa were 
manufactured by arc welding.  Table 1 lists the dimensions of these absorbers.  These 
absorbers are grouped into three different rod diameters (6mm, 8mm, 10mm) and eight aspect 
ratios (8 to 22).  Aspect ratio (R) is defined as the ratio between rod length (L) and rod 
diameter (d).  The experimental program is conducted by crushing these absorbers using 
10-Ton Universal Instron Machine and a crushing rate of 5 mm/min is maintained throughout 
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the tests.  Obtained experimental results are summarized in Table 1 and discussed in details in 
the following section.  Table 1 contains mass (m) of each space truss, energy (E) absorbed 
during crushing and specific energy (E*) predicted by dividing the absorbed energy by the 
mass of the absorber. 
 
 
6. RESULTS AND DISCUSSIONS 
 
As stated above, the main objective of this paper is to elaborate the crushing behavior of space 
trusses under static loading condition.  Typical load-displacement curve is shown in Figure 2 
for Specimen 812, see Table 1.  The rod diameter of the specimen is 8 mm, aspect ratio is 12 
and its mass is 213 g.  The load increases from zero to a maximum value.  The recorded 
maximum peak force (Fmax) at point a in Figure 2 is 41010 N.  This point represents the 
maximum instability (resistance) value where the absorber starts crumpling after this point.  
The plastic deformation starts before point “a” and continues after ward.  The load decreases 
between point a and point b which represents the global minimum in the curve.  At point “a” a 
line is drawn to represent a leg of the truss.  Then as the deformation progresses from point a 
to point b, the straight-line bend plastically (permanently) at a plastic hinge located in the 
middle of the rod. The direction of deformation is outward for all trusses tested, i.e., each rod 
undergoes counterclockwise rotation at the plastic hinge.   The decrease in the load between 
points a and b is attributed to the increase of the bending arm for constant plastic moment.  
Two different frames given in the figure simplify the behavior of the rod.  Note that the three 
rods in the base of the truss undergo no bending or stretching work.  More or less, in some 
cases they are exposed to twisting work coming from the boundary.  Yet, they are necessary to 
hold the space truss as well.  At point b the upper part of the leg becomes almost straight and 
the lower one touches the upper plate.  This is considered as a secondary support and hence a 
sudden increase in the load.  The load increases from point b to point c, which represents 
another instability value, and then decreases due to the increase in the bending arm in the 
second stage of crumpling as shown in the schematic drawing.  The second crumpling takes 
fewer wavelengths when compared to the first one.  At point d the space truss becomes flat 
and beyond point d the deformation is changed form crumpling to direct compression.  
Looking to the load-displacement curve shown in Figure 2 one can see the “duck shape”.  In 
some cases legs rotate in the horizontal plane (base plane) during crushing. 
 
For ideal space truss with no imperfection, the deformation pattern is repeated in fluctuation 
pattern with shorter wavelength as the crumpling continues. Figure 3 illustrates the load-
displacement curves for absorbers with different aspect ratios (R=8, 10, 14 and 16), and same 
rod diameter (d=8 mm).   For the top two curves (R=8 and R=10) space trusses were short to 
form a secondary crumpling and the shown increase in the load is due to the direct 
compression effect.  As the aspect ratio is increased, the size of the absorber increases and 
hence one can see more than one crumpling.  However, for absorber with large aspect ratio, 
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the crushing mode is changed into global unstable elastic mode in one bar with tendency to 
shift center of the absorber outside the base.  Thus, experiments were stopped for trusses with 
large aspect ratios.  One can see from the remarks written in Table 1 that as the aspect ratio 
increases, the deformation is changed from symmetric to nonsymmetric, center of the truss 
moves away from the center of the base and rotation of the vertical rods increases during 
crumpling.   

The effect of increasing rod diameter on the load-displacement curve at constant aspect ratio 
is shown in Figure 4.  As expected, the peak force increases with the increase in the rod 
diameter, but the shape of the curve is unchanged.  There is only one outward crumpling 
because the space trusses are too short to allow a second one to exist.   

The peak force is plotted verse aspect ratio for the different rod diameters in Figure 5.   As expected, 
the instability force increases with the increase in rod diameter, at a step proportional to the 
change in cross sectional area of the rods.  This shows consistency in the experiment with an 
acceptable level of variation.  Also, the maximum force decreases with the increase in rod 
length as a result of aspect ratio increase. 
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Figure 2: Load Displacement Curve for Specimen 812. 
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Figure 3: Load-Displacement Curves for Specimens 808, 810, 814 and 816. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Load-Displacement Curves for Specimens 610, 810 and 1010. 
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Device efficiency represented by the specific energy or the energy absorbed per unit mass is 
shown in Figure 6.  The specific energy is plotted verse the aspect ratio of all trusses tested in 
Table 1.  This includes stopped tests that have low energy density.  The first thing to notice is 
the low energy density of the proposed absorber that appears in one single digit.  These values 
are considered low when compared to axial crushing of tubes with specific energy that can 
reach 30 J/g, [Reid, 1993].   Generally speaking the specific energy decreases with the 
increase in aspect ratio and attain maximum value in the neighborhood of R=9. 
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Figure 5: The Relationship Between Maximum Crushing Force and Aspect Ratio. 

 

6 8 10 12 14 16 18 20 22
0

1

2

3

4

5

6

7

Aspect Ratio, R

S
pe

ci
fic

 E
ne

rg
y 

(J
/g

)

d = 6 mm 
d = 8 mm 
d = 10 mm

 
Figure 6: The Specific Energy vs. Aspect Ratio. 
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7. ANALYSIS 
 
The experimental peak force given in Table 1 is supported by three legs (rods) in the space 
truss.  The relation between the axial force at the top of the space truss (F) and the 
compression force (P) developed in each leg is given by 

     P =  0.408 F       (1) 
 
Equation 1 assumed perfect shape with no imperfection and truss with hinged joints.  Now 
this maximum compression force is related, for the sake of analysis, to the buckling load and 
the yielding load.    When considering yielding load only cross sectional area and yield 
strength of the bar are considered.  Thus the yielding force is independent of space truss 
length, i.e. aspect ratio.  For long (Euler) column analysis, the boundary condition of the leg is 
assumed to be pined-pined condition, and the stability force depends on space truss length.  
The validity of Euler analysis is restricted by the critical slenderness ratio that is a material 
property.  For short (Johnson) column analysis, length of the leg has less contribution when 
compared to Euler buckling load.  Now, putting all of the analytical predictions and 
experimental tests together results in diagrams shown in Figures 7-9. 
 
Legs of the space trusses tested in the experimental program are all short when comparing 
their slenderness ratios (effective length divided by radius of gyration) to the critical value, 
found to be 125 for the material used.  Euler column prediction values were trim out for small 
aspect ratio in order to have a better look at theses curves.   It is found out that the 
experimental value for the peak force is bounded by the upper long-column curve and lower 
short-column curve.  And for the tested range of aspect ratio, the lower bound is the yielding 
force as shown in all figures.  Also, experimental peak forces approach the yielding forces 
with the increase in aspect ratio. 
 
From buckling analysis point of view the yielding line should be the upper limit for the peak 
force, however, that is correct for one single leg or column pressed axially.  Thus the integrity 
of the space truss increases the load carrying capacity of each member. 
 
Average experimental crushing force per rod is plotted vs. aspect ratio in Figure 10 for the 
three diameters.  Then empirical relation is fitted to these date.  The best curve fit selected 
among several models [Bogis et al., 2001] is found to be in the form 

     Fav = α A Sy /L     (2) 

Where α is a constant equals 8.1, A is the cross-sectional area of the rod, Sy is the yield 
strength and L is the rod length.  As usual, application of Equation 2 is restricted to space 
trusses made of low carbon steel in the given range of diameters and aspect ratios. 
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Figure 7: Experimental and Analytical Peak Forces vs. Aspect Ratio For d=6 mm. 
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Figure 8: Experimental and Analytical Peak Forces vs. Aspect Ratio For d=8 mm. 
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Figure 9: Experimental and Analytical Peak Forces vs. Aspect Ratio For d=10 mm. 
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Figure 10: Experimental and Empirical Average Force vs. Aspect Ratio For d = 6, 8, and 10 mm. 
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8. CONCLUSIONS 

This paper discusses the deformation pattern of space trusses when crushed between two 
parallel plates.  The aim is to understand the response of space truss when forced to be used as 
impact energy absorber.  It is found that, the absorber deforms in a predetermined pattern 
especially for compact ones with small aspect ratio.  As expected, the obtained energy density 
is not high when compared to other thin structures like thin tubes due to the limited amount of 
material of the space truss participates in plastic deformation during crumpling.  Plastic work 
is seen in the form of plastic bending of vertical rods and plastic twisting of both vertical and 
horizontal (base) rods. 
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