
The 6th Saudi Engineering Conference, KFUPM, Dhahran, December 2002 Vol. 4. 5

RECONFIGURABLE MULTIMEDIA DATAPATH FOR LOW
COST MEDIA PROCESSORS

Aamir A. Farooqui 1, Vojin G. Oklobdzija 2

1: Synopsys Systems & IP Group, Synopsys Inc., Mountain View CA 94043-4033, US
2: Electrical and Computer Engineering Department, University of California, Davis, CA 95616, USA.

Email: aamirf@synopsys.com

ABSTRACT

Media processing involves complex signal processing algorithms that require high-speed integer and
floating-point operations. Moreover, media signal processing with the wider and varying word lengths
require reconfigurable architectures, which can be reconfigured for a variety of data formats,
algorithms, and applications. This paper presents a new reconfigurable datapath organization for
media signal processing supporting MPEG-1, MPEG-2, and MPEG-4 standards. A single datapath
has been utilized for integer as well as floating-point operations, suitable for low cost consumer
electronics media processors. The proposed datapath can support a maximum of 16 parallel single
instruction multiple data (SIMD) integer operations and 2 parallel SIMD floating-point operations.
New instructions have been developed to speed up the execution of Matrix Multiplication, Discrete
Cosine Transform (DCT), Inverse Discrete Cosine Transform (IDCT), Fast Fourier Transform,
3D-Graphics and Synthetic & Natural Hybrid Video Coding (SNHC). These operations are
implemented by re-using the hardware without significant increase in area and delay. The datapath
has been modeled in Verilog using 0.25u CMOS library and synthesized using Synopsys.
All operations are single-cycle running at 200 MHz.

Keywords: MPEG, VLSI, Computer Arithmetic, Multiplication, IDCT, Datapath.

 الملخص

بأعداد ةعمليات رياضيزميات معقدة لمعالجة الإشارات الشىء الذي يتطلب معالجة الرسوم تضمن استخدام خوار

وكذلك معالجة الإشارات مع أطوال كلمات مختلفة بحاجة الى تصاميم . سريعة جداًالنقطة المتغيرةصحيحة وبأعداد

 جديد مسار البياناتم لفي هذة الورقة نقدم تصمي. قابلة للتكييف، لمختلف أنواع المعلومات والخوارزميات والتطبيقات

 لبياناتل واحدمسارتم إستخدام . MPEG-4 و MPEG-2 و MPEG-1قابل للتكييف، لمعالجات الإشارات من نوع

 لبيانات امسار. لمعالجات الرسوم الإلكترونية القليلة التكلفة مناسب، وهو النقطة المتغيرةللأعداد الصحيحة و لأعداد

 متوازية لمعالجة الأعداد الصحيحة، وإثنين (SIMD)بيانات متعددة و أمر واحدة ١٦يمكن ان يتحمل كحد أقصى

تم إضافة أوامر جديدة لتسريع تنفيذ ضرب المصفوفات، ودالة لتحويل الصادية المحددة، . النقطة المتغيرةلمعالجة أعداد

هذة العمليات تم تنفيذها من خلال . أخرىوالدلة العكسية للتحويل الصادية المحددة، والتحويل السريع لفوريير، و دوال

 بإستخدام لبيانات ا مسارتم محاكاة نموذج لتصميم. إعادة استخدام التصميم من دون تغيير كبير في المساحة والتأخيير

كل العمليات من دورة واحدة . للتركيبSynopsis وتم استخدام برنامج CMOS ٠،٢٥ وتكنولوجيا Verilogال

 MHZ. ٢٠٠بتردد

Vol. 4. 6 Aamir A. Farooqui and Vojin G. Oklobdzija

1. INTRODUCTION

Low cost, low power, consumer electronics embedded media processors need a simple, and
area efficient data path that can support MPEG standards and Synthetic & Natural Hybrid
video Coding (SNHC, or 3D graphics support) [Nadehara, and Daito and Nakayama,1995],
[Makino and Suzuki and Morinaka and Nakase and Mashiko, ,1995], [Suzuki, K.; et.al,
1999], [Mohri, A.; et. al, 1999] and [Fujishima, H.; Takemoto, Y.; Onoye, T.; Shirakawa, I,
1999]. The goal of this research is to develop a reconfigurable data path that can support
integer as well as floating-point (FP) operations for low cost consumer low media processors

This paper presents the design of a data path organization and special SIMD instructions to
support MPEG-1, 2, 4, SNHC and 3D graphics. The data path is reconfigurable, scalable, area
efficient, and offers programmability for interactive use. The reconfigurability and area
reduction is achieved by the efficient re-use of same hardware instead of using redundant
hardware as done in [Schmookler, M.S., et. Al,1999] and [Suzuki, K.; et. Al.,1999]. The data
path can assist in the efficient and flexible coding and representation of both natural (pixel-
based) as well as synthetic (computer generated) data (SNHC) by integrating FP operation
support with integer operations. In order to support multiple data types with variable word
lengths and formats, special techniques are developed to reconfigure the multipliers, adders,
and to perform condition resolution.

The remainder of the paper is organized as follows. In Section 2 the overview of the proposed
data path is presented. In Section 3 integer instruction execution is described. Finally, results
and comparisons are presented in Section 4.

2. OVERVIEW OF THE DATAPATH

In this Section, we present the data path organization. The data path supports operations on
128- and 64-bit signed unsigned integers and single precision floating-point numbers.
Figure 1 shows the block diagram of the data path. This is a two-stage, pipelined data path.
The first pipeline stage contains four 16x32 partitioned multipliers (blocks 1, 2, 3, and 4), two
64-bit partitioned comparators, and three 12-bit adders for FP exponent calculation and 4x4
Sum of Absolute difference (SAD) instruction. The second pipeline stage contains two 64-bit
partitioned shifters, adders, and circuitry for normalization and rounding.

The data path instructions are divided into the following groups: 1) Add/Sub, Average, Shift,
Logic and Permute 2) Multiply, Sum, Sum of Absolute difference, Pack and UNPACK, 3)
Compare, Min, Max, Absolute value, and Absolute difference. All the instructions are SIMD
type. All instructions have a latency and throughput of single cycle, except "Multiply, FP
Multiply, FP Add, and SAD" that has a latency of two cycles and single cycle throughput.
Following, we explain the implementation of some of these instructions using the proposed
data path.

Reconfigurable Multimedia Datapath for Low Cost Media Processors Vol. 4. 7

3. INSTRUCTION EXECUTION

In this section we present the instruction execution on the proposed data path Fig 2 shows the
macro-level implementation of the two-cycle data path, containing four 16x32 multipliers,
3x2 compressors, and two 64-bit adder-sub tractors.

MUX

Pipeline Register

Input Registers

64-Bit
Partitioned
Comparator

(B)

MUL
16x32

(2)

8-Bit
Exponent
Add/Sub

MUX

3-2 Compressor

MUX

Pipeline Register

Input Registers

64-Bit
Partitioned
Comparator

(B)

MUL
16x32

(3)

4-2 Compressor & MUX

8-Bit
Exponent
Add/Sub

8-Bit
Exponent

Sub

MUX

Shifter

4-2 Compressor

64-Bit Partitioned Adder

Normalizer

Round

12-Bit Adder

1

222

2

2

2
2 2 2 22

2

2
2 2

2

1

1

1

2

2

2

1

1

1 1 2

2

2 2 2

64-Bit Partitioned Adder

Normalizer

Round

1

1

2

Shifter

1 1

2

12

3

5

20

2

4

3

7

3

2

22

5

6

20

MUL
16x32

(4)

MUL
16x32

(1)

4-2 Compressor & MUX

MUX

Figure 1: Block diagram of the proposed Data path

3.1. Add/Sub Instructions

The Add/Sub instructions are executed in the second pipeline stage of the data path using the
64 bit-partitioned adders. The partition of the 64-bit adders is performed according to the
partition control signals as shown in Table 2. Since we require two 64-bit adders for the
multipliers, therefore by re-using these adders we can support two 64-bit operations in
parallel.

Vol. 4. 8 Aamir A. Farooqui and Vojin G. Oklobdzija

Table 3 shows the operation of these instructions on input operands A and B, the result is
produced in C and D. The A, B, C, and D can be a byte, half-word, word, or double word
packed as 8-bytes, 4-half-words, 2-words, and a double-word respectively; in a 64-bit register
Rx, where x = 0…n.

C a rryS u m

x

A 2

x

B 2 A 3 B 3

+ /-

E 1

D
C lk

C lk
C a rryS u m

x

A 0

x

B 0 A 1 B 1

E 0

C

C lk

C lk

+ /-

Figure 2: Macro-level implementation of the data path

The ADD and SUB operations are performed as normal Addition and Subtraction (with and
without saturation). The parallel average of two numbers is a very common and useful
function in image and video processing, (see Figure 3-a). Only few high performance ISAs
[Oberman, et. Al,1999] support this operation. This combined operation involves an addition
and a right shift of one bit (divide by two). In the proposed data path, AVG2 operation is
implemented using the 64-bit partitioned adder; performing normal addition and finally
shifting the result one bit right. The data path shifts in the carry out bit as the most
significant bit of the result, so it has the added advantage that no overflow can occur.

Table 1
Instructions supported by the ALU (A, B, are the inputs, and C, D are the outputs)

Instruction Operation Result

ADD A + B C

ADS(U) A + B C or SAT(max)

ADS(S) A + B C or SAT(min) or SAT(max)

SUB A-B C

SUBS(U) A-B C
SUBS(S) A-B C or SAT(min) or SAT(max)

AVG2(U) (A+B)/2 C

AVG2(S) (A+B)/2 C

Reconfigurable Multimedia Datapath for Low Cost Media Processors Vol. 4. 9

Table 2
Partition of the ALU, using Partition control signals.

Part1Part0 ALU partition

00 Byte

01 Half word

10 Word

11 Double word

3.2. MULTIPLY INSTRUCTIONS

The multiply instructions and their macro operations are shown in. These instructions are
executed using 32x16 multiplier blocks of the data path. The partition of the multipliers is
performed according to the partition control signals as shown in Table 1, (11 is used for 24-bit
operation). The multiplier hardware is configured for signed and unsigned operation using the
sign control bit. When 'Sign' bit is '1' signed multiplication is performed and when it is '0'
unsigned multiplication is performed. This group of instructions requires two-cycle latency
with a single-cycle throughput. Following we explain the execution of multiply and sum of
products instructions.

O 1 O 2 O 3 O 4

O 5 O 6 O 7 O 8

O 1+O 5
2

O 2+O 6
2

O 3 +O 7
2

O 4+ O 8
2

64-b it
Inpu t 1

6 4 -b it
Inp u t 2

64 -b it
O u tp u t 2

Figure 3: Parallel averaging operation.

3.3. Multiply

In multiply operation, the two input operands are multiplied in the first cycle producing Sum
and carry vectors, and in the second cycle Sum and carry vectors are finally added using the
64-bit partitioned adder to produce the final result as shown in Figure 4. Since the result of
multiplication is twice the width of the input operands, the result of simple multiplication is
produced in C and D (C contains the lower half of the result and D contains the upper half of
the multiplication). The only difference in MUL (U) and MUL(S), is that MUL(U) is the
unsigned multiplication, while MUL(S) is the signed multiplication.

Vol. 4. 10 Aamir A. Farooqui and Vojin G. Oklobdzija

Table 3: Multiply operations supported by the proposed data path.

Description Inst. Operation

Mult. with full resol. (S/U) MUL C = A*B

Mult. with accumulate (S/U) MULA C = A*B + C'

Mult. with deduct (S/U) MULD C = A*B - C'

Multiply upper half result with round. (S/U) MULH C = Ah*Bh

Floating point Multiply FP MUL (M0 x M1 , E0 + E1)

3D-Floating point sum of two products 3D-FSMUL (M3 x M2 , E3 + E2) +
(M0 x M1 , E0 + E1)

Sum of 2 Integer prod. (S/U) SUMP A1*B1 + A0*B0

Sum of 2 products with accumulate (S/U) SUMPA A1*B1 + A0*B0 + C'

Sum of 2 products with deduct (S/U) SUMPD A1*B1 + A0*B0 - C'

Sum of 4 Integer prod. (S/U) SUM4P A3*B3+A2*B2+A1*B1+ A0*B0

Sum of Absolute difference SAD Σ | A – B |

Sum of eight operands SUM8 Σ A

Pack (S/U) numbers PK

Unpack (S/U) numbers UPK

3.4. Sum4p

Sum of two products is supported by most of the high performance media processors, but at
present no processor exists that supports Sum of Four products. This operation performs the
addition of four products and it is equivalent to four multiply and three additions as shown
below:

C = A0xB0 + A1xB1 + A2xB2 + A3xB3

Matrix multiplication is heavily used in IDCT, FFT, and other media signal processing
algorithms. We have found that this operation (SUM4P) dramatically increases (2 to 1) the
execution of matrix multiplication by performing seven operations in a single cycle.
Moreover, by using this operation, high precision processing is done because the rounding
error is reduced as compared to two sum of products operation, in which two rounded results
are added to get the addition of four products. While in this case full precision addition of the
four products is performed and then rounding is performed.

Reconfigurable Multimedia Datapath for Low Cost Media Processors Vol. 4. 11

The proposed data path performs the addition of four products (SUM4P instruction) in two
cycles with single cycle throughput. This operation is supported only for half-word operands.
The instruction execution at macro level is shown in

Fig (5). This instruction requires four multiplications A3xB3, A2xB2, A1xB1, and A0xB0 these
multiplications are performed in the first cycle using the MUL 32x16 blocks. The summation
of two products (A3xB3 + A2xB2, and A1xB1+ A0xB0) is performed in the first cycle Fig (5)
using the 4x2 compressor after the multipliers. Then, the summation of four 16x16 products is
performed in the second cycle using the second 4x2 compressor. The sum and carry vectors
produced by the summations are finally added using the 64-bit partitioned adder to produce
the addition (A0xB0 + A1xB1 + A2xB2 + A3xB3) as shown in Fig(5).

In order to produce the result of the same bit width as the input the result of the addition is
rounded and only the upper half of the result is stored in the output. As one can see from
Fig(5), Sum of four products operation requires the same data path and components as
required in Sum of two products for word operands, hence this instruction is implemented
without any extra hardware cost and delay.

BA

x

CarrySum

+

CD

CarrySum

+

CD

x

A0

x

B0 A1 B1

a) b)

Figure 4: Two cycle multiply operation a) 8x8 or 16x16, and b) 24x24 or 32x32.

CarrySum

x

A0

x

B0 A1 B1

CarrySum

x

A2

x

B2 A3 B3

+

CD

Figure 5: Sum of four products.

Vol. 4. 12 Aamir A. Farooqui and Vojin G. Oklobdzija

4. PERFORMANCE ESTIMATION

The data path performance is estimated for IDCT, Image reconstruction, and 3D Geometric
Transformations using hand written assembly code. In this performance analysis it is assumed
that the data is already available in the registers (loaded by the main processor or load store
unit). Cache hit rate is assumed to be 100%, and instruction issue rate is one instruction/cycle.
Add (ADD), Subtract (SUB), Average (AVG), Average of four operands (AVG4) and
Permute (PERM) instructions operate on 128-bit data, while multiply related instructions
operate on 64-bit data, Butterfly instruction perform two operations on two 64-bit operands
and produce two 64-bit results.

The data path requires, a total of 192 cycles to perform an 8x8 (2D) IDCT matrix-vector
implementation of IDCT, while [Fujishima, H.; Takemoto, Y.; Onoye, T.; Shirakawa,
I,1999], [Bum and Yun and Lee,1997], [Yoshida and Ohtomo and. Kuroda,1993], and
[Mohri, A.; et. Al,1999] requires 512, 448, 560, 500 respectively. This gives a performance
gain of 2.33 over the current existing architectures. The main contribution to this
performance gain is the new Sum of Four Products (SUM4P) instruction. Similarly, a total
of (92 + 16 =) 108 cycles are required to perform 8x8 IDCT using Lee's Algorithm [i] for
fast 2D IDCT. While [Kuroda,1995] [Kuroda,1995 (optimized)], [Holmann and Yamada and
Yoshida and Uramoto, 1996], and [Peleg and Weiser,1996] require 704, 504, 450, and 520
instructions respectively, giving it a performance gain of more than four times over existing
architectures. The main contributions to this performance gain are the Butterfly, and 128-bit
Add-Sub instructions, which constitute nearly 40% of Fast IDCT computation.

The data path requires only 9 instructions/cycles to implement 3-D geometric
transformation, while [Fujishima, H.; Takemoto, Y.; Onoye, T.; Shirakawa, I, 1999],
[Mohri, A.; et. al,1999], and [Oberman, et. Al,1999] require 16, 16, and 13 instructions
respectively. This is more than a 1.4 times increase in performance. This gain is due to the
new FP Sum of Products (3D-FSMPY) instruction, which can perform two FP
multiplications in parallel, thereby giving a performance gain of nearly 1.44 over the current
existing architectures.

5. CONCLUSIONS

This paper presents an overview of a programmable data path to support MPEG-1, MPEG-2,
and MPEG-4 standard Synthetic & Natural Hybrid video Coding (SNHC). The data path can
support a maximum of 16 parallel SIMD integer operations and 2 parallel SIMD floating-
point operations. The data path is reconfigurable, scalable, and area efficient and offers
programmability for interactive use. In this data path, the reconfigurability is achieved by the
efficient re-use of same hardware. The data path can assist in the efficient and flexible coding
and representation of both natural (pixel-based) as well as synthetic (computer generated) data
(SNHC) by integrating floating-point operation support with integer operations. New
instructions have been developed to speed up the execution of Matrix Multiplication, Discrete

Reconfigurable Multimedia Datapath for Low Cost Media Processors Vol. 4. 13

Cosine Transform (DCT), Inverse Discrete Cosine Transform (IDCT), Fast Fourier
Transform, 3D-Graphics and Synthetic & Natural Hybrid Video Coding (SNHC). The data
path organization and development of algorithms, combined with circuit techniques yield
performance improvement in media signal processing.

REFERENCES

1. Bum-Sik, K., Yun-Ho, C., Lee-Sup, K., "IRAM Design for Multimedia Applications", ISCA
1997, Page(s) 1-9.

2. C. Loefer, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D DCT algorithms with 11
multiplications”, in Proc. Int. Conf. Acoustics, Speech, and Signal Processing 1989
(ICASSP’89), pp. 988–991.

3. Fujishima, H.; Takemoto, Y.; Onoye, T.; Shirakawa, I., “An architecture of a matrix-vector
multiplier dedicated to video decoding and three-dimensional computer graphics”, IEEE
Transactions on CAS for Video Technology, Volume: 9 2, March 1999, Page(s): 306 -314.

4. Holmann, E.; Yamada, A.; Yoshida, T.; Uramoto, S., “Real-time MPEG-2 software decoding
with a dual-issue RISC processor”, [Workshop on] VLSI Signal Processing, IX, 1996, Page(s):
105–114.

5. Kuroda, I., “Processor architecture driven algorithm optimization for fast 2D-DCT”, IEEE
Signal Processing Society [Workshop on] VLSI Signal Processing, VIII, 1995, Page(s):
481 – 490.

6. M. Yoshida, H. Ohtomo, and I. Kuroda, “A new generation 16-bit general purpose
programmable DSP and its video rate application”, in Proc. IEEE VLSI Signal Processing VI,
Oct. 1993, pp. 93–101.

7. Makino, H.; Suzuki, H.; Morinaka, H.; Nakase, Y.; Mashiko, K.,"A 286 MHz 64-bit floating
point multiplier with enhanced CG operation", Symposium on VLSI Circuits, Digest of
Technical Papers., 1995 , Page(s): 15 -16.

8. Mohri, A.; et. al., , “A real-time digital VCR encode/decode and MPEG-2 decode LSI
implemented on a dual-issue RISC processor”, IEEE Journal of Solid-State Circuits, July 1999,
Page(s): 992–1000 Volume: 34 7.

9. Nadehara, K., Kuroda, I., Daito, M., and Nakayama, T., "Low-power multimedia RISC", IEEE
Micro Mag., vol. 15, pp. 20-29, Dec. 1995.

10. Oberman, S., et. al.; “AMD 3Dnow! Technology: Architecture and Implementations”, IEEE
Micro, Page(s): 37-48, April 1999.

11. Peleg, A. and Weiser, U.,"MMX technology extension to the Intel architecture", IEEE Micro
Mag., vol. 16, pp. 42-50, Aug. 1996.

12. Radhika Thekkath, et. al.; “An Architecture Extension for Efficient Geometry Processing”, Hot
Chips 1999.

13. Schmookler, M.S., et. al., “A low-power, high-speed implementation of a PowerPC
microprocessor vector extension”, Proceedings 14th IEEE Symp. on Comp. Arith., 1999 ,
Page(s): 12 –19.

Vol. 4. 14 Aamir A. Farooqui and Vojin G. Oklobdzija

14. Suzuki, K.; et. Al., “A 2000-MOPS embedded RISC processor with a Rambus DRAM
controller”, IEEE Journal of Solid-State Circuits, Volume: 34 7, July 1999, Page(s):
1010 –1021.

15. Suzuki, K.; et. Al., “A 2000-MOPS embedded RISC processor with a Rambus DRAM
controller”, IEEE Journal of Solid-State Circuits, Volume: 34 7 , July 1999 , Page(s):
1010 –1021.

	Table Of Contents:
	Search:
	Author Index:
	Top:

