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ABSTRACT 

 
The problem of partitioning appears in several areas ranging from  VLSI, parallel programming, to 
molecular biology. The interest in finding an optimal partitioning especially in VLSI, and has been a 
hot issue in recent years. In VLSI circuit partitioning, the problem of obtaining a minimum cut was of 
prime importance. Furthermore, with current trends partitioning has become a multi-objective 
problem, where power, delay and area in addition to minimum cut, need to be optimized. In this paper 
we employ two iterative heuristics for the optimization of VLSI Netlist Bi-Partitioning. These heuristics 
are based on Genetic Algorithms (GAs) and Tabu Search (TS) [sadiq et al., 1999] respectively. Fuzzy 
rules are incorporated in order to design a multiobjective cost function. Both the techniques are 
applied to ISCAS-85/89 benchmark circuits and experimental results are reported and compared. 
 
Keywords:  Genetic, Tabu, VLSI, Fuzzy, Partitioning. 
 
 

 الملخص

علم الأحياء والبرمجة المتوازية وحتى (VLSI) تقسيم تظهر في مختلف المجالات العلمية كالأنظمة المتكاملة مشكلة ال

في . الإهتمام بإيجاد القسمة المثلى خاصة في مجال الأنظمة المتكاملة كان موضوعا هاما في الزمن القريب. الجزيئي

ومع التطورات الحديثة اصبحت القسمة ذات . ى الأهمية القصوىالأنظمة المتكاملة مشكلة ايجاد القطع المثالي حظيت عل

في هذا البحث نستخدم . طابع متعدد الأهداف يعالج مشكلة الطاقة والوقت والمساحة بالأضافة االى تقليل وصلات المقطع

يم دالة تجمع تم استخدام قواعد مبهمة لتصم. (TS) والبحث الممنوع  (GA) هما الخوارزم الجينيتكراريينخوارزميان 

 .تم اختبار كلتا التقنيتين والمقارنة بينهما من حيث الأداء والسرعة. الأهداف كافة
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1. INTRODUCTION 

VLSI circuit design can be performed with a view of achieving different objectives. Until the 
beginning of this decade, two main objectives of VLSI Partitioning circuit design were in 
focus: one was the minimization of cutset and the other was the improvement of timing 
performance. A large number of efforts targeting either one (especially cutset) or both of the 
above objectives are reported in the literature [Sadiq et al. 1995, Shahookar et al. 1991]. 
Although quite a reasonable number of techniques aiming at low power objective are 
proposed for all phases in physical design including partitioning of circuit, floorplanning, 
placement and routing [Sadiq et al. 1995], the power consumption of the circuit was not of 
main concern while trying to optimize the above two objectives.  As different techniques are 
applicable and have been reported in [Pedram., 1995] at different steps of the VLSI design 
process, few performance-driven partitioning techniques at physical level design exist in 
literature. Furthermore another compelling reason for the desire of low power consumption is 
the increasing density of VLSI circuits. Therfore, the need of a system which incorporate all 
the three aspects of the design process ( delay, cut, power)  is increasing and to our 
knowledge, no effort has been reported that targets the optimization of the three objectives 
simultaneously. This fact provides a significant motivation for the present work. 

For the partitioning phase, two low-power oriented techniques based on Simulated Annealing 
(SA) algorithm have recently been presented in [Choi et al., 1999]. Algorithms targeting low 
power are proposed in  [Vaishnav et al., 1999, Lawler et al. 1969]. A circuit partitioning 
algorithm under path delay constraints is proposed in [Tetsushi et al., 1998]. VLSI design is a 
complex process and is carried out at several abstraction levels [Sadiq et al., 1995]. The 
problem of power optimization can be addressed at  higher levels as well as at  lower levels 
e.g., physical level [Pedram., 1995, Devadas et al., 1995]. In this work, we address the above 
problem in the Partitioning step at the physical level. Two iterative approaches based on 
genetic algorithm (GA) and tabu search (TS) respectively, are presented for the multiobjective 
optimization of Partitioning. This paper is organized as follows: In the next section, we 
formulate our problem and cost function. Section 3 presents our approaches, and then 
experimental results are reported and discussed in section 4. 
 
2. PROBLEM AND COST FUNCTION MODELING 

In this section, we formulate our problem and the cost function used in our optimization 
process. 

2.1 Problem Formulation  

We are addressing the problem of VLSI Netlist partitioning with the objectives of optimizing 
power consumption, timing performance (delay), and cut-set while considering the Balance 
constraint (same as area constraint because we assume unit area for every gate.). Formally, the 
problem can be stated as follows: 
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Given a set of modules { }nvvvV ,..,, 21= , the purpose of partitioning is to assign the modules 

to a specified number of clusters k satisfying prescribed properties. 

Definition : 

A k-way partitioning { }n
k CCCP ,..,, 21= consists of k clusters (subsets of V) kCCC ,..,, 21 such 

that  VCCC k =∪∪ ...21 and ∅=∩ ji CC for i=1…k and j=1…k. If k = 2 we refer to 2P as 

bi-partitioning. 
 
In general, the circuit can have multi-pin connections (nets) apart from two-pin, therefore it is 
better to be described by a hypergraph especially when we want to minimize the net cut. 
A hypergraph is H(V,E) where V is a set of nodes and E is a set of hyperedges. Node 

Vvi ∈ corresponds to an element (e.g., a gate) in the circuit, and hyperedge Eei ∈  

corresponds to a net in the circuit.  Hyperedge  Eei ∈  consists of the signal source node S(ei) 

and a set of destination nodes D(ei) and ( ){ } ( )( )iii eDeSe ,= . The signal source node S(ei) of 

the net ei corresponds to the output of a gate and the set of destination nodes D(ei) corresponds 
to the inputs of the gates. Given a hypergraph H(V,E) with { }meeeE ,...,, 21= being the set of 

signal nets, each net is a subset of V containing the modules that the net connects, and we 
assume that for each Ee ∈ , such that 2≥e . The equivalence between netlists and 

hypergraphs is exact if each net has at most one pin on any module. The modules in e may 
also be called the pins of e. Moreover, a two-way partitioning of a set of nodes V  is to 
determine two subsets VA  and VB such that  VVB =∪AV and { }∅=∩ BVAV  . Before listing 
the objectives and constraints, we state some assumptions: (i) The logic level design (or 
netlist) of the circuit is available, (ii) A set of critical paths and switching probabilities of 
gates are available before the application of our proposed approaches, (iii) The circuit is 
represented in form of a hypergraph. Our task is to divide V into 2 subsets (blocks) in such a 
way that the objective functions are optimized, subject to some constraints. 
 

2.2 Cost Function 

Now we formulate cost functions for our three objectives (cut, power, delay) and for the 
Balance constraint. 
 
Cutsize The set of hyperedges cut by a cluster C is given by ( ) { }eCeEeCE <∩<∈= 0:  

i.e.,  )(CEe ∈ if at least one, but not all, of the pins of e are in C. The set of nets cut by a 

partitioning solution KP  can be expressed as )()( 1 i
k
i

k CEPE == U  or equivalently 

{ }lh
k CvandCulhevuEePE ∈∈≠∈∃∈= ,,,|)( . We say that the cutsize of kP  is 

)( kPE .   
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The cost function can also be written as follows : 
 

∑
∈

=
ψe

ewf )(  (1) 

where E⊂ψ  denotes the set of off-chip wires. The weight w(e) on the edge e represents the 
cost of wiring the corresponding connection as an external wire. If all weights equal one, the 
cost function becomes simpler: 

ψ=f  (2) 

where ψ denotes the cardinality of the set ψ . 

 
Delay  In order to deal with a signal path, we decompose a hypergraph into directed edges 

( )weSe ik ),(= for Eei ∈ and )( ieDw ∈ . Let the graph which consists of a set of nodes V and 

a set of decomposed directed edges E be the directed graph ),( EVG =′ . A signal path is 
represented by an alternating sequence of nodes and directed edges 

,,,,...,,, 112211 kkk vevevev −− where ( ) ( )11, 1 −≤≤⋅= + klvve lll  and ji vv ≠ , jikji ≠≤≥ ,,1 . 

The  path from node Vi  to node Vj is denoted by Pij. Nodes which are included in the path Pij 
are defined as V(Pij ). A path-cut number of path Pij, denoted ncut(Pij), is the number of nets 
cut which are included in the path Pij. The general delay model in which gate delay is d(v) and 
constant inter-chip wire delay dc » d(v) are considered; the dc  is actually due to the off-chip 
capacitance denoted as Coff. Let the delay of node Vvi ∈  be d(vi) and the delay of net 

E∈ke which is cut be dc . Given a partition ),;(: BA VVΦ  the path delay d(Pij ) between nodes 

vi and vj  is the sum of the node delays d(vi) )( ijpV∈  and the delay of nets which are cut, that 

is : 

)()()(
)(

∑
∈

⋅+=
ijk pVv

ijckij pncutdvdpd  (3) 

Power  The average dynamic power consumed by a CMOS logic gate in a synchronous 
circuit is given by:  

i
load
i

cycle

ddaverage
i NC

T
V

P
2

5.0=  (4) 

where load
iC  is the load capacitance, Vdd is the supply voltage, cycleT  is the global clock period, 

and Ni  is the number of gate output transitions per clock cycle. Ni is calculated using the 
symbolic simulation technique of [Ghosh et al.,  1992] under a zero delay model. load

iC  in 

Eqn. 4 consists of two components: basic
iC  which accounts for the load capacitances driven by 
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a gate before circuit partitioning, and the extra load extra
iC  which accounts for the additional 

load capacitance due to the external connections of the net after circuit partitioning. Then, the 
total power dissipation of circuit ζ is: 
 

i
i

extra
i

basic
i

cycle

dd NCC
T
V

P ∑
∈

+=
ζ

ζ β )(
2

 (5) 

 

where β  is a constant that depends on technology. When a circuit partitioning corresponds to 
a physical partitioning, extra

iC of a gate that is driving an external net is much larger than 
basic
iC . In this case, the power model given in Eqn. 5 can be further simplified by assuming 

that the power dissipation contribution due to variations of basic
iC  under different partitioning 

solutions is negligible. Furthermore, considering that the fixed overhead capacitance for an 
external net is dominant within extra

iC , it can be assumed that extra
iC  is identical for each net. 

This leads to the following objective function [Vaishnav et al., 1999]. 
 
 

∑
∈

=
vi

iNO
ζ

ζ  (6) 

where  vζ corresponds to the set of visible gates, i.e., the set of gates that drive a load external 

to the partition. 
 
Area or Balance constraint If we assume that the area of all cells identical then the problem 
reduces to balancing the two partitions in term of the number of cells. The balance constraint 
is given in Eqn 7. 
 

 α
φ

ββ
≤

− 21  (7) 

where iβ  is the number of cells in partition i , φ  is the total number of cells in the circuit, α is 

the tolerance which is equal zero in case of perfect balance. 
 
Overall Fuzzy Cost Function Since we are optimizing three objectives simultaneously, we 
need to have a cost function that represents the effect of all three objectives in form of a single 
quantity. We propose the use of fuzzy logic to integrate these multiple, possibly conflicting 
objectives into a scalar cost function. Fuzzy logic allows us to describe the objectives in terms 
of linguistic variables. Then, fuzzy rules are used to find the overall cost of a placement 
solution. In this work, we have used the following fuzzy rule: 
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IF a solution has  
SMALL cut-set  AND 
LOW power consumption  AND 
SHORT delay AND 
Within acceptable Balance 
THEN it is an GOOD solution. 
 

The above rule is translated to and-like OWA (order weighted averaging) fuzzy operator 
[Yager , 1998] and the membership µ (x) of a solution x in fuzzy set GOOD solution is given 
as: 
 

∑
=

⋅−+⋅=
cdpj

c
j

cc
c

c
d

c
p

cc
pdc xxxxx

,,
)(

3
1)1())(),(),(min()( µβµµµβµ  (8) 

))(, min()( xx c
b

c
pdc

c µµµ =  (9) 

 
where )(xcµ  is the membership of solution x  in fuzzy set of acceptable solutions, c

pdcµ  is the 

membership in fuzzy set of  “acceptable power AND acceptable delay AND acceptable 
cutset”, whereas )(xc

jµ for j = {p,d,c,b}, are the membership values in the fuzzy sets within 

acceptable power, within acceptable delay, within acceptable cutset and within acceptable 
balance respectively. β c  is  constant in the range [0,1]; the superscript c represents the “cost ”. 

)(xcµ is used as the aggregating function. The solution that results in maximum value of 

)(xcµ is reported as the best solution found by the search heuristic. The membership functions 

for fuzzy sets LOW power consumption, SHORT delay, Small cut-set, are shown in Figure 1. 
We can vary the preference of an objective j in overall membership function by changing the 
value of goal vector gj , wich represents the relative acceptable limits for each objective where 
gj  ≥1.0. 

c
iµ

1.0

ig
i

i
O

C

1.0

 
Figure 1 Membership functions 
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3. PROPOSED APPROACHES 
 
In this section, we describe the implementation details of the proposed approaches. First, we 
discuss the details of Genetic Algorithm for Multiobjective Partitioning and then, we briefly 
describe the implementation of Tabu Search (TS). 
 
3.1 Genetic Algorithm (GA) For Timing and Low Power Driven Partitioning 
 
There have been many efforts involving the application of GA to the VLSI Partitioning 
problem. Earliest application of GA for the Min-Cut Bisection was proposed by Akley in 
[Ackley, 1987], later Bui and Moon utilized GAs for graph bisection [Bui et al., 1994]. 
Recently GA are becoming famous specially in Multi-objective optimization problems. GA is 
an elegant search technique that emulates the process of natural evolution as a means of 
progressing towards the optimal solution. GA’s Start from a population of solutions and 
creates new generations by means of crossover and mutations, the good characteristics of 
selected good parents are supposed to be preserved and the survival of the fittest should 
guarantee the improvement of the solution.  
 
3.1.1 Chromosome Encoding and Initial Solution 
 
GA uses an encoded representation of solution in the form of a string made up of symbols 
called  genes. The string of genes is called chromosome. One way to represent the partitioning 
problem (as seen in Figure 2 (a) is to use group-number encoding where the jth  integer 

ki j ,...,1∈  indicates the group number assigned to object j. This representation scheme creates 

a possibility of applying standard operators. The second representation scheme is in Figure 2 
(b). Here, the solution of the partitioning problem is encoded as n+k-1 strings of distinct 
integer numbers. This representation scheme leads to 100% feasible solutions but requires 
more computation time due to the complexity of the unary operator involved. In our 
implementation we used the first representation. 

 
Figure 2 Representation schemes. 
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The algorithm starts with a set of initial solutions called population that is generated randomly 
or taken from the results of a constructive algorithm. When generating the random initial 
solution it is  preferred that it is within the bounds of  the balance constraint. 
 
3.1.2 Fitness Evaluation 
 
For addressing a multi-objective optimization problem to minimize three mutually conflicting 
objectives, a measure is needed which can quantify the overall quality of a solution with 
respect to all three objectives collectively.  
 
Fuzzy membership functions and fuzzy rules are used for evaluating the fitness of a solution. 
A fitness value between 0 and 1 is assigned to each solution. The fitness value of a 
chromosome is its membership value µ(x) in the fuzzy set of acceptable solution. This 
membership is computed using equation 9. 

3.1.3 Crossover and Mutation 

In each iteration (known as generation in GA terminology), all the individual chromosomes in 
the population are evaluated using a fitness function. Then in the selection step, two of the 
above chromosomes at a time are selected from the population. The individuals having higher 
fitness values are more likely to be selected. After the selection step, different operators 
namely crossover, mutation act on the selected individuals for evolving new individuals called 
offsprings. These genetic operators are described below. One important genetic operator is 
crossover. It is applied on two individuals that were selected in the selection step earlier to 
generate an offspring. The generated offspring inherits some characteristics from both its 
parents in a way similar to natural evolution. There are different crossover operators namely 
simple(single point), order, partially mapped, and cycle. The simple crossover for instance, 
works by choosing a random cut point in both parent chromosomes (the cut point should be 
the same in both parents) and generating the offspring by combining the segment of one 
parent to the left of the cut point with the segment of the other parent to the right of the cut 
[Sadiq et al., 1999]. For description of other crossover operators [Shahookar et al., 1991, 
Sadiq et al., 1999, Cohoon et al. 1987]. Increasing the number of crossover points is known to 
be multi-point crossover. For the group number encoding two-point and three-point 
crossovers are favored. The crossover operator however may produce children that violate the 
balance constraint. These can be treated in two ways, either discarding them by giving them a 
fitness value of zero, or fixing them using some constructive heuristic and this is too much 
time overhead. In our implementation we used single point crossover. 
 
The Mutation operator is used to introduce new random information in the population. It is 
usually applied after the crossover operator. It helps in producing some variations in the 
solutions so that the search does not get trapped in local minima. An example of mutation 
operation is the swapping of two randomly selected genes of a chromosome. The importance 
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of this operation is that it can introduce a desired characteristic in the solution that could not 
be introduced by the application of the crossover operator alone. However, mutation is applied 
with a low rate so that GA does not turn into a memory-less search process [Bui et al., 1994.] 
Two mutation variations are used in our implementation: 

• Random selection of a cell and swapping its partition. 

• Choosing randomly two cells one from each partition and swapping  them. 

3.1.4 Selection 

Individuals for the next population are selected based on the elitist-random selection (ernd). 

2
pN

 ( Np is the population size)  best chromosomes are selected and the remaining 
2

pN
are 

selected randomly. Based on experimental results this scheme offers better choice than other 
schemes, because it provides balance between greediness and randomness. 

The quality of the solution obtained from GA is dependent on the choice of certain parameters 
such as population size, crossover and mutation rates and also the type of crossover used. The 
selection of values for these parameters is problem specific and so there are no hard and fast 
rules for this purpose. The choice of these parameters is left to the conception and intuition of 
the person applying GA to a specific problem. 

3.2 Tabu Search Approach 

In this sub-section, we describe our TS implementation very briefly.  

Tabu search starts from an initial feasible solution and carries out its search by making a 
sequence of random moves or perturbations. A tabu list is maintained that stores the attributes 
of a number of previous moves. This list prevents bringing the search process back to already 
visited states. In each iteration, a subset of  neighbor solutions is generated by making a 
certain number of moves and the best move (the move that resulted in the best solution) is 
accepted, provided it is not in the tabu list. Otherwise, if the said move is in the tabu list, the 
best solution is checked against an aspiration criterion and if satisfied, the move is accepted. 
Thus, the aspiration criterion can override the tabu list restrictions. It is desirable in certain 
conditions to accept a move even if it is in the tabu list, because it may take the search into a 
new region due to the effect of intermediate moves. 

The solution encoding and initialization steps are similar to those described above for GA. In 
each iteration, we generate a number of neighbor solutions by making perturbations as 
follows: two cells are selected randomly, then their locations are interchanged. The number of 
neighbor solutions generated in each is dependent on circuit size. The characteristic of the 
move that we keep in tabu list is the indices of the cells involved in interchange. The size of 
tabu list is taken also depending on the circuit size i.e. 10% of the total number of cells. We 



Vol. 4.  140 Sadiq M. Sait,  Aiman H. El-Maleh,  and  Raslan H. Al-Abaji 

 

have used short term memory element in our TS implementation. The aspiration criterion used 
is that if current best solution is the best seen so far i.e. better than the global best, then it is 
accepted and tabu restriction are overridden. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION GA VERSUS TS. 

The results obtained from GA and TS are compared in terms of overall quality of best solution 
and run time in Table 1. In this table, P represents the cost due to power, that is the sum of the 
switching probabilities of all the cut nets, it has no unit since switching probability has no 
unit, D is the delay of the most critical path in pico seconds (ps), µ(x) is the membership 
value, T is the total run time, and Best is the execution time in seconds for reaching the best 
solution. In the case of TS 10,000 iterations are run, also for GA the stopping criterion is 
10,000 generations. 

 

Table 1 Comparison between costs of the best solutions generated by GA and TS 

Circuit Genetic Algoritm Tabu Search 

 D (Ps) Cut  P(SP) µ(x) T (S) Best(S) D(Ps) Cut P(SP) µ(x)  T (S) Best(S)  

S298 233 19 1013 0.79 123 43 197 24 926 0.809 62 21 

S386 356 36 1529 0.75 163 151 386 30 1426 0.729 82 77 

S641 1043 45 2355 0.83 1868 1540 889 59 2281 0.852 939 818 

S832 444 45 3034 0.68 289 276 446 50 2731 0.682 148 80 

S953 526 96 2916 0.69 618 182 466 99 2518 0.734 313 225 

S1196 396 123 5443 0.76 375 373 301 106 4920 0.801 184 134 

S1238 475 127 5713 0.72 397 365 408 79 4597 0.752 187 160 

S1488 571 104 5648 0.71 1238 1183 528 98 5529 0.724 616 405 

S1494 614 102 5474 0.70 1228 1040 585 101 5339 0.702 616 427 

S2081 302 26 787 0.73 94 32 225 17 770 0.785 47 16 

S3330 571 299 10358 0.75 2096 2074 533 295 10298 0.79 1078 994 

S5378 587 573 18437 0.74 2687 2686 590 430 16527 0.79 1338 1100 

S9234 1313 1090 38149 0.72 5963 5949 1052 918 34055 0.81 2992 2821 

S13207 1399 1683 45611 0.74 8098 8097 843 1332 41114 0.785 4001 3690 

S15850 1820 2183 51747 0.74 10214 10206 1411 1671 47480 0.831 5131 5130 

 

The results shown are the best case results obtained after the tuning of various algorithmic 
parameters of GA and TS (only one time for all circuits). In the case of GA the population 
size is 10, the crossover used is simple with a probability equal to 0.99. In case of TS, the size 
of neighborhood is also 10, while tabu list size is chosen to be 0.1 size of the circuit. From the 
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results, it is clear that TS performed better than GA for most of the circuits in terms of quality 
of best solution as well as run time.  

In terms of quality of solution TS consistently performs better, and the advantage of TS over 
GA gets more consistent when the size of the circuit gets bigger. Also in term of the execution 
time of GA increases significantly with the increase in circuit complexity. The higher 
execution time of GA can be attributed to its parallel nature i.e. a population of solutions is to 
be processed in each generation. Figures 3 and Figures 4 show the trend of solution's 
(a) cutset, (b) delay, (c) power, (d) balance, (e) average fitness, (f) best fitness  for GA and TS 
respectively, in case of circuit s12307. It is clear from the shown plots that TS achieves a 
membership that is better than that reached by GA. the best solution for GA is found after 
8097 seconds and has 0.74 fitness value while for TS was found after 3690 seconds and have 
a higher fitness value of 0.79. 

5.  CONCLUSION 

In this paper, two multiobjective optimization iterative algorithms  namely GA and TS for 
VLSI Partitioning were proposed. Fuzzy logic is used to integrate the objectives namely 

power, delay, cutset and balance into a scalar cost value. It is observed that TS out performs 

GA in terms of final solution costs and execution time. 

ACKNOWLEDGMENT 

The authors thank King Fahd University of Petroleum Minerals, Dhahran, Saudi Arabia,  for 
support, unde project # : {COE/ITERAT E/221} 
 

0 5000 10000
0

2000

4000

6000

(a
)C

ut
se

t(
ne

ts
 c

ut
)

0 5000 10000
1000

2000

3000

(b
)D

el
ay

 (
ps

)

0 5000 10000
4

6

8

10
x  10

4

(c
)P

ow
er

 (
su

m
 o

f S
w

.P
.)

0 5000 10000
0

20

40

60

(d
)C

el
l d

iff
er

en
ce

0 5000 10000
0

0.5

1

G enerat ions

(e
)A

vg
 F

itn
es

s

0 5000 10000
0

0.5

1

G enerat ions

(f)
B

es
t 

F
itn

es
s

 
Figure 3 Performance of GA for the circuit s13207 
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Figure 4 Performance of TS for the circuit S13207 
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