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ABSTRACT 

This paper presents a new and numerically efficient technique to design circularly symmetric 
two-dimensional (2-D) digital filters. This technique is based on two steps and in both we are 
using the Schur decomposition method (SDM): First, the 2-D impulse response matrix is 
decomposed into a parallel realization of K  branches, each branch is composed of two 
cascaded SISO 1-D FIR digital filters. Second, a model reduction algorithm is applied to the 
1-D filter to approximate the N-dimensional FIR into an n-dimensional IIR filters, where 

Nn < . The model reduction algorithm is based on finding the eigenspaces associated with the 
large eigenvalues of the cross-Gramian matrix COW . It is shown that using the symmetry of 

the 2-D impulse response matrix and the fact that the left and right eigenspaces obtained by 
the SDM are transpose of each other, the design problem of two 1-D digital filters is reduced 
to the design problem of only one 1-D digital filter in each branch. Moreover, the symmetry 
property is exploited in the decomposition step, where we showed that we could apply the 
Schur decomposition to the leading principal minor of the impulse response matrix, and, by a 
simple manipulation we could find the decomposition of the whole impulse matrix. Thus, the 
computational effort is reduced substantially. A design example is given to illustrate the 
advantages of the proposed technique. 
 
Keywords: 2-D Digital Filters, Circulary Symmetric, Schur Decomposition, Symmetry, Parallel 
Realization. 

 

 الملخص

تقدم هذه الورقة طريقة جديدة ذات آفاءة عاليѧة لتصѧميم المرشѧحات الرقميѧة ثنائيѧة الأبعѧاد وذات التماثѧل الѧدائري  باسѧتخدام                  
ѧѧـة شـطريقѧѧة ـورالتجزئي .ѧѧـتعتمѧѧـد هѧѧـذه الطريقѧѧرحلتين ـة عѧѧلى م : ѧѧى تجѧѧـ ـالأول ѧѧرف بѧѧي تعѧѧات والتѧѧفوفة النبضѧѧزيء مص 

“Hankel Matrix”اقبين            إلى عدد من الفروعѧين متعѧحين رقميѧية لمرشѧتجابة النبضѧا الاسѧد منهѧل واحѧل آѧة يمثѧالمتوازي 
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 والآخѧر فѧي الاتجѧاه الرأسѧي وهѧذه المرشѧحات هѧي مرشѧحات ذات اسѧتجابة نبضѧية                      يأحاديًٌٍَُِّّّّّْ الأبعاد أحدهما في الاتجاه الأفق     
 .  وفي الغالب تكون ذات رتبة عالية (FIR)محدودة 

 لكنها ذات رتبة أقل  (IIR) سط هذه المرشحات إلى مرشحات ذات استجابة نبضية لامحدودةفي الخطوة الثانية تب

 .مع السعي للاحتفاظ بخطية الطور للمرشح المصمم" خوارزمية اختزال النموذج" باستخدام ما يسمى 

 تصميم مرشحين كما في الطرق وقد أظهرت النتائج أن بالإمكان تصميم مرشح واحد في كل فرع من الفروع بدلاًًًًًٍَََُُُِِ من

أيضا نظرا لوجود تماثل في مصفوفة هانكل، لم تطبق طريقة شورالتجزئية إلا على جزء من مصفوفة هانكل . التقليدية

 .وهذا بالتالي يقلل من العمليات الحسابية في التصميم بصورة كبيرة جداًً

 .   ايا وكفاءة الطريقة المقترحةفي نهاية هذه الورقة أعطي مثال تصميمي لمرشح رقمي لبيان مز

 

1. INTRODUCTION 

Two-dimensional (2-D) digital filters are used in many applications such as image processing, 
seismic or geophysical signal processing, ultrasonic data processing and biomedical 
tomography. These applications might involve images for which the phase linearity is of great 
importance [Huang et al, 1975]. The design of linear phase two-dimensional (2-D) digital 
filters can be accomplished by using the window method [Huang, 1972 and Speake et al, 
1981], the transformation of 1-D filters [Lien, 1992 and the references therein], and by using 
the singular value decomposition (SVD) (see [Hinamoto and Fairman, 1981, Kumar et al, 
1987 and Lu et al, 1990 and 1991]. The later technique has received a considerable attention 
in the past few years. The reason for this interest is because, it offers, as pointed out in [Lu 
et al, 1990 & 1991], the following advantages. First, the design can be accomplished by 
designing a set of 1-D subfilters and, therefore, the well-established algorithms for the design 
of 1-D filters can be employed. Second, the stability issues of the 2-D filter is guaranteed if 
the 1-D subfilters employed are stable, and third, the 1-D subfilters form a parallel structure 
that allows extensive parallel processing. 
 
The SVD can be applied to impulse response matrix (input-output data) as in [Kwan and 
Chan, 1989 and Lien, 1992], or it can be applied to the sampled magnitude response as in [Gu 
and Shenoi, 1991 and Lu et al, 1990 & 1991]. In [Hinamoto and Fairman, 1981, Kumar et al, 
1987], a state space model of the separable-denominator transfer function is obtained, while in 
[Lin, et al, 1987], the state space representation is obtained by decomposing the 2-D impulse 
response matrix into two 1-D digital filters in cascade ( single-input multi-output and multi-
input single-output). Moreover, it was shown that an optimal decomposition could be 
obtained. In conjunction with the decomposition, in some of the previous work [Kumar et al, 
1987, Lin, et al, 1987 and Lu, et al 1991], the balanced model reduction is employed to the 
decomposed state space representations to obtain computationally efficient filters. 
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In this paper, we propose a new and computationally efficient algorithm to design linear phase 
2-D digital filters using the Schur decomposition method (SDM). This method is reliable and 
numerically stable  [Aldhaheri, 1991 and Laub, 1979] and it shares the SVD the forenamed 
advantages. Moreover, SDM enables us to exhibit the symmetries and utilize them in getting 
more computationally efficient filters design. The SDM is applied twice. Once, to decompose 
the impulse response matrix of the 2-D digital filters into horizontal and vertical 1-D sub-
filters connected in cascade, and second, to approximate these subfilters, which can be 
considered as high order FIR filters, by reduced order IIR filters. The algorithm of the 
approximation is based on finding the orthonormal eigenspaces that correspond to the large 
eigenvalues of the cross-Gramian matrix COW  of the 1-D FIR digital filter [Aldhaheri, 1997]. 

This algorithm avoids computing the balancing transformation, which tends to have numerical 
difficulties and ill-conditioning problem. The symmetry of this class of filters [Pei and Shyu, 
1995] is utilized in the two steps to reduce the computational operations and to exhibit the 
possibility of having linear phase digital filters. In the decomposition step, we apply the SDM 
to the leading principal minor submatrix of the impulse response matrix; Moreover, it is 
shown that the Schur decomposition preserves some of the special structure of the 2-D 
impulse response matrix. That is, the coefficients of the transfer function of the decomposed 
1-D filter are symmetric about their midpoints. This of course leads to having a linear phase 
FIR digital filter.  In the approximation step, we showed that in each branch it is sufficient to 
design only one filter, either the one in the horizontal or the one in the vertical axis, i.e., in 

21 or  zz  domains, because they are identical. Furthermore, we showed through examples that 
the model reduction algorithm does not violate the linear phase property associated with the 
decomposition. A sign weight, ( 1± ) between the interconnected filters has to be introduced as 
it will be shown later in Section 3. 

2. SCHUR DECOMPOSITION METHOD 

The transfer function of 2-D digital filter is defined as 
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where  )n,n(h 21 is the impulse response of the filter. For the class of filters that we are 
considering here, circularly symmetric filter, the impulse response is real and it has the 
property: ),(),(),(),( 21212121  nnhnnhnnhnnh −=−=−−= . Moreover, it is diagonally 

symmetric, i.e., ),(),( 1221  nnhnnh = . The 2-D transfer function ),( 21 zzH  can be 
decomposed as:  
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where )( 1zFi  and )( 2zGi  are the transfer functions of the two cascaded SISO 1-D subfilters 

in 1z  and 2z  domains, respectively, and k is the number of parallel branches. As we will see 
later, the choice of k determines the allowable error in the frequency response of the designed 
filter. Let us assume that these subfilters are linear phase FIR filters. Then, the ith transfer 
function is given by: 

∑
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Now, given the desired impulse response specifications ),( 21 nnhd  at the support 

}.even be  toassumed is  .2 ,1  ,0:),{( 21 NiNnnnS ih =≤≤= The desired impulse response in 

a matrix form is: 
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Then, the given dH can be decompose into GF  and of dimensions rN ×+ )( 1  and 

)( 1+× Nr , respectively by using the Schur decomposition method  (SDM), see the definition 
of SDM in [Aldhaheri, 1991 and Laub, 1979]. Before we perform the decomposition, let us 
first, rewrite the matrix dH as follows: 
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Where  LLRH ×∈1  is the leading principal minor of the matrix dH , ML II  and  are identity 

matrices of dimensions MMLL ××  and  , respectively, and Î  is an LM ×  matrix and it is 

defined as: 
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By close look at equation (6), it is clear that there are at most L linearly independent columns 
(or rows). This implies that  

  LHr d ≤= )(rank         (7) 

In general, the SDM decomposes the matrix into an upper quasi-triangular matrix and the 
eigenvalues of the matrix appear in a descending (or ascending) order of absolute value along 
the diagonal of the transformed matrix, but because of the symmetry of dH , SMD yields: 

).......,,,(, 121    diag   where +λλλ=ΛΛ= Nd
T VHV            (8) 

where 1+== N
TT IVVVV . Now, partition the matrix V such that 
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where  ).......,,,( Lλλλ=Λ    diag 211 . Notice here that, it is not necessary that all the 

eigenvalues of 1Λ  are nonzero or positive. In fact, the last ( rL − ) eigenvalues of 1Λ  are 

zeros. The singular values )( di Hσ  are given by 

  riii   2 1for   .........,,,, =λ=σ  

where  .  denotes the absolute value of its elements. 

Now, from equation (9) and the fact that the matrix V is orthonormal, we obtain the 
following: 

,ˆ
1121 VIV =  (10a) 

,ˆ
1222 VIV −=  (10b) 

,1111114 Λ=VHV T  (10c) 
and 

L
T IVV 501111 .=  

 (10d) 

Similarly, if we apply the SDM to the principal minor matrix 1H , we obtain 

,Σ=UHU T
1         (11) 
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where ).......,,,( Lλλλ=Σ    diag 21  and L
TT IUUUU == . From (10) and (11) it can be 

shown that  

 
2

1
11 UV =  (12a) 

Σ=Λ 21  (12b) 

which implies that Liii   2 1for  2 ........,,,, =λ=λ . Again, notice that the last )( rL −  

eigenvalues of Σ  are zeros. From equations (10) to (12) it is clear that it is sufficient to apply 
the SDM to the submatrix 1H , and from which we can find the decomposition of dH . 

Therefore, dH can be expressed as 
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The matrices )()( 11  and +××+ ∈∈ NLTLN RVRV  span the right and the left eigenspaces associated 
with 1Λ . Moreover, if the singular values of dH , for Ki >  is small, then dH can be 

approximated as 

  ,)( T
d VVH 111 2Σ≈         (15) 

where 1V  is the first K columns of the matrix rKV <  ,  and ).......,,,( Kλλλ=Σ    diag 211 . 

Substitute for 1V  in (15), yields 
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And ))sign(  )sign( )diag(sign( )  , ( 2 121 KKsssdiagS λλλ== .......,,,.......,, .            (17d) 
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)1 ( KU ::,  denotes a submatrix of U , whose rows equal toU and columns are the first 
K columns of U . Notice here that the decomposed matrix )  and ( GF has a nice property, as 

dH , that is, each column of F (and row of G ) is symmetric about its midpoint. Now, if we 

consider these columns of F (or rows of G ) characterizing SISO 1-D subfilters, then each 
one will be consider as a linear phase FIR filter. 
 

3. LINEAR PHASE 2-D IIR DIGITAL FILTER DESIGN 

In this section, we also use the Schur decomposition method to convert the decomposed SISO 
FIR digital filter of order N to corresponding IIR filter approximation of order n with the aim 
of preserving the phase linearity. In order to avoid the ill-conditioning problem, which is 
usually associated with computing the balanced transformation matrix, we propose an 
algorithm which depends on finding the left and right eigenspaces of the large eigenvalues of 
the cross-Gramian matrix COW  of the 1-D FIR digital filter. The reduced order IIR obtained 

by this algorithm is input/output equivalent to the balanced IIR filter, but it is obtained with 
out any matrix inversion. The phase linearity is preserved in the most concerned band, the 
passband. Furthermore, since the 2-D filter consists of parallel branches of these IIR filters, 
the resulting 2-D digital filter is IIR with linear phase in the passband. 
We start our model reduction algorithm by substituting (17) into (16) and rewriting equation 
(16) as: 
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Where iF  is the ith column of the matrix F , and T
ii FG = is the ith row of the matrix G  and 

1sign ±=λ= )( iis . Now, the ith 1-D FIR filters are characterized by  
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Since T
ii FG = , it is enough to design only one filter in each branch of Fig.1. 

From (18) and (19), the transfer function of the linear phase 2-D FIR filter is characterized by 
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The parallel realization of this filter is shown in Fig. 1. 
 
                       
      Input         Output   

   
            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Parallel realization of 2-D FIR digital filter based on SDM and symmetries. 
 
 
 
For the sake of simplicity, let us drop the subscripts of zF  and  and rewrite equation (19a) as: 
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The purpose of the model reduction is to convert the thN  order FIR, characterized by (20) to 
an thn order IIR digital filter, where Nn < through a similarity transformation .T   

Define the cross-Gramian matrix COW  as 

  ∑
∞

=

=
0k

k
ccc

k
cCO ACBAW        (23) 

Equivalently, COW  can be computed by solving the Lyapunov equation 

  0=+− ccCOcCOc CBWAWA        (24) 

Notice that COW  is invariant under the similarity transformation [Aldhaheri, 1991] and the 

singular values iσ̂ , are given by 

  NiWzH COii    2 1      .......,,,,,)())((ˆ =λ=σ      (25) 

The order n  is chosen based on a specified error bound, ε  which satisfies the inequality 
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where ∞ denotes the maximum absolute value of its frequency response and (z)H n is the 

transfer function of the reduced order IIR filter and defined as 

   .][)( nnnnnn BAzICDzH 1−−+=      (27) 

 
The state space representation of the thn order reduced order IIR filter ( nnnn DCBA    ,,, ) will 

be defined later in this section. 

Because of the special structure of the state space of the FIR filter (22), equation (23) is 
simplified to: 
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where OC ΩΩ  and  are the controllability and the observability matrices, respectively, which 

are defined as: 
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Notice also that cA  is nilpotent since .0=N
cA Therefore, equation (28) yields 
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Again, notice that the matrix COW is symmetric and is easily constructed. Therefore, there is no 

computation involved in finding COW .  

In the rest of this section, we summarize briefly, the model reduction algorithm in the 
following steps: 

i. For each branch, and from (19a) and (20), find the impulse response, 

Nici   1 0 ..,..........,,, = , Characterizing the linear phase FIR filter. From this construct 

the state-space representation ),,,( cccc DCBA     as in (22). 

ii.    Construct coW as in equation (30) 

iii. Compute the Schur decomposition of COW , 

                            ∆=TWT CO
T        (31) 

 where ).,..........,, Nδδδ=∆    diag( 21 with the ordering 

    .........  121 Nnn δ≥≥δ≥δ≥≥δ≥δ +........  

The desired order of the IIR filter is determined based on the required error bound ε , 
which is defined by equation (26), where ii δ=σ̂  for all .i  

iv.  Partition the matrices TT and T such that  
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The matrices nNRT ×∈1 and TT1  span the right and the left eigenspaces associated with 
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 v.      Apply this transformation, T  to ),,,( cccc DCBA     to obtain 
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vi.  The state space of the thn order-reduced model ( nnnn DCBA    ,,, ) is defined as: 
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  ),:(~ 11 1 nTBB T
n ==                  (34b) 
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where ):,:( lkjiT  denotes an extraction of the rows of the matrix T from ji   to and 
columns from lk   to . Thus, the reduced order IIR filter characterized by equation (27) is 
an approximation to the full order FIR filter characterized by equation (22). 

Thus, the design of 2-D digital filter can be accomplished through the following steps; 

1. Decompose the desired 2-D impulse response matrix, dH  by using the procedure 

described in Section 2. From this, determine the number of branches K and find the 
matrices SF  and . 

2. Design 1-D FIR filters characterized by equation (19). As we mentioned earlier, 
).()( 22 zFzG ii =  Therefore, the design problem is reduced to a design of a single 1-D 

digital filter. 

3. Apply the model reduction algorithm described above to approximate the FIR by IIR 
digital filters. 

4.  Replace )( ji zF  for 21 and21 ,......,,, == jKi  by )( jn zH
i

 in Fig.1, where in  denotes 

the order of the thi  branch, to obtain the parallel realization of the linear phase 2-D 
IIR. 

5. Insert the sign weight, ( 1± ) between the cascaded )()( 21  and zHzH
ii nn . The overall 

2-D IIR digital filter is characterized by the transfer function: 
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4. DESIGN EXAMPLE 

In this section, a 2-D circularly symmetric low pass digital filter is designed to illustrate the 
effectiveness of the proposed technique in the decomposition and in the model reduction 
steps.    

Example 1. 

Consider the 2-D circularly symmetric low pass digital filter that satisfies the following: 







π≤ω+ω≤ω

ω≤ω+ω≤
=ωω

 for        0

 0for        1
2
2

2
1

2
2

2
1

21

s

p
dH ,(  

where ... π=ωπ=ω 50 and 40 sp  Thus,  450 π=ω .c , and the corresponding impulse response 
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function of the first kind and α  is a parameter determined by the allowable error in the 
passband and stopband. Following the procedure of Section 2, we applied the SDM to the first 

2121× principal submatrix of the 4141× impulse response matrix. The rank of the impulse 
response matrix is ,21=r which means that the exact number of the parallel sections is 21. 
But if we neglect the singular values of less than %1  of the largest one, we come up with K 
equal to 5 and )1,1,1,1,1( −−= diagS .  The resulting magnitude response of the 2-D FIR filter 
is shown in Fig. 2. The maximum error in the passband is .0128.0  
To check the linearity of the phase, the group delay of the 2-D FIR digital filter, which is 
defined as: 
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is computed, where ) ,( 21 ωωFIRH  is the frequency response of the 2-D FIR digital filter. It is 

found that the group delay is constant over the entire band. Similar result would be obtained if 
we compute the group delay ),( 212 ωωτ . 

The next step is to apply the proposed model reduction algorithm, described in Section 3, to 
these five 1-D FIR filters of order 40. Now, if we follow the steps of the algorithm proposed 
in Section 3, we will find that the IIR filters of order 17 and ,17 ,16 ,15 ,13  give a satisfactory 
result. It is worth mentioning that the overall accuracy of the 2-D digital filter depends on the 
number of the branches, K  and the approximation of the FIR by IIR filters, i.e., the higher the 
order we choose, the better results we achieve. This choice, of number of parallel sections and 
filters orders, gives a maximum error of .0132.0 The magnitude response of the approximated 
2-D IIR digital filter is depicted in Fig. 3. 

Fig. 4 illustrates the phase of the reduced order 2-D IIR filter in the normalized passband 
region. As seen from this figure, the phase is almost linear over the passband region. So, we 
can say that the linear phase is preserved over the passband region.  
 

5. CONCLUSION 

 
In this paper, a new design technique for passband linear phase circularly symmetric 2-D IIR 
digital filters using Schur decomposition is presented. This technique is based on two steps: 
decomposing the 2-D impulse matrix, dH  into K  parallel sections of two 1-D FIR digital 

filters, and, the FIR filters of order N are converted to a reduced order IIR filters of order 
Kini   2 1  where ......,,,, =  using the model reduction algorithm outlined in Section 3. 

The symmetry of this type of 2-D filters is utilized in the two steps to reduce the 
computational operations. In the first step, the decomposition is applied to only LL×  
submatrix of dH . Then the symmetry is employed to find the decomposition of the whole 

matrix, dH . In the second step, since one of the two 1-D impulse response specification is the 

transpose of the other, it is sufficient to design one of them. Therefore, in the model reduction 
stage, the algorithm is applied once. Hence, the computational effort will be reduced 
substantially. The given examples have shown that the 2-D IIR digital filter magnitude 
response is very close to the ideal and the maximum error in the passband is very small. More 
over, the phase linearity in the passband is preserved. 
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Fig. 2. Magnitude response of circularly-symmetric 2-D FIR low pass digital filter. 

 

 
 

Fig. 3. Magnitude response of circularly symmetric 2-D IIR low pass filter using SDM and model 
reduction for 5=K  and .5 ,.....,2 ,1for   17, and ,17 ,16 ,15 ,13 == ini  
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Fig. 4. Phase in the passband for the 2-D IIR low pass filter. 
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