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ABSTRACT 
 
Previous research on the joint vendor-buyer problem focused on the production shipment schedule in 
terms of number and the size of batches transferred between two parties. It is a fact that transportation 
cost is a major part of the total cost. However, the transportation cost is only considered implicitly as 
a part of fixed setup or ordering cost and thus the transportation cost is assumed to be independent of 
the size of the shipment. As such, the effect of the transportation cost is not adequately reflected in 
final planning decisions. There is a need for models involving transportation cost explicitly for better 
decision-making.  In this study we analyze the vendor buyer lot-sizing problem under equal-size 
shipment policy. We introduce the complete solution of the problem in an explicit and extended 
manner that has not existed in the literature. We also consider the case where transportation cost is 
taken into account. The structure of the transportation cost is assumed to be an all-unit-discounted 
format. We develop a heuristic procedure to find a quality solution for the model with transportation 
cost. We give numerical examples to support the analysis. 
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 الملخص

 
المشتري ركزت على حجم وعدد الشحنات التي  يرسلها البائع إلى المشتري غير -في مسألة البائع السابقة إن البحوث

 في هذه البحوث اعتبرت و. أن تكلفة النقل بين البائع والمشتري تشكل جزءا لا يستهان به من المجموع الكلي للتكلفه

تكلفة النقل كجزء من  تكلفة الطلب وبالتالي فهي ثابتة ولا تعتمد على حجم الكمية  المشحونة وبالتالي فان تأثير تكلفة 

في هذه الدراسة . النقل لم تمثل في النماذج المطروحة بطريقة مناسبة مما يؤثر على طبيعة القرار المتخذ بشأن الانتاج

المشتري مفترضين أن حجم الشحنات التي يرسلها البائع الى المشتري متساوية ونقدم حلا كاملا لهذه -لبائعنحلل مسألة ا

بالاضافة الى ذلك سنأخذ بعين الاعتبار كلفة النقل . المسألة بشكل صريح وهذا لم يناقش في البحوث المنشورة من قبل

ثم نطور .  كلفة النقل تأخذ شكل الخصم على كل الوحداتنفترض في هذا  النموذج ان طبيعة . بين البائع والمشتري

 .خطوات لإيجاد حل لهذا النموذج وأخيرا نقدم بعض الأمثلة لتوضيح الأفكار المعروضة
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1. INTRODUCTION 

The significant interest in the supply chain management related research in the last decade has 
been due to the potential to improve the efficiency of operations and reduce the cost that each 
individual party in the supply chain experiences through closer collaboration of the parties and 
the integration of the decision processes. As it is the building block of any supply chain we 
focus on the vendor-buyer inventory problem in this study. 
 
One of the major developments to improve the efficiency in the supply chains was the 
emergence of vendor managed inventory concept. Our model in this study can be employed to 
optimize the vendor managed inventory process. 
 
In this study, we analyze the vendor-buyer inventory control problem under equal-size-
shipments policy. This problem is known as joint economic lot-sizing problem (JELP) in the 
literature. The decisions to be determined are the production lot size of the vendor, shipment 
sizes from vendor to the buyer, and the number of shipments. We clarify and extend the 
solution of the problem given in the literature. 
 
We also add a realistic dimension to the problem by incorporating the transportation cost issue 
into the model and develop a solution procedure for the model with transportation cost. The 
transportation cost issue has not been explicitly included in the models that currently exist in 
the literature. 
 
In the next section we give a literature survey on JELP and the inventory models that 
considers the transportation costs issue in different ways. In section 3, we address the JELP 
under equal-size-shipments policy with the clarified and extended solution of the problem. 
Section 4 describes a JELP model with transportation cost and a solution procedure for the 
problem. The conclusion of the study can be found in section 5. 
 

2. LITERATURE REVIEW 
 
In this section first we will review the literature on the inventory problem we deal with in this 
study and in the second part we summarize some of the literature that considers the 
transportation cost issue. 
 

2.1 Joint Economic Lot-Sizing Problem 
 
In this literature review, we focus on the single-vendor single buyer joint economic lot-sizing 
problem (JELP) where the vendor is assumed to be a manufacturer and the buyer is a retailer 
or a central warehouse dispatching the goods. The literature we include here assumes the two 
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stages to be a single system rather than taking the vendor and the buyer as completely 
independent.  Problem variation in the literature differs in two aspects: i) production rate 
assumption for the vendor, ii) the shipment policy between two stages, i.e. whether shipment 
can start before the entire lot is produced by the vendor, single or multiple shipment lots, 
equal or different shipment lot sizes, and if different how shipment sizes are assumed to be 
changing.  
 
One of the early papers related to JELP was Goyal (1977). He suggests a solution to the 
problem under the assumption of infinite production rate for the vendor and lot-for-lot policy 
for the shipments from the vendor to the buyer. Lot-for-lot policy equates the production and 
shipment sizes. This implies that the entire production lot should be ready before the 
shipment. Banerjee (1986) relaxes the infinite production rate assumption of Goyal (1977) but 
follows the lot-for-lot policy. That study coined the term JELP. Goyal (1988) contributes to 
the efforts of generalizing the problem by relaxing lot-for-lot policy. He assumes that the 
production lot is shipped in a number of equal size shipment lots, but only after the entire 
production lot is finished.  
 
Many other studies eliminated the restriction of requiring the completion of the production lot 
before starting the shipments. The focus was looking at the policies where the shipment sizes 
increase by a factor geometrically for certain number of shipments and then remains constant 
for the shipments at the end. Goyal (1995) looks into a policy where the geometric growth of 
the shipments continues until the end without any constant shipment sizes. The geometric 
growth factor is set to the ratio of production rate to demand rate. In that short paper, he 
formulates the problem, gives the optimal expression for the first shipment size as a function 
of the number of shipments and solves a single example by searching on the number of 
shipments. Hill (1997) further generalizes Goyal (1995). He sticks with the all geometrically 
increasing shipment size policy but takes the geometric growth factor as a decision variable 
rather than fixed. Thus, the decision variables become the number of shipments, first shipment 
size, and the geometric growth factor. He suggests a solution method that does not in general 
guarantees the optimality. This method is based on exhaustive search for both the growth 
factor and the number of shipments in certain ranges. Numerically, he shows that his solution 
method outperforms both equal shipment sizes policy and the policy adopted by Goyal 
(1995), which is obviously expected since he turns the geometric growth factor into a variable 
whereas in both equal-size and Goyal (1995) policies, this factor is fixed. Goyal (2000) 
suggests a method to improve the solutions obtained by the method given in Hill (1997). In 
this procedure, as the first shipment size, number of shipments, and the production lot size, he 
uses the results of Hill (1997). All of the work listed above looks at the problem under a 
certain assumption on shipment policy. Hill (1999) found the optimal solution structure to the 
problem without any assumptions about the shipment policy. An extensive review on JELP 
and its variants can be found in Goyal and Gupta (1989). 
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2.2 Integrated Analysis Of Inventory/Production/Transportation Planning 

In this section, we will list some of the literature on lot sizing problems in multi stage 
inventory/production systems that consider the transportation costs explicitly. In general, 
transportation part of the problem has been taken into account as a routing problem where we 
distribute the allocated inventory to customers using a fleet of vehicles, or as a transportation 
mode and size selection problem under freight discount schedule where the effect of 
transportation cost is through the changing unit transportation costs depending on the mode of 
the transportation and the size of the shipments. The importance of transportation cost in 
inventory and production planning has been shown both numerically (Federgruen and Zipkin 
(1984), Chandra and Fisher (1994), Ertogral et al (1998) and based on business case surveys 
and analysis (Carter and Ferrin (1996)).  
 
Traditionally, the transportation cost has not been explicitly incorporated into the inventory 
control/production planning models. It has been implicitly assumed that the transportation 
cost is part of fixed ordering cost or it is charged to the supplier. Neither of these assumptions 
is in general valid. Transportation costs are affected by the routing decision and selected 
shipment sizes. Even if the supplier incurs the transportation cost, it will be directly reflected 
in the unit purchase price charged by the supplier. 
 
A well-referenced study that incorporates routing element into inventory allocation decision 
can be found in Federgruen and Zipkin (1984). They considered the problem of allocating a 
limited amount of one product in a depot to multiple customers in one period. They device a 
heuristic to decide both the shipment sizes to each customer and routing considering inventory 
related costs at each customer location and transportation cost. Their model and solution 
method was extended by Federgruen et al. (1986) to the case where the item to be distributed 
is a perishable one. Both papers present comparison between integrated versus sequential 
approaches and show the gain due to the integrated approach. The integrated approach refers 
to making inventory allocation and routing decisions simultaneously while the sequential one 
corresponds to making inventory allocation decision first and then the routing decision. 
 
A common and transportation-wise costly way of avoiding shortages is expediting. In a two-
stage system where the second stage satisfies the outside orders, Blumenfeld et al. (1985) 
studies the tradeoff between the cost of expediting at the first stage and holding safety stock at 
the second stage. Another interesting problem faced in logistics area is to determine the 
number of contracted vehicles to carry out shipments in such a way that a good tradeoff is 
achieved between the spare capacity in the contracted vehicles and the use of emergency 
shipments (expediting). Yano and Gerchak (1989) deal with this problem in a two-stage 
supplier customer system. They suggest a methodology to simultaneously determine the 
safety sock level at the customer, number of vehicles for regular delivery and the time 
between shipments considering the inventory holding and shortage cost at the customer 
location and regular and emergency shipment costs. The model of Yano and Gerchak was 
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extended by Ernst and Pyke (1993) to include the consideration of the inventory cost at the 
first stage. 
 
In the context of integrating production planning with transportation, both Chandra and Fisher 
(1994) and Ertogral et al. (1998) investigated the value of integration through a numerical 
study. In Chandra and Fisher (1994), the system is composed of a manufacturer and several 
customers. They heuristically integrate the production and routing decisions under different 
cost parameter sets and showed the value of integration. Ertogral et al. (1998) is the only 
study, to the best of our knowledge, that integrates the production and transportation routing 
decisions in multi layer systems. In that study, transportation occurs between the production 
facilities that are in supplier-user relation in a multi-layer supply chain. They devised a 
Lagrangian decomposition based schema to find the optimal integrated solution. A 
comprehensive survey on integrated analysis of production/inventory/distribution planning is 
given in Sarmiento and Nagi (1999). 
 
Another way of incorporating the transportation costs into inventory control decisions has 
been through the use of freight discount schedule in the literature. In that context, rather than 
assuming the ownership of a fleet of vehicles and dealing with routing decisions, the 
assumption is that a carrier provides the transportation and the carrier gives a schedule of rates 
based on the size of the shipment. Here, we will list only some of the related literature. 
 
One of the earliest papers on incorporating freight cost into an inventory model is Boumal and 
Vinod (1970).  They introduce two models for inventory cost minimization and profit 
maximization. In those models, they include freight rates, speed, variance in speed, and the 
en-route lossage in an order-sizing model. They assume that unit shipping cost is fixed and is 
not dependent on the shipment size. But in reality, especially after the deregulation of the 
shipping industry in US in early 1990s, freight rate discounts depending on the shipment size 
became common practice (Carter and Ferrin (1996). Lee (1986) is one of the earliest studies 
that explicitly incorporate the discounted freight rate into the well-known EOQ model. He 
takes the shipment cost as a fixed cost which increases in a step function format depending on 
the order size. He presents an exact algorithm to solve this EOQ model with freight shipment 
cost.  
 
Another type of discount usually offered by the suppliers is the price discount for larger orders 
to entice the buyer to buy more. Burwell et al. (1997) consider both discounts, namely freight 
discounts and price discounts, in a profit maximization model. Their model assumes a price 
dependent demand structure. Therefore, their decision variables are order size and the price to 
be charged to the end customer. They describe exact algorithms, based on the results of Abad 
(1988), for solving the problem under different scenarios for the discount structure of the 
shipping rate and unit price. A similar work that takes into account price and freight discount 
together is Tersine and Barman (1991). The main difference between the two studies is that in 
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Tersine and Barman (1991) the demand is assumed to be constant rather than price dependent. 
Finally in a recent study, Swenseth and Godfrey (2002), again the effect of freight rate 
discounts on ordering decision is studied.  That paper looks into the question of when to over 
declare a shipment to exploit the reduced per unit transportation cost and how this possibility 
affects the order sizes using an inventory cost minimization model. 
 

3 FORMULATION AND ANALYSIS OF THE EQUAL-SIZE-SHIPMENT POLICY 

3.1 Model Formulation 

The notation used in the formulation is as follows: 
 

Av: Production setup cost of the vendor. 
Ab: Ordering cost of the vendor. 
hv: Inventory holding cost per unit per unit time for the vendor. 
hb: Inventory holding cost per unit per unit time for the buyer. 
∆h: Difference between the inventory holding cost of the vendor and the buyer 
   (∆h = hb - hv ) 
Q: Production lot size. 
q: Shipment lot size. 
n: Number of shipment lots from a lot of production run. 
TC: The total cost incurred by the system, vendor and buyer, per unit time. 
P: Production rate of the vendor. 
D: Demand rate faced by the buyer. 
c(q): Unit transportation cost charged to the shipments from the vendor to the buyer. 

 
It is assumed that P and D are constant over time and P > D. If P ≤ D, then the problem 
would be trivial and decision would be to produce continuously with shipment lot size being 
one, in order to satisfy the demand as much as and as soon as possible. We will give the 
formulation for the total cost per unit time below without any explanation. For an explanation 
of the formulation, we refer the reader to Hill (1997). 
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Total cost is convex in q and n for a given transportation cost. We omit the straightforward 
proof of convexity. The optimal shipment lot size, as given in Hill (1997), is; 
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The results are given in equations 3, 4, and 5 are extensions to the solution given in Hill 
(1997). The optimal continuous value for the number of shipments is given by: 
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The optimal q and n values as a function of the problem parameters can be obtained by 
solving the equations 2 and 3 simultaneously. The resulting expressions for q and n are given 
by: 
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It is clear from equations 2 and 5 that as the buyer inventory holding cost gets larger 
compared to vendor inventory holding cost, the optimal number of shipments will increase, 
and at the same time the optimal shipment size will decrease. This is an intuitive result since 
as the buyer side of the problem becomes more important, the optimal solution should favor 
smaller and frequent shipments since this improves the buyers' cost. From equation 2, we can 
also conclude that the optimal number shipments size gets larger as the setup cost of the 
vendor increases. The intuition behind this result is that, as the vendor setup cost gets larger 
the production lot size of the vendor will get larger and this large production lot, in turn, will 
require more shipments per production run. 
 

3.2 The Procedure To Find The Optimal Solution: 

Let n  and n  represent the largest integer less than or equal to n and the smallest integer 
greater than or equal to n respectively. Instead of the search procedure suggested in Hill 
(1997) we introduce the following one-pass heuristic to find the optimal solution: 
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1. Find the continuous optimal number of shipments, n*, using equation 5. 

2. Let *nn =  

 2.1 Using n, find the optimal shipment size, q*, from equation 2 and the  
corresponding total cost,TC1, from equation 1. 

3. Let *nn =  

 3.1 Using n, find the optimal shipment lot size, q*, from equation 2 and the 
corresponding total cost,TC2 , from equation 1. 

4. The optimal solution is  min{ TC1, TC2}. 
 

3.3 Numerical Example: 

 
We will solve a numerical example used in several studies (see for example Hill (1997)). The 
problem data is as follows;  hv=4, hb=5, Av=400, Ab=25, P=3200, D=1000. 
 

1. n*=4.51 

2. *nn = =4 

q=131.3, TC1=1903.94  

3. *nn = =5 

q=110.33, TC2=1903.29  

4. Optimal solution=min{1903.94, 1903.29}=1903.29, (n=5, q=110.33) 
 
This is the same solution reported in Hill (1997).  
 

4 FORMULATION AND ANALYSIS OF THE EQUAL-SIZE-SHIPMENT POLICY 
WITH TRANSPORTATION COST 

4.1 Model Formulation 

In this section, we will analyze the case where the transportation cost is explicitly considered. 
Rather than assuming it to be a part of the fixed ordering cost or to be insignificant, we will 
take the transportation cost as significant and as a function of the shipment lot size. We will 
consider the transportation cost to be in an all unit discounted cost format. The structure of the 
unit transportation cost is represented in the following way: 
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Condition  Unit Transportation Cost 

0 ≤ q < M1   c0 

M1 ≤ q < M2   c1 

M2 ≤ q < M3   c2 

                     .     . 
                     .     . 
                     .     . 

Mm-1 ≤ q < Mm   cm-1 

Mm ≤ q    cm 
 
The total transportation cost per unit time is found by dividing the transportation cost per 
production lot cycle by the duration of the cycle as follows: 
 
The transportation cost per unit time = cinq / (D / nq) = ciD 
 
We add the transportation cost per unit time to equation 1 to express the total cost per unit 
time for a given range of the shipment order size: 
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As we can see from equation 6, since the transportation cost part of the model is not written as 
a function of q, the expressions for the optimal shipment lot size and the number of shipments, 
and the rest of the analysis we give in section 3 are also valid for the model with 
transportation cost. Thus, the total cost expression is still convex in the two decision variables. 
The only difference is that we have to make sure that the shipment size falls in the indicated 
range for a given per unit transportation cost. 
 
The optimal shipment size of the model with transportation will be always greater than or 
equal that of the model without transportation. Given the optimal shipment lot size of the 
model without transportation, we may improve the total cost including the transportation, by 
increasing the lot size. Note that the unit transportation cost decreases with the shipment lot 
size. Decreasing the lot size from optimal level will increase both the transportation cost and 
the inventory related costs.  
 
The tradeoff to be checked is whether the saving in the transportation cost due to the increase 
in the shipment lot size is more than the increase in the inventory related costs. Based on this 
observation we develop the following heuristic procedure. 
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4.2 Heuristic Solution Procedure  

We will assume that index i represents the range [Mi, Mi+1) in following procedure: 
 
1. Find n* for the range using equation 5. 

2. Let *nn = . Using n find q* from equation 2.  Let qq =*  

 2.1 Find the range index  j such that  Mj ≤ q* < Mj+1 

 2.2 Find TC( *q , *n ) from equation 6 using cj. 

3. Let *nn = . Using n find q*  from equation 2. Let ** qq = . 

 3.1 Find the range index k such that  Mk ≤ *q  < Mk+1 

 3.2 Find  TC( ,*q *n ) from equation 6 using ck . 

4. Let TC* = min{ TC( *q , *n ),TC( ,*q *n ) }.  Let l = the range index (j or k) associated with 

TC* 

5. For all the ranges with index t ≥ l apply the following 

 5.1 Let q = Mt. 

 5.2 Find n* using equation 3. 

 5.3 Let *nn = and using n find q* from equation 2 and let qq =*  

  5.3.1 If q* < Mt  let tMq =* . If q* > Mt+1 let 1* += tMq . 

  5.3.2 Find TC( *q , *n ) from equation 6 using ct. 

 5.4 Let *nn =  and using n find q* from equation 2 and let ** qq =  

  5.4.1 If  q* < Mt  let tMq =* .  If q* > Mt+1  let 1* += tMq  . 

  5.4.2 Find TC( ,*q *n ) from equation 6 using ct . 

 5.5. Let TCt
 = min{ TC( *q , *n ),TC( ,*q *n ) } 

6. Among the policies giving the costs TC* , and TCt for t ≥ l, select one with the minimum 
cost. 

 
In steps 1 through 3, we find the optimal solution of the problem without considering the 
transportation cost using equations 4 and 5.  In step 5, we check if we can find a lower cost 
solution including the transportation cost by setting the shipment size equal to the minimum 
value in each range that follows the range where the optimal solution without considering the 
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transportation cost falls in. We check only the policy of trying to set the shipment size equal 
to lower limit in each range since the total cost increases as we increase the shipment lot size 
and if setting the shipment lot size to the minimum value in a range does not give a better 
solution no other shipment size in the same range can give a better solution.  
 

4.3  Numerical Example 

We will use the example solved in section 2 with the following transportation cost structure: 
 

Condition  Unit Transportation Cost 

0 ≤ q < 130   2 

130 ≤ q < 250   1.5 

250 ≤ q < 300   1.25 

            300 ≤ q   1.2 
 
The optimal solution found in steps 1-3 is n=5, q=110.33 with total cost of 3403 including the 
transportation cost. This is the same optimal policy we had in section 2. The optimal solution 
falls into the range [0,130).  For the last three ranges, by applying the procedure described 
above, we obtain the following results: 
 
TC1=TC(131.31,4)=3403.94, TC2=TC(250,2)=3275.00, TC3=TC(300,2)=3300.00 
 
Based on the results, we conclude that q=250 and n=2 is the policy to choose when we include 
the transportation cost in the model since it is the least cost solution. This policy is 
significantly different from the optimal policy we found in section 2. In the optimal policy, we 
increase the shipment lot size so that we can take the advantage of reduced unit transportation 
cost. 
 

5. CONCLUSIONS 

In this study we analyze the vendor buyer lot-sizing problem under equal-size shipment 
policy. We introduced the complete solution of the problem in an explicit manner that has not 
existed in the literature. We also considered the case where transportation cost is taken into 
account. The structure of the transportation cost is assumed to be an all-unit-discounted 
format. We develop a heuristic procedure to find a quality solution for the model with 
transportation cost. We give numerical examples to support the analysis. Future research will 
look into incorporating transportation cost into other JELP models using different 
transportation cost structures. 
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