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ABSTRACT 

This paper presents several new heuristics for the m-machine no-wait flowshop with total completion 
time as the criterion. The performance of the proposed heuristics is compared with that of three 
existing heuristics including a recently developed Genetic Algorithm. Computational experience 
demonstrates the superiority of the proposed heuristics with respect to error performance.  For 
example, for number of jobs 400 and number of machines 25, the suggested proposed heuristics 
PH1(p) and PH3(p) yield an average percentage relative error of 0.006% and 0.257%. This is 
compared with an average percentage relative error of 2.764% for the best performing existing 
heuristic. 
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 الملخص

تعرض هذه الدراسة عدة خوارزميات جديدة تهدف إلى تقليل الوقت الشامل للإنجاز في ورشة انسيابية مكونة من عـدة                   

حة مع خوارزميات ثلاث إحداها حديثة تعتمد على        ولقد تم إجراء مقارنة بين الخوارزميات المقتر      . مكائن ودونما توقف    

فعلى سبيل المثال ، عنـدما      . الخوارزم الجيني ، وجائت النتائج لصالح الخوارزميات المقترحة فيما يتعلق بنسبة الخطأ             

 ، كان متوسط نسـبة الخطـأ النسـبي فـي اثنـين مـن                ٤٠٠ وعدد المهام المطلوب إنجازها      ٢٥يكون عدد المكائن    

 %.٢,٧٦٤أما في أفضل الخوارزميات الموجودة فلقد جائت النتيجة % ٠,٢٥٧و % ٠,٠٠٦ات المقترحة هو الخوارزمي

1.  INTRODUCTION 

In an m-machine flowshop problem, there are n jobs to be scheduled on m machines where 
each job consists of m operations and each operation requires a different machine and all jobs 
are processed in the same order of the machines. Extensive research has been conducted for 
many variants of the regular flowshop problem with the assumption that there is an infinite 
buffer space between the machines. Even though such an assumption is valid for some 
applications there are numerous situations in which discontinuous processing is not allowed. 
Such flowshops are known as no-wait.  
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A no-wait flowshop problem occurs when the operations of a job have to be processed 
continuously from start to end without interruptions either on or between machines.  This 
means, when necessary, the start of a job on a given machine is delayed in order that the 
operation’s completion coincides with the start of the next operation on the subsequent 
machine.   

There are several industries where the no-wait flowshop problem applies. Examples include 
the metal, plastic, chemical and food industries.  For instance, in the case of rolling of steel, 
the heated metal must continuously go through a sequence of operations before it is cooled in 
order to prevent defects in the composition of the material. Also in the food processing 
industry, the canning operation must immediately follow the cooking operation to ensure 
freshness. Additional applications can be found in advanced manufacturing environments, 
such as just-in-time and flexible manufacturing systems. 

The no-wait flowshop problem has attracted the attention of many researchers. [Hall and 
Sriskandarajah, 1996] give in a survey paper a detailed presentation of the applications and 
research on this problem.  Considering that flowtime or completion time of a job is the same 
when the job is ready for processing at time zero and that total or mean completion time are 
equivalent criteria, some of the works on the no-wait problem with the objective of 
minimizing any of these criteria include [Adiri and Pohoryles, 1982], [Rajendran and 
Chaudhuri, 1990], [van der Veen and van Dal, 1991], and [Chen et al., 1996].  

[Adiri and Pohoryles, 1982] and [Van der Veen and Van Dal, 1991] consider special cases of 
m-machine no-wait flowshop problem for the total and mean completion time criteria. [Adiri 
and Pohoryles, 1982] prove some properties of the optimal schedules for a two-machine and 
provide theorems that are the basis for polynomial bounded algorithms for the m-machine 
with an increasing or decreasing series of dominating machines.  [Van der Veen and Van Dal, 
1991] show that the problem is solvable when the objective function is restricted to semi-
ordered processing time matrices.   

[Aldowaisan and Allahverdi, 1998], [Aldowaisan, 2000], and [Allahverdi and Aldowaisan, 
2000] also consider the no-wait flowshop problem but with separate setup times. [Aldowaisan 
and Allahverdi ,1998] address the problem with a total flowtime performance measure for a 
two-machine. They develop optimal solutions for special cases, establish a local dominance 
relation, and provide a heuristic solution for the generic case. [Aldowaisan, 2000] considers 
the same problem. He provides additional dominance relations and proposes a new heuristic. 
[Allahverdi and Aldowaisan, 2000] address the three-machine problem with the same 
objective. They provide optimal solutions for certain cases, a dominance relation for the 
general case, and develop and evaluate five heuristic algorithms.   

[Rajendran and Chaudhuri, 1990] and [Chen et al., 1996] address the m-machine generic no-
wait problem. [Rajendran and Chaudhuri, 1990] give two heuristic algorithms and show that 
they are superior to other existing heuristics. [Chen et al., 1996] later develop a genetic 
algorithm and compare it with the heuristics of [Rajendran and Chaudhuri, 1990].  
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In this paper, we address the generic m-machine no-wait flowshop problem with the objective 
of minimizing total completion time. We propose six new heuristics and compare with the 
heuristics of  [Rajendran and Chaudhuri, 1990] and [Chen et al., 1996].  

2.  HEURISTICS 

We propose four heuristics for the m-machine no-wait flowshop problem and compare the 
proposed heuristics with the best three existing heuristics.  

2.1. Existing Heuristics 

Let ti,j denote the processing time of the job in position i on machine j.  Also let di,j denote the 
minimum delay between the start of the job in position i and that of the job in position j on the 
first machine due to the no-wait constraint. Let 

Ai =  ∑
=

m

j 1

(m-1+j)ti,j   and  Bi =  ∑
=

m

j 1

ti,j   

2.1.1. Heuristic RC1 (Rajendran and Chaudhuri, 1990) 

Step 1: Form an initial sequence by arranging the jobs in ascending order of the value of Ai. If 
any tie exists choose the job having the least value of Bi.   

Step 2: Set k=1, select the first job in the initial sequence and insert it in the first position of 
the partial sequence π.  

Step 3: Update k=k+1. Select the kth job from the initial sequence and insert it in all r possible 
positions of the current solution of π where r is the integer satisfying k/2≤ r≤k. Among 
r sequences, select the one with the minimum value for the following expression 

   ∑
=

k

i 2
(k+1-i)di-1,i 

  and make it current π.  

Step 4: If k=n, stop, the sequence π is the heuristic solution of RC1, else go to Step 3.  

2.1.2. Heuristic RC2 (Rajendran and Chaudhuri, 1990) 

RC2 follows the same steps as RC1 except that it uses Bi as the ordering criterion for the 
initial sequence and Ai for tie breaking. 

2.1.3. CNA Genetic Algorithm (Chen et al., 1996)   

Genetic Algorithm (GA) is a probabilistic technique that imitates the evolution process. GA 
which was first developed by Holland (1975) has found many applications in different 
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disciplines including scheduling, e.g., Nagar et al. (1996), Chen et al. (1996), Onwubolu and 
Mutingi (1999). For our problem, Chen et al. (1996) provides a GA with the following steps.  
 
Step 1: Let the population size and the number of generations be 95 and 60, respectively. 

Determine the initial population, S(0) as follows. Half of the members in the initial 
population is generated randomly, and the other half is generated with the first one 
using Rajendran and Chaudhuri’s (1990) method, the second one using the Danninbring 
(1997) method, and the following m-1 members generated using the CDS method 
(1970) (m is the number of machines). The remaining members of the second half are 
generated by randomly choosing a member and randomly swapping two of its jobs 
generate.    

 
Step 2: For each member si(t) in population S(t), compute the fitness value f(si(t)) as follows. 

First calculate the total flowtime for each member in the population. Second, calculate 
the fitness value for each member, which is equal to the difference between the 
maximum total flow time in the population and the total flow time of the member.  

 
Step 3: For each member si(t) in population S(t), compute the selection probability as 
 P(si(t)) =  f(si(t))/Σ f(si(t)). 
 
Step 4: Based on the selection probability choose a pair of members (parents) for 

reproduction. 
 
Step 5: Apply the genetic operators of crossover and mutation to the parents. Form a new 

population S(t+1) using the offspring of the parents. Go to Step 6 if the new population 
is equal to the population size. Otherwise go to Step 4. 

 
Step 6: If the current generation t+1 is equal to 60 or the number of members in the population 

with the lowest total flow time is 60% of the population stop. Otherwise go to Step 2.  
 

In step 5 of the algorithm, Goldberg’s (1989) PMX operator is used for crossover with a 
crossover rate of 0.725. As for mutation operation, two positions in a member are randomly 
picked and swapped to generate a new member with a mutation rate of 0.009. These rates are 
determined based on empirical investigation. Other aspects of the CNA genetic algorithm are 
to include the best member in the current population in the next generation and to replace all 
members in the population with new ones except the best one. In developing the initial 
population, one of the members is generated by Rajendran and Chaudhuri’s (1990). Since 
Rajendran and Chaudhuri’s (1990) has two methods, we selected the one with the better 
performance. 
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2.2. Proposed Heuristics 

The proposed heuristics use the result of the following algorithm as an initial sequence.  

2.2.1. Initial Sequence Algorithm (ISA) 

Step 1: Set k=2, π1={all jobs}, π2=φ 

Step 2: Choose job i such that  

  ∑
=

m

j 1

ti,j≤ ∑
=

m

j 1

tr,j for all r in π1. 

 Remove job i from π1 and place it in the first position of π2. 

Step 3: If k=n, stop, the sequence π2 is ISA, else calculate the Total Completion Time of the 
jobs in positions 1, 2, …, k (TCT1,k)  for each job i∈π1 after inserting it in position k of 
π2 and  assign the job with the minimum TCT1,k  in position k in π2 and remove it from 
π1    

 Let k=k+1. 

Step 4: Go to Step 3. 

2.2.2. Proposed Heuristics 1 and 2 (PH1 and PH2) 

The following steps describe the first two proposed heuristics where the only difference 
between the two is using different insertion methods in Step 3. While the first proposed 
heuristic (PH1) uses the Nawaz et al. (1983) insertion method, the second proposed heuristic 
(PH2) uses the Rajendran and Ziegler (1997) insertion method. 

Step 1: Develop the initial sequence π0 using the ISA. Let T0 be the objective function value 
of the sequence π0 

Step 2: Set Tb= T0, πb=π0, r=1 

Step 3: Apply the Nawaz et al., 1983 (Rajendran and Ziegler, 1997) insertion method to the 
sequence πr-1 to obtain πr and calculate Tr  

Step 4: If Tr< Tb, set Tb=Tr and πb=πr 

Step 5: Update r=r+1. If r>10 go to Step 6, otherwise go to Step 3 

Step 6: The PH1 (PH2) solution sequence is πb with objective function value Tb.  
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2.2.3. Proposed Heuristics 3 and 4 (PH3 and PH4) 

The following steps describe the second two proposed heuristics where the only difference 
between the two is using different insertion methods in Step 3. While the third proposed 
heuristic (PH3) uses the Nawaz et al. (1983) insertion method, the fourth proposed heuristic 
(PH4) uses the Rajendran and Ziegler (1997) insertion method. 

Step 1: Develop the initial sequence π0 using the ISA. Let T0 be the objective function value 
of the sequence π0 

Step 2: Set Tb= T0, πb=π0, r=1, k=0 

Step 3: Apply the Nawaz et al., 1983 (Rajendran and Ziegler, 1997) insertion method to the 
sequence πr-1 to obtain πr and calculate Tr  

Step 4: If Tr< Tb, set Tb=Tr and πb=πr 

Step 5: If Tr≥Tb, k=k+1 

Step 6: Update r=r+1. If r>10 or k=2 go to Step 7, otherwise go to Step 3 

Step 7: The PH3 (PH4) solution sequence is πb with objective function value Tb. 
 
The only difference between PH1 (PH2) and PH3 (PH4) is the stoppage criterion. While the 
former heuristics PH1 and PH2 terminate after 10 replications, the latter heuristics PH3 and 
PH4 terminate either after 10 replications or when two consecutive replicates yield a solution 
worse than the best solution obtained so far (i.e. k=2). 
 
For all of the four proposed heuristics, a further improvement can be achieved by applying a 
pair-wise exchange procedure after the heuristic solution is obtained. The sequence obtained 
after the pair-wise exchange is applied to the proposed heuristic i (PHi) is denoted by PHi(p).  

3.  COMPARISON 

In this section, we compare the performance of the heuristic algorithms using the FORTRAN 
language on a SUN SPARC Station 20. The processing times on each machine were randomly 
generated from a discrete uniform distribution, U(1,10) and U(1,100). Most researchers have 
used this distribution in their experimentation, e.g., Rajendran and Chaudhuri (1990). 

The experiments are performed for the number of jobs of 50, 100, 200, 300, and 400, and the 
number of machines of 5, 10, 15, 20, and 25. The heuristics’ solutions are compared with the 
best solution. The number of replicates is 30. We compare the performance of the heuristics 
using average percentage relative error (Avg), standard deviation (Std), and the number of 
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best solutions (Cnt). The percentage relative error is defined as 100* (Heuristic – Best 
Solution)/Best Solution.  

For the proposed heuristics PH1, PH2, PH3, and PH4 a statistic V is calculated to represent 
the average number of replicates to activate the stoppage criterion. Computational results 
revealed that PH4, which uses the efficient k=2 stoppage criterion, performs as good as PH2 
in terms of error. Therefore, we decided not to compare PH2 with the other heuristics for the 
rest of the analysis. 

Tables 1 and 2 provide the computational results of the existing and proposed heuristics, 
respectively. The superiority of the proposed heuristics over all three existing heuristics in 
terms of error is evident from Tables 1 and 2. The tables also show that PHi(p) performs 
better than PHi for i = 1, 3, and 4; and that PH1(p) provides the best error performance 
amongst all heuristics. 

The CPU time of all heuristics (proposed and existing) is negligible. Even for the extreme 
case of 400 jobs, the CPU time of all heuristics is less than one minute. Therefore, we 
recommend PH1(p) based on its error performance.  

 

4.  CONCLUSIONS  

This paper presents several proposed heuristics for the n-job m-machine no-wait flowshop 
problem with the objective of minimizing total completion time. The proposed heuristics 
differ in three aspects; firstly, in the choice between two stoppage criteria, secondly, in the 
choice between two insertion methods, and finally, in whether or not to apply a pair-wise 
exchange procedure. 

The proposed heuristics are compared with three existing heuristics, two by Rajendran and 
Chaudhuri (1990) and a Genetic Algorithm by Chen et al. (1996). Computational experience 
for large number of jobs and for processing time distributions of U(1,10) and U(1,100) show 
that all of the proposed heuristics perform better than the existing ones in terms of error 
performance. Among the proposed ones, PH1(p) is recommended. 
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Table 1: Performance of the existing heuristics 

 

n m Avg. Std. Cnt Avg. Std. Cnt Avg. Std. Cnt

50 5 2.635 1.381 1 4.532 1.521 0 2.739 1.451 1
10 1.624 1.097 0 2.932 1.504 0 2.016 1.348 0
15 1.936 1.265 3 3.272 1.740 0 2.414 1.452 0
20 2.040 1.122 0 2.782 1.468 0 2.698 1.454 0
25 2.323 1.338 1 3.576 1.771 0 2.980 1.353 0

100 5 3.484 1.236 0 5.366 1.649 0 3.496 1.234 0
10 2.404 1.106 0 3.853 1.247 0 2.606 1.267 0
15 2.827 0.979 0 3.903 1.423 0 3.072 0.996 0
20 2.930 1.266 0 4.294 1.374 0 3.147 1.310 0
25 3.008 1.001 0 3.941 1.198 0 3.380 1.129 0

200 5 3.593 0.803 0 6.484 0.956 0 3.596 0.807 0
10 2.627 0.803 0 4.361 0.899 0 2.635 0.809 0
15 2.442 0.848 0 3.667 0.802 0 2.455 0.847 0
20 2.806 0.819 0 3.819 0.803 0 2.843 0.845 0
25 3.054 0.791 0 3.888 0.804 0 3.161 0.869 0

300 5 3.673 0.615 0 6.995 0.740 0 3.678 0.619 0
10 2.474 0.601 0 4.300 0.705 0 2.475 0.601 0
15 2.492 0.553 0 3.914 0.477 0 2.493 0.552 0
20 2.717 0.540 0 3.698 0.737 0 2.734 0.554 0
25 2.841 0.668 0 3.880 0.775 0 2.862 0.696 0

400 5 3.829 0.645 0 7.065 0.556 0 3.832 0.647 0
10 2.323 0.456 0 4.163 0.605 0 2.325 0.457 0
15 2.266 0.509 0 3.635 0.580 0 2.273 0.519 0
20 2.554 0.531 0 3.788 0.677 0 2.585 0.546 0
25 2.764 0.704 0 3.635 0.771 0 2.814 0.747 0

RC2RC1CNA (Genetic)
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