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ABSTRACT 

In this study  simple harmonic, cycloid and 3-4-5 polynomial time functions, which are used in cam 
design, are introduced into robotics as new trajectory functions and compared with trajectories of 
cubic segment and bang bang parabolic blend, which are already used in robotics. For this purpose 
dynamic equations of a Stanford type spherical robot is developed. Straight line trajectory is chosen 
for the end effector of the manipulator. On this trajectory robot travels with the above mentioned time 
functions. Total consumed energy curves are obtained with respect to travel time for each time 
function. Results show that cubic segment trajectory function spends minimum energy, cycloid and 
bang-bang parabolic blend trajectories spend maximum energy. When the travel time gets bigger all 
trajectories approach to an asymptotic energy value. Because inertial loads are becoming small and 
negligible compared to the gravitational forces and moments. Cycloid and 3-4-5 polynomial 
trajectories start and end with zero accelerations which will not cause jerk or vibration but a smooth 
running of the robot. That is why, if travel time is relatively big, cycloid or 3-4-5 polynomial 
trajectories should be preferred. If the energy consumption is the prime concern and the travel time is 
short, cubic segment trajectory is the best. 
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 الملخص

فقد تم إختيار نوع مسار الخط المستقيم لتوجية . ردفي هذة الدراسة تم تطوير المعادلات الديناميكية لنوع روبوت ستانفو

 :من هذة المعادلات. . حركة الذراع النهائي المؤثر وذلك بإستخدام معادلات وأوقات مختلفة

 cubic segment, Bang-bang parabolic lend, simple harmonic, cycloid, and 3-4-5 polynomial 

لتوجية المسار فقد تم الحصول على مجموع الطاقة المستخدمة بالنسبة للوقت وذلك وبإستخدام المعادلات الثلاث الأخيرة 

 cubic فقد أوضحت النتائج أن أقل طاقة تستخدم عند إستخدام معادلة من نوع . لكل معادلة من هذة المعادلات
segment  وأكثر طاقة عند إستخدام معادلة من نوع cycloid and bang-bang blend . ة إزدياد وقت وفي حال

المسار نجد أن جميع المسارات تلتقي بنفس قيمة الطاقة المستخدمة وذلك بسبب إزدياد أهمية قوة الجاذبية ومحور الذراع 

وذلك في حالة مسار   polynomial    5-4-3 أو  cycloidإلا أنة يفضل طريقة . إذا ماقورنت بالقوى الديناميكية

 cubic segment. هو كمية الطاقة في أقل وقت ممكن فيفضل طريقة أما إذا كان الهدف. الوقت الطويل
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1. INTRODUCTION  

Efficient use of industrial robots has been the subject of great interest for the past decade as 
shown by the great volume of work reported in the literature. Because of the non-linearity and 
highly coupled nature of the manipulator dynamics, the conventional optimal control approach 
has proven to be complicated and too time consuming for an on-line implementation. Instead a 
two-stage optimization approach has been commonly used to tackle the problem. The first 
stage involves an off-line trajectory-planning model, which yields a time history of joint angle 
and joint velocities (and joint acceleration or joint torques in some cases), to be followed by 
the robotic arm in the actual task. The trajectory is usually planned with the objective of 
achieving minimum cost or minimum time. The second stage is the on-line path tracking 
problem which is concerned with making the robot’s actual Cartesian position and velocity 
follow the derived values as closely as possible. [Bhattacharya and Agrawal, 2000] described 
a prototype and analytical studies of a spherical rolling robot. Methods are developed for 
planning feasible, minimum time energy trajectories for the robot. [Diken, 1994] assumed a 
sinusoidal path in Cartesian coordinates. It is assumed that the end point of the manipulator 
travels on a sinusoidal path trajectory with simple harmonic time function. Considering the 
amplitude of the sinusoidal motion as a variable, he searched for the amplitude of sinusoidal 
path that makes the energy consumption minimum. His computations showed that sinusoidal 
paths, outward and downward from the body of the manipulator, complete the task with 
minimum energy. 
 
In this study, a Stanford type of a spherical robot is chosen. Dynamic equations are derived 
using  Lagrange equations. Torques are computed at each servomotor for a straight-line work 
space trajectory. The end point of the robot travels on this trajectory with different time 
functions.  These functions are cubic segment, bang-bang parabolic blend, simple harmonic, 
3-4-5 polynomial and cycloidal trajectories. For each trajectory Total energy consumptions 
are calculated with respect to travel times. 

2. ANALYSIS 

The Stanford type spherical robot is shown in Figure 1. Equations of motion are derived 
considering only the body, back arm and the forearm. The second set of three motions for the 
manipulator hand, which gives orientation to the payload, are ignored. The Denavit-
Hartenberg method is used to find forward and inverse kinematic relations [Wolovich, 1987]. 
Total kinetic energy  K  of the robot is then obtained by using kinematic relations and 
dynamic parameters.  
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Kinetic energy of any link can be obtained by the following equation 
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Here mq is the qth link mass, Vq is the linear velocity, ωq is the angular velocity of the qth link, 
and Iq is the mass moment of inertia about the mass center of the qth link. Since robot motion 
is in three dimensions, Vq and ωq are vectors with three components. Dynamic equation of 
each link can be obtained by using the Lagrange equation. 
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Here K is the total kinetic energy of the robot, θq is the qth link rotation, Qq is the qth 
generalized moment coming from gravity forces and motor torques. When Lagrange equations 
are applied, the following equations of motion, in matrix form are obtained. 
 

τθθθθθθ =+++
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Here D is the inertia matrix, N is the normal force matrix, C is the Coriolis force matrix, G is 
the gravitational force matrix and τ is the torque vector, respectively.  
 
3. TRAJECTORIES 
 
It is assumed that the end point of the manipulator travels from one point to another in 
Cartesian space on a straight line, which can be given as, 
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Here x, y, z are Cartesian coordinates, x0, y0, z0 and xf, yf, zf are  the initial and final positions, 
respectively. )(tλ  is the time function, such that 0 ≤λ ≤ 1 for 0 ≤ t ≤ tf.  Here tf is the travel 
time. In closed form, position, velocity and acceleration for a straight-line trajectory can be 
given as, 
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Trajectory functions that will be used for total energy calculations are cubic segment, bang-
bang parabolic blend, simple harmonic, 3-4-5 polynomial and cycloid. 
 

3.1.  Cubic Segment Trajectory  

One of the most frequently used trajectory functions in robotics is a cubic polynomial 
function, which is given as, 

32)( dtctbtatx +++=                                        (8) 
 

The four constant a, b, c and d can be calculated from the initial conditions, which usually are 
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Here x0 and xf are initial and final coordinates, and tf is the travel time. After finding constants, 
the trajectory is 
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3.2. Bang-Bang Parabolic Blend Trajectory  

The bang-bang parabolic blend trajectory is also used in robotics applications, which consists 

of two parabolas. One is for 0 ≤ t ≤ 
2
ft

 and the second one is for 
2
ft

< t ≤ tf. For the first part 

of the trajectory function  
 

     )(2)( 02

2

0 PP
t
tPtP f
f

−+= ,      
2

0 ft
t ≤≤         (11) 

 
For the second part 
 

              ))(224()( 02

2

PP
t
t

t
tPtP f

ff
f −−−+= ,        f

f tt
t

≤<
2

                                             (12) 



Optimum Trajectory Function for Minimum Energy Requirements of a Spherical Robot Vol. 4.  617 

 

3.3. Simple Harmonic Trajectory  

Simple harmonic trajectory function is a trigonometric function, this and the following 
functions are mostly used in cam design [Shigley, 1980]. The simple harmonic trajectory 
function is given as, 
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3.4. Cycloidal Trajectory  

The equation of the cycloidal trajectory function is given as, 
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3.5. 3-4-5 Polynomial Trajectory  

The 3-4-5 polynomial trajectory function is given as, 
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Figure 2 shows the cycloidal trajectory, along with its velocity and acceleration as a sample. 
It may be noted that the cubic segment, bang-bang parabolic blend, and the simple harmonic 
functions have finite acceleration values at the beginning and at the end. These finite values of 
acceleration will cause jerk in the motion, which are undesirable in robotics. Cycloidal motion 
and 3-4-5 polynomial functions, on the other hand, starts and ends with zero acceleration, 
which will result in a smooth motion. 
 

4. ENERGY CALCULATIONS 

When two points in the workspace are chosen, then  P0(x0, y0, z0) and Pf(xf, yf, zf) are known. 
For a chosen trajectory and travel time tf, )(tλ  is also known. By using equation (7) any 

number of trajectory  points  Pi (i=1,2,…,N), velocity 
•

iP  and acceleration 
••

iP  can be 

calculated.  

When the Cartesian position, velocity and acceleration values are computed in this manner, 
then the link space values, i.e., servomotor rotations, velocities and accelerations can be 
calculated by using the following inverse kinematic relations 
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Here [ ]321 ,, θθθ=TQ  is the link rotation vector, ],,[ zyxPT =  is the Cartesian coordinate 

vector, T--1 is the inverse of the transformation matrix, Jp
-1 is the inverse of the Jacobian matrix 

and 
•

PJ  is the time derivative of the Jacobian matrix. Using the link angles, angular velocities 
and angular accelerations, it is possible to compute servomotor torques by the use of equation 
(4).  Once torques and angular velocities are known,  the total power requirement of the robot 
becomes 
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The total energy spent during the travel time tf is  
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To serve as a practical application of the above, a series of computations were carried out  and 
total energy consumption curves are obtained for five trajectories [Shahrani, 2001].  
Geometrical values and dynamic parameters that are used for simulation are tabulated in Table 
1. 

 
Table 1. Geometric and dynamic properties of the spherical robot. 

h=1.5 m m2=27 kg 23 0291.0 kgmI yy =

r=0.5 m m3=63 kg I3
xx=0.0291 kgm2 

fmin=0.15
m 

21 8.0 kgmI zz =  I3
yy=0.0134 kgm2 

fmax=0.6m 22 0134.0 kgmI xx = I3
zz=0.0582 kgm2 

a2=0.3m I2
yy=0.0537 kgm2 mp=5 kg 

a3=0.75m I2
zz=0.0134 kgm2  

 
The end point of the manipulator will travel from P0 (0.6, -0.6, 0.5) m to Pf (0.5,0.1,0.6) m 
during a travel time tf=3.5s. Figures 3, 4 and 5 show angular positions, angular accelerations 
and angular velocities of the links of the manipulator for cycloidal trajectory, respectively. 
Figure 6 shows the torque requirements of servomotors during the travel. Figure 7 shows the 
power needed for each servomotor. Figure 8 is the plot of the total power requirement of the 
robot.The integral of the curve, which is given in Figure 7 will yield the total energy required 
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for the manipulator, which is 66.63 Joule. If these calculations are repeated for different travel 
times tf, the plot of the total consumed energy per travel time can be obtained.  The result of a 
such set of computations for the cycloidal trajectory function is summarized in Figure 9. 
 
Total energy consumption curves can be obtained for the other four trajectories as well in a 
similar manner.The plot of the total consumed energy curves for five trajectories are shown in 
Figure 10. Cyloid and bang-bang parabolic blend trajectories are spending almost same 
amount of energy. For longer travel times, curves are approaching to an asymptotic value. 
This is because, the effect of inertial forces are decreasing and becoming negligible for longer 
travel times, servomotors are overcoming only gravitational forces and moments. In terms of 
energy consumption cubic segment is the best choise. For example, for the travel time 1.4 
second, simple harmonic trajectory spends 3.7% more, 3-4-5 polynomial trajectory spends 
22% more, bang-bang parabolic blend spends 29% more and cubic segment trajectory spends 
31% more energy than the cubic segment trajectory. In terms of minimum energy 
consumption, cubic segment trajectory is the best than comes simple harmonic. Since 3-4-5 
polynomial trajectory and cycloidal trajectory functions are starting and ending with zero 
accelerations, they can be preffered to eliminate vibrations and for smooth running of the 
robot. In many practical applications, the maximum velocity of the end effector is assumed as 
1 m/s, corresponding travel times to this velocity are also calculated, which is 1.5 s for 
cycloid, 1.44 s for bang-bang parabolic blend, 1.35 s for 3-4-5 polynomial, 1.12 s for simple 
harmonic and 1.07 s for cubic segment.   
 

5. CONCLUSION 

In this study  simple harmonic, cycloid and 3-4-5 polynomial time functions, which are used 
in cam design, are introduced into robotics as new trajectory functions and compared with 
trajectories of cubic segment and bang bang parabolic blend, which are already used in 
robotics. For this purpose dynamic equations of a Stanford type spherical robot is developed. 
Straight line trajectory is chosen for the end effector of the manipulator. On this trajectory 
robot travels with the above mentioned time functions. Total consumed energy curves are 
obtained with respect to travel time for each time function. Results show that cubic segment 
trajectory function spends minimum energy, cycloid and bang-bang parabolic blend 
trajectories spend maximum energy. When the travel time gets bigger all trajectories approach 
to an asymptotic energy value. Because inertial loads are becoming small and negligible 
compared to the gravitational forces and moments. Cycloid and 3-4-5 polynomial trajectories 
start and end with zero accelerations which will not cause jerk or vibration but a smooth 
running of the robot. That is why, if travel time is relatively big, cycloid or 3-4-5 polynomial 
trajectories should be preferred. If the energy consumption is the prime concern and the travel 
time is short, cubic segment trajectory is the best. 
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Figure 1. Stanford type spherical manipulator. 
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Figure 2. Cartesian position, velocity and acceleration for cycloidal trajectory. 
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Figure 3. Link angles for cycloidal trajectory. 
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Figure 4. Link angular velocities for cycloidal trajectory. 
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Figure 5. Link angular accelerations for cycloidal trajectory. 
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Figure 6. Motor torques of the manipulator. 
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Figure 7. Servomotor power consumption curves. 

 
 
 
 

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35
Total power

Time [s]

P
ow

er
  [

W
]

 
Figure 8. Total power required for the manipulator. 
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Figure 9. Total consumed energy curve for cycloidal trajectory. 
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Figure 10. Total consumed energy curves for all trajectories. 
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