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ABSTRACT 

Engineering structures designed and assumed to be periodic rarely satisfy this condition in practice 
due to manufacturing errors or inherent minute differences in material properties. It is now known 
that such deviations from the ideal periodicity can give rise to unpredictable and undesirable dynamic 
behavior, which could even cause failure. In such cases, energy input into the nearly-periodic system 
can accumulate in only a some small region of the overall system, a phenomenon known as mode 
localization. One parameter for quantifying this phenomenon is the mode localization factor, which 
measures the exponential rate of energy decay from one station to the next in the nearly-periodic 
structure. In this paper, we investigate the dynamic behavior of linear and cyclic chains of cantilever 
beams, coupled by linear springs. This could, for instance, simulate the behavior of a shrouded bladed 
disk on a rotating shaft, where the shroud is modeled as massless linear springs. An exact solution is 
given for both the tuned (perfectly periodic) and mistuned (nearly periodic) cases, based on Green’s 
functions.  
 
Keywords: Green’s Functions, Cyclic, bladed-disc, mode localization, Monte Carlo. 
 

 صملخال

إن المنشات الهندسية المصممة لكي تكون متماثلة لا تحقق هذه الخاصية من الناحية العملية بسبب أخطـاء التصـنيع أو                    

ومن المعلوم الآن أن عدم التماثل الموجـود فـي المنشـآت            . بسبب اختلاف خواص المادة والتي يتعذر تحقق وجودها       

وفى هـذه الحـالات   . د يكون غير مرغوب فيه لأنه يقضى إلى الانهيار الهندسية يسبب تصرفا ديناميكيا غير متوقع وق      

نمـط  "فان طاقة تغذى بها المنشآت شبه المتماثلة يمكن أن تختزن في منطقة صغيرة فقط وهى خاصية تعـرف باسـم                     

 يقيس معدل فقد    الذي, "معامل نمط المركزية    "ويمكن التعبير عن هذه الظاهرة كميا بواسطة        ". نمط المحلية "أو  " المركزية

وفى هذا البحث يتم فحص التصرف الدنيا لسلسـلة مـن           .  الطاقة من منطقة إلى أخرى في هذه المنشآت شبه المتماثلة         

وهذه يمكن أن تمثل تصرف قرص دوار ذي ريش مغطاة من أطرافها حيث . العوارض الكابولية مدعمة بنوابض خطية   

ل الصحيح لكل حالتي المنشا المتماثل تمامـا و المنشـا شـبه المتماثـل               يمثل الغطاء بالنوابض الخطية و قد اعطى الح       

 . بواسطة دوال جرين
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1. INTRODUCTION 

Periodic structures are a common occurrence in a wide range of engineering and science 
fields. A perfectly periodic structure is modeled to have repeating sub-structures along one or 
more directions, all of which have identical properties. Typical examples are truss beams, rail 
road tracks, aircraft fuselages, ship hulls, and bladed-disk assemblies. The neglect of local 
variation in system properties from sub-structure to sub-structure is most critical for periodic 
structures. Departure from perfect periodicity always occurs because of manufacturing and 
material tolerances, operational wear, assembly errors etc. Depending on the relative 
magnitudes of the variations and internal coupling for the nearly periodic structure, these 
irregularities in properties may localize the free modes to small geometric regions and confine 
vibrational energy near the source of excitation. This phenomenon is referred to as normal 
mode localization and was first predicted in solid state physics by Anderson (1958). 
A periodic structure with dissimilar repeating units is said to be mistuned. 
 
Even though researchers in structural dynamics, for instance [Meirovitch and Eagles, 1978], 
[Craig and Chung, 1985] and [Igusa, 1988] observed the high sensitivity of some periodic 
structures with mistuning, [Hodges, 1982] was the first to recognize that localization can 
occur in engineering structures and suggested that some of the knowledge acquired in physics 
could be applied to studies in structural dynamics. Using both wave and modal arguments, he 
discussed localization for chains of coupled pendulums and for beams on randomly spaced 
supports.  Since then, numerous studies have been conducted in an attempt to understand the 
effects of mistuning on the dynamics of blade assemblies.  
 
[Wei and Pierre, 1988, 1988] examined both free and forced localized responses of mistuned 
cyclic assemblies. They investigated how nonlinear dry friction damping affects localization, 
and [Wei and Pierre,  1989]  also introduced stochastic techniques to calculate the forced 
response statistics. [Wei and Pierre, 1990], [Bendiksen, 1987], and [Cornwell and Bendiksen, 
1989], examined mode localization for dish antennas numerically, while [Pierre and Cha, 
1989] tackled localization effects analytically in assemblies of multi-mode component systems 
and showed that confinement increases rapidly with frequency. [Wei-Chau and Ariaratnam, 
1996, 1996], using Lagrange’s equations via component mode synthesis, studied localization 
in mistuned wrap-rib dish antennas. They calculated localization factors using transfer 
matrices and Furstenberg’s theorem. They also calculated the localization factors using a 
Green function formulation. For a dish with a very large number of ribs, they stated that 
energy propagating in both directions meet at the rib of minimum vibration amplitude. The 
dish could then be cut open at the rib of minimum vibration amplitude to form a linear chain. 
Using this argument, they treated the cyclic dish as a linear chain for the purpose of 
calculating the localization factors. 
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In this paper, we propose a mathematical formulation using Green’s function of the 
unrestrained cantilever beam to study the dynamics of both tuned and mistuned, linear and 
cyclic bladed systems.  
 

2.  MATHEMATICAL MODEL OF THE MISTUNED LINEAR SYSTEM 

In the derivation of the mathematical model for the linear chain, reference is made to Fig. 1a. 
N beams are linearly coupled at x = a by N+1 linear springs of constants 1N21 k,......k,k + . 

The beams and springs are numbered from left to right, and are assumed to have properties 
uniformly statistically distributed with known means and assumed standard deviations, except 
the constraint point coordinate (x = a) which is assumed constant for all beams. For 
convenience, a dummy beam is added at each end, giving the system a total of N+2 beams 
with the condition that the displacements of the first and last beams are zero. 

The transverse displacements of the n-th beam, )t,x(yn , is obtained by the Euler-Bernoulli 

beam theory, thus: 
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                     (a) Linear Chain                                                      (b) Cyclic Chain 
 

Figure 1. Linear and cyclic chain configurations. 
 

where nEI  and nm  are the flexural rigidity and mass per unit length respectively .  

 
In (1), )ax( −δ is the Dirac delta function whose property relevant to this application is: 

 

 ∫
+∞

∞−
=−δ )a(fdx)ax()x(f  (2) 
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As the vibrations are harmonic in time with  frequency ω, one may assume a solution to (1) in 
the form 
 
 t)(x)exp(iYt)(x,y nn ω=  (3) 

 
and substituting (3) into (1) results in the fourth order shape function differential equation 
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The abbreviation )a(YY nn ≡  has been used, and n
2

n
4
n EI/m ω=β . 

The Green’s function for the n-th beam, )z:u,x(Gn  is now introduced, as the displacement 

of the beam at point x, due to the application of a transverse force of unit magnitude at the 
point x = u on the beam, and z is the frequency parameter defined later in equation (8). 

This, from [Wylie, 1979], simply means that )z:u,x(Gn is the solution of the differential 

equation: 
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By superposition, we deduce that the solution to (4) is: 
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which integrates, by (2), to the nth beam mode shape functions of 
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with the two boundary conditions that 0Y0 = ,  0Y 1N =+  



Vibration Analysis of Shrouded Bladed-Disc Assemblies Vol. 5.  359 

The nth beam has a length, width and thickness of  nL , nb  and nt  respectively. For all N 

beams, the average length is aL .  Another quantity of importance is aα , which is the average 

value of nα over all the N beams, where ( ) 4/1
nnn EI/m=α . The frequency parameter z is 

now conveniently defined in terms of average values and circular frequency as: 

2/1
aa Lz ωα=                                                                                                                        (8) 

If the mode shape equations (7) are evaluated at x = a for all the beams, the resulting 
equations can be cast in a compact matrix form as: 
 
[ ]{ } { }0YD =                                                                                                                          (9) 

where 

{ } [ ]TN21 Y....YYY =  is the constraint point displacement vector, and [D] is 

a tri-diagonal matrix whose elements are as follows: 
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for the sub-  and super-diagonals respectively, where )z(i∆ and )z:a,a(gi are elements of 

the Greens Functions for beam i given in the Appendix. 

In obtaining )z(i∆ and )z:a,a(gi  from the Appendix, the argument of the functions of the 

matrix [ ]e  in that Appendix is ( )zL/L aaii αα , while the argument of the trigonometric and 

hyperbolic functions of all other matrices is ( )( )zL/aL/L iaaii αα . The matrix [D] itself 

expounds to: 
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The non-trivial solution of (9) requires that the determinant of [D], which is a function of z, be 
zero, from which any number of desired frequency parameters z can be determined. The 
frequencies in Hz are then calculated using (8), thus: 

2
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=                                                                                                        (12) 

where j represents the mode number. 

3.  THE CYCLIC MISTUNED SYSTEM 

The derivation of the mode shape equations and characteristic determinant of the cyclic 
system, Figure 1 (b), is practically the same as that for the linear chain, except in the fact that 
the first and last beams are coupled. For a system of N beams, the numbering convention is to 
select an arbitrary beam as beam 1, and proceed to number the rest sequentially in the counter-
clockwise direction. The N springs are numbered similarly with spring 1 immediately 
following beam 1 in the counter-clockwise chain. The mode shape functions for the 1st, a 
general and the Nth beams are, respectively, 
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Evaluating equations (13a, b, c) at x = a for all the beams and gathering the resulting 
equations into matrix form yields an equation similar to (9), where the matrix [D] is now with 
elements defined as follows: 
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All other elements of [D] are zero, and [D] itself takes the tri-cyclic form: 
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The requirement that the determinant of [D] be zero yields the frequency equation. 
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4. FREE WAVE PROPAGATION CHARACTERISTICS 

Wave progression through a periodic (or nearly periodic) structure is of paramount 
importance as it determines such important parameters as energy transfer and group velocities. 
For the perfectly periodic systems, exact solutions for the wave propagation parameters are 
possible, and the subject has received a great deal of attention in the literature, for example 
[Pierre and Cha, 1989].  In the current research, we shall describe wave propagation in terms 
of the components of the Green’s  Functions that have been used in our derivations. While the 
general solution procedure is the same, geometric interpretations of wave propagation and 
attenuation zones and their boundaries are given in terms of the Green’s Function 
components, [Mohamad and Al-Jawi, 2000]. For the disordered systems, such simple and 
exact interpretations break down, leaving the resulting probabilistic systems to be tackled 
through perturbation or statistical simulation methods. 

4.1. Propagation constants in periodic structures 

In the tuned structure, all beams have identical inertia and geometric properties, so that all 
subscripts on variables pertaining to beam numbers are dropped. For the periodic structure, 
the general equation in (9) becomes: 

 0YY
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where K is dimensionless spring stiffness given by EI/kLK
3

= . ∆(z) and g(a, a :z) 
remain as the elements of the Green’s functions. 

Equation (16) is a standard characteristic value problem discussed in detail in many sources, 
[Wylie, 1979], for example, with the solution depending on the quantity expressed in the 
square bracket.  

The general solution of (16) can be assumed in the form 

n
n AeY γ=                                                                                                                           (17) 

where A is a constant, and γ  is in general a complex constant of the form ir iγ+γ=γ , 

with γr and γi as the real and imaginary parts, and 1i −= .  Equation (16) is recursively 
equivalent to: 

1nn YeY −
γ=                                                                                                                        (18) 
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γ  is known in the literature as the wave propagation constant, or the Lyapunov exponent . 

The choice of the complex constant physically allows for wave decay (due to γr) from beam to 
beam, as well as a phase shift (due to γi) between adjacent beams [Wei-Chau and Ariaratnam, 
1996, 1996]. From (18), γr represents the exponential rate of amplitude decay per bay, i.e. 
between adjacent beams. 

When (17) is substituted into (16), the resulting equation simplifies to  

Kg
1)cosh( ∆
+=γ                                                                                                                (19) 

where 

∆=∆≡∆ 3z)z(  and )z:a,a(gg ≡   Equation (19) may also be expanded as: 

Kg
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∆
+=γγ+γγ                                                             (20) 

The frequency spectrum across the first two pass bands of the complex propagation constant 
γ is calculated from (20) and given in Figure 2, for various values of K when a/L = 0.5. For 

the tuned problem, the real part, rγ , is equal to the mode localization factor.   
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5. MONTE CARLO SIMULATION FOR LOCALIZATION FACTORS 

In order to calculate the mode localization constants for the linear mistuned chain, a sinusoidal 
force of magnitude Fo and frequency ω is applied to the constraint point of beam 1, and the 
constraint point response of beam N (last beam) observed. Under this forcing function, 
equation (9) is modified to read 
 
[ ]{ } { }FY)(D =ω                                                                                                                  (21) 

where the external force vector {F} is given by: 
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For a given frequency ω, the constraint point response vector { }Y  is calculated by inverting 

(21). The displacement 1
3
1o EI/LF  is set equal to unity in all cases, so that inverting (21) 

results in dimensionless displacements: 

{ } { } )EI/LF/(YY 1
3
1o= .                                                                                                    (23) 

It is assumed that the system properties of [D] are uniformly statistically distributed due to 
mistuning. As a result, the uniform probability distribution function is used to generate the 
random system variables. To generate a set of random variables pi, i = 1, 2 …., uniformly 
distributed with mean meanp and standard deviation σ given as a percentage of the mean, the 

properties of the uniformly distribution function gives 

meanii p)13)1r2((p +σ−=  ,      i = 1, 2……..                                                              (24) 

where 1r0 i <<  are  computer generated random numbers. A zero standard deviation 

corresponds to a tuned system with all parameters assuming mean values. Using this scheme, 
the system probabilistic input variables are generated. A large number of beams is used, and 
the response vector calculated from equation (21). The mode localization factor is calculated, 
in the case of a linear chain, from 





−=γ ∞→ NN Yln

N
1lim                                                                                                 (25) 

As it is not computationally possible to let ∞→N , several runs (realizations) of equation 
(25) are carried out for a specified number of beams, and the average value of γ calculated. 
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In order to test the accuracy of the simulations, localization factors were calculated using 50 
beams and 200 realizations, and a standard deviation of 0%, i.e., the tuned case. The results 
were compared with those obtained theoretically in Figure 2 where K = 1.0. The comparison 
is given in Figure 3, which indicates an excellent agreement. Localization factors for the 
linear chain of Figure 1a, in the first and second pass bands using equation (25) are given in 
Figure 4 for various degrees of mistuning. The properties of a system of 50 cantilevers were 
generated randomly, with a standard deviations of 0%, 5% and 10%. The expected values of 
properties used were, beam length of 350 mm, thickness of 4 mm, width of 30 mm and spring 
constant of 1600 N/m. In the average sense, this spring constant is equivalent to a 
dimensionless spring constant of K = 2.0.  The simulations in each case were carried out over 
200 realizations, and the average was assumed to be a good estimate of the localization 
factors. 
                         

                           
Figure 3. Theoretical and Monte Carlo simulations for the tuned case. 

 

 
                           a) First pass band                                                      b) Second pass band 
                                          
                                            Figure 4. Mode localization factors for a linear chain 
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In the treatment of the cyclic chain, energy propagates in both clockwise and 
counterclockwise directions from the excitation beam, meeting at the beam of minimum 
amplitude, which is not known in advance. Figure 5 shows this statement. The Figure is 
established by first generating random properties of the system, and upon setting the 
determinant of [D(ω)] = 0, the frequencies of vibration are obtained. At each frequency, the 
theoretical constrained point displacement vector {Y} is then calculated. We use the scheme 
that at mode j,  

{ } [ ] T
jN1131211jj CCCCY •••α=  

where k1C   are the cofactors of the first row of  [D]. jα  is an arbitrary modal constant which 

may be set equal to one without any consequences. Thus evaluation of the first row co-factors 
yields the constraint point displacements.  One observes from Figure 5 that the exponential 
rate of decay in the linear chain is the same as the exponential rate of decay in the cyclic chain 
in the counterclockwise direction, while the exponential rate of decay in the linear chain is the 
same as the exponential rate of amplitude growth in the clockwise direction of the cyclic 
chain, starting with the beam of minimum amplitude of the cyclic chain. This observation was 
made by [Wei-Chau and Ariaratnam, 1996,  

1996]. The conclusion here is that the localization factors of a cyclic chain are approximately 
the same as those of the  linear chain obtained by ‘opening’ the cyclic chain. To calculate the 
approximate localization factors for the cyclic chain by this method, the cyclic chain is opened 
by disconnecting first beam from the last beam, i.e. setting kN equal to zero. The tri-cyclic 
matrix of equation (15) reduces to a tri-diagonal matrix. The application of equation (25) 
yields the approximate localization factors, which are shown in Figure 6a. Another way to 
estimate the localization factors for a cyclic chain without opening, is to say that for large N, 
based on the observation in Figure 5,  

2/NYln
2/N

1
−≈γ                                                                                                            (26) 

where N/2 should be rounded to the nearest integer.  The results obtained by this equation are 
shown in Figure 6b. When drawn on the same frame, the localization factors for the cyclic 
chain are practically the same using the equivalent linear chain and equation (26).  All system 
properties and simulation conditions are the same as those already stated for the linear chain. 
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Figure 5. Constraint point model vibration amplitudes for a 50-beam mistuned linear chain 

         (a)             (b) 
          Figure 6.  Mode localization factor for a cyclic chain 

 

6. CONCLUSION 

In this paper we have examined the dynamics of mono-coupled cantilever beams in linear and 
cyclic configurations using Green’s functions. Forced response data is used to calculate the 
mode localization factors.  For a system with N beams, matrices of size N x N must be 
inverted. If the same problem were treated using the component mode formulation with p 
participating component modes for example, the resulting matrices become N x N block tri-
diagonal or cyclic block tri-diagonal, with each block having a size of p x p, or overall 
matrices of size pN x pN, for example [Wei-Chau and Ariaratnam, 1996].  As the labor effort 
in inverting a tri-diagonal matrix of size N is of order N, and storage requirement is also of 
order N, the computational superiority of using the Green’s function is immediately apparent. 
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APPENDIX : Green’s Function for a  Cantilever (Mohamad, 1994). 

 

Let s = sin(z), c = cos(z), S = sinh(z) and  C = cosh(z).  Further , let ~ ~ ~ ~s ,  c,  S and C  be the 

same functions but with arguments zx/L , while s,  c,  S and C  are of arguments z(1-u/L). 
Then from [Mohamad, 1994] the Green’s functions are given by 
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)z(∆ is the determinant of  [ ]e . 
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