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ABSTRACT 
 
This paper presents the power flow characteristics of beams treated with Active Constrained Layer 
Damping (ACLD). In the ACLD, a viscoelastic layer is sandwiched between two plies of active 
piezoelectric material.  The presence of the ACLD in a vibrating structure reduces the vibration 
amplitude by dissipating the vibrational energy in shearing the viscoelastic layer. Numerical examples 
show the passive and active net power flow cantilever beams.  The obtained results show the potential 
of the power flow analysis in modeling ACLD element and the merits of ACLD in controlling the 
power flow in structures. 
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 لملخصا

 تم ACLDفي ).  ACLD(النشطة الخامدة تقدم هذه الورقة صفات تنقل الطاقة لعتبات عولجت بالطبقة المحصورة 

 في هيكل مهتز ACLDإن وجود .  حصر طبقة من مادة لزجة ومرنة بين طبقتين من المواد الكهوضغطية  النشطة

الأمثلة الرقمية تم عرضها لتوضيح تنقل الطاقة .  يقلل من شدة الاهتزاز بواسطة تسرب الطاقة عبر قص المادة اللزجة

 وامتياز ACLDنتائج المستقاة تبين قدرة تحليل تنقل الطاقة في اختيار أفضل موقع للمعالجة ب ال.  النشط والسلبي

ACLDبالتحكم في تنقل الطاقة في الهياكل . 
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1. INTRODUCTION 
 
Power flow analysis has been developed to study the dynamic response of structures for many 
years.  Unlike statistical energy analysis, which predicts an overall structural response, power 
flow analysis enables the computation of the spatial variation of the dynamic response 
throughout the entire structure.  Efforts made to use power flow in analysis of dynamic 
systems go back to the pioneering work of Nefske and Sung (1989).  Since then, power flow 
techniques have been used to study the dynamic response of discrete systems [Alfredsson, 
1997], rods [Wohlever and Bernhard, 1992], beams [Alfredsson, 1997; Wohlever and 
Bernhard, 1992; Pan and Hansen, 1991; Alfredsson et al., 1996], plates [Alfredsson, 1997; 
Hambric 1990; Zhou and Rogers, 1995], simple trusses [Hambric 1990] and shells 
[Alfredsson et al., 1996].  Experiments on power flow have been carried out for one-
dimensional structures in the form of cantilever beams [Gibbs and Fuller 1992; Gibbs et al., 
1993] and thin plates [Zhou and Rogers, 1995]. 
 
In this paper, the power flow analysis is extended to study the dynamic response of beams 
treated with the new class of Active Constrained Layer Damping (ACLD) treatment. The 
ACLD has attracted significant attention in the past few years as it provides an effective 
means for attenuating structural vibrations.  In the ACLD, a composite patch made of 
piezoelectric sensor, viscoelastic material (VEM) and actuator is bonded to the surface of the 
structure.  In its open-loop mode of operation, the VEM undergoes shear strain resulting in 
dissipating energy and hence damping out the structural vibration, as shown in Figure 1.  If 
the sensor voltage Vs is amplified and sent to the actuator, the VEM is exposed to an 
additional shear strain and more energy is dissipated. 
 

 
 
 
 
 
 
 
 

(a) 
   

 
 
 
 
 

(b) 
 

Figure 1: Schematic drawing of the ACLD treatment:  a. Open-loop, b. Closed-loop. 
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The concept of ACLD has been successfully used to control the vibration in beams [Baz, 
1993; Baz and Ro, 1994; Baz and Ro, 1995; Shen 1995; Huang et al., 1996], plates [Baz and 
Ro, 1996b; Veley and Rao, 1996; Holkamp and Gordon, 1996], shells [Baz and Chen, 1997] 
and rings [Rongong and Tomlinson, 1996].  The ACLD has also been utilized in attenuating 
noise radiation into acoustic cavities [Poh et al., 1996]. Investigators [Baz and Ro, 1995b; Ro 
and Baz, 1996; Baz and Ro, 1996a] have carried out optimum design and control of beams 
treated with ACLD.  Lesieutre and Lee [1996] developed finite element for beams with 
continuous or segmented ACLD treatments.  Liao and Wang [1996] proposed hybrid active-
passive constrained treatment for beams.  Yellin and Shen [1996] presented a self-sensing 
controller for beams with ACLD treatment. 

2. POWER FLOW IN STRUCTURES 

Power flow displays how the mechanical energy is transported within the structure as it flows 
from the excitation source until it is dissipated at the energy sinks [Alfredsson, 1997].  Nefske 
and Sung [1989] developed the power flow analysis for high-frequency response of beams 
using formulation adaptable to finite element analysis.  Their formulation was based on 
conservation of the energy over a controlled volume.  Energy flow within each subsystem was 
predicted.  In 1990, Hambric identified the power flow and mechanical intensities in finite 
element models for plates and trusses.  Different types of power flow waves including, 
flexural, axial, and torsional, were discussed.  Power flow in simple truss and beam-stiffened 
cantilever plate was examined.  Wohlever and Bernhard [1992] studied energy flow in 
longitudinal vibration in rods and transverse flexural vibrations of beams.  Power density 
equations were derived from the displacement solutions for harmonically excited coupled and 
free rods and beams.  Active control of the flexural power flow in vibrating beams was 
experimentally investigated by Gibbs and Fuller [1992].  In their setup, an axial scanning laser 
vibrometer is used to determine the out-of-plane velocity, which is used to predict the power 
flow along the beam.  Net power flow is calculated using cross spectrum of the velocity 
response.  The sensor signal is sent to an adaptive least mean squares narrow-band controller.  
The output of the controller is used to derive two actuators in the form of piezoceramic 
transducer bonded symmetrically on each side of the beam. The obtained results for 
harmonically excited beam show 30-dB reduction in the net power flow along the beam.  The 
study illustrated the potential of piezoceramic elements in power flow control.  A model for 
analyzing the power flow in transverse, shear, and longitudinal waves, resulted from primary 
excitation and control forces was given by Pan and Hansen [1991].  The model is based on the 
classical beam theory for infinitely long beams.  The study concludes that effective control of 
the power flow requires an independent control force for each wave.  Gibbs et al. [1993] 
presented a method to estimate the extensional and flexural power flow in the time domain 
using piezoelectric surface bonded element and a digital filter network. The method was 
verified experimentally and attenuation of flexural power flow over 40 dB, for a narrow band 
disturbance, was achieved.  Zhou and Rogers [1995] investigated the power flow in 
piezoelectrically actuated plates using a coupled electromechanical system model.  The study 
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shows that the energy supplied by the piezoelectric actuators is consumed by the structural 
damping of the host structure at resonant frequencies.  The thickness and location of the 
actuator have a major role in dissipating energy because of the change in the mechanical 
impedance of the structure.  Alfredsson et al. [1995] uses the energy flow concept in 
designing a vibrating system. Energy flow is calculated using harmonic response finite 
element analyses.  The study includes two examples, one for a frame made of Euler-Bernoulli 
beam elements and the other for shell structure.  In another paper, Alfredsson [1997] 
presented the details of active and reactive (stored) energy flow in structures.  Numerical 
examples with discrete, continuous and discretized structures were given. 
 
Consider an elastic solid subjected to time-varying external loads.  The energy continuity 
equation is given by [Alfredsson, 1997], 

 ii,qLW −=Π+&  (1) 

The term W& is the power being stored in the solid, which is the sum of the strain and kinetic 
powers, Π  is the net power flow inside the structure, L is the power supplied per unit volume 
by external body forces, and qi,i is the power supplied though boundaries.  For stationary 
harmonic vibration at given frequency,ω , the complex mechanical intensity ic  is introduced 
as, 
 iii irac +=  (2) 

The real part ai is the active mechanical intensity defined as the net energy flow rate per unit 
cross-sectional area.  The imaginary part ri is the reactive mechanical intensity, and i is the 
imaginary units. The continuity equation for the active and reactive intensities may be written 
as [Alfredsson, 1997], 

 Π−= Pa ii,  (3) 

 )(2, TUQr ii −ω−=  (4) 

Quantities P, Q, U, and T are the supplied active power, the supplied reactive power, the 
elastic strain energy density, and the kinetic energy density, respectively.  Balance between 
supplied power, consumed and stored powers gives zero divergences of the active and 
reactive mechanical intensity vector fields.  Thus, 

 Π=P  (5) 
and 
 )(2 TUQ −ω=  (6) 

Here the supplied active power is equal to the net power flow in the structure, and the 
supplied reactive power is related to the difference between the strain and the kinetic energies. 
For a discrete structure modeled using finite element method, the equation of motion is given 
as 
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 F XKX M =+&&  (7) 

Matrices M and K are the mass and complex stiffness matrices, respectively, with the 
underline denoting a complex variable.  The vector X is the nodal degrees of freedom (DOF).  
For beam element, the nodal DOF include the lateral displacement and rotation.  In addition to 
this, the ACLD has two more DOF in the longitudinal direction, as outlined in Section 3.  The 
force vector F includes both the external disturbance forces and the control forces.  For linear 
system in stationary harmonic vibration, equation (7) is solved using matrix inversion, 

 F e  X =  (8) 

where the matrix e is given by 

 -1)M  K(  e 2ω−=  (9) 

The net power flow as well as the strain and kinetic energies are given as, 

 2
1 X C XH &&=Π  (10) 

 4
1 X K XU H=  (11) 

  X M X   T
H

4
1 &&=  (12) 

Dot and H superscript denotes time derivative and Hermitian transpose, respectively.  Matrix 
C is imaginary part of the complex stiffness matrix K. 
 

3. ACTIVE CONSTRAINED LAYER DAMPING (ACLD) 

In the ACLD, a viscoelastic layer is sandwiched between two piezoelectric films, which are 
bonded to the vibrating structure.  One of the piezo-films acts as a sensor while the other acts 
as an actuator.  The output voltage of the sensor is conditioned and sent back to the actuator 
inducing strain in the actuator as shown in Figure 1.  As a result, the viscoelastic material is 
subjected to high shear strain and hence dissipates more energy. 
 
The ACLD concept was successfully utilized to control the vibration of beams, plates and 
shells using simple analog controllers.  Baz and Ro [1995a] presented a finite element model 
of beams that are partially treated with ACLD.  The predictions of the model were verified 
experimentally and the experimental performance of the ACLD was compared with that of the 
passive constrained layer damping. Optimum design and control of beams was studied by Baz 
and Ro [1995b].  Optimum thickness and shear modulus of the viscoelastic material were 
determined based on maximizing the modal damping ratio and minimizing the weight of the 
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ACLD.  Optimal velocity feedback controller of the ACLD was found to be more effective 
than PCLD controller by two orders of magnitudes.  In another paper, Ro and Baz [1996] 
investigated the optimum design and control of beams with segmented configuration of 
ACLD.  The thickness, length, and shear modulus of the viscoelastic material were 
determined.  Baz and Ro [1996a] compared the characteristics of beams controlled with 
Active Control (AC), ACLD and PCLD.  The obtained results demonstrate high damping 
characteristics of the ACLD with low control voltage.  Similar finite element models and 
experimental performance characteristics are developed for vibration control of plates [Baz 
and Ro, 1996b] and shells [Ray et al., 1997] treated with discrete ACLD patches. 
 
Figure 1 shows schematic drawing of a partial ACLD treatment for a cantilever beam which is 
divided into N elements.  The shear strain in the base beam is neglected and the transverse 
displacement at any cross section along the composite beam is assumed constant.  Core 
material is assumed to be linearly viscoelastic.  Also, perfect bonding conditions are assumed 
everywhere, thus, the sensor and the beam are treated as single sensor/base beam layer.  The 
shear strain in of the viscoelastic core is given by [Baz and Ro, 1995a], 

 231x )]/hu- (u  [hw   +=γ  (13) 

Where 

 /2h  /2h  h  h 312 ++=  (14) 

With h1 h2 and h3 denoting the thickness of the actuator, the viscoelastic core and sensor/beam 
layer, respectively.  Functions u1 and u3 are the longitudinal displacements of the piezoelectric 
actuator and the beam/sensor layer, respectively.  The spatial distributions of the longitudinal 
displacements u1 and u3 and the transverse deflection w over element i are assumed to be, 

 433211 a x a  u  ,a x  a  u +=+=  (15) 

 87
2

6
3

5 a x  a  x a  x a w +++=  (16) 

Constants ai are determined in terms of the eight components of the nodal deflection vector 
}{ i∆ of the ith element which is bounded between nodes j and k.  The nodal deflection vector 

is given by, 

 T
kkk3k1jjj3j1i }w',w,u,u,w',w,u,{u  }{ =∆  (17) 

With primes denoting spatial derivatives.  The deflection }{ i∆ at any location x along the ith 

element can be written as, 

 }{ ]}[ ],[ ],[ ],{[  }w'w,,u,u{ i
TT

31 ∆4321 NNNN=  (18) 



Power Flow in Beams Treated with Active Constrained Layer Damping Vol. 5.  451 

Where [N1], [N2], [N3], and [N4] are the spatial interpolating vectors corresponding to u1, u2, 
w, and w'  respectively.  For ACLD-treated beam element the equation of motion, given by 
equation (7), is described by the following equation, 

 }{}]{[}]{[ ciiii FKM =∆+∆&&  (19) 

Where [Mi] and [Ki] are the stiffness and mass matrices of the ith beam element given in 
Appendix A.  The control force {Fc} is given by [Baz and Ro, 1995b], 

 T
pkpkpjpjc MFMFF },0,0,,,0,0,{}{ =  (20) 

Elements of {Fc} are also given in the Appendix B. 
 

4. NUMERICAL EXAMPLES 

In this section, numerical examples are given for beams fully treated with the ACLD.  The 
theoretical net power flow is given for different excitation frequencies.  Figure 1 represents a 
schematic drawing of the beam treated with one ACLD.  In this section, a cantilever beam 
made of steel is used as a base beam. The constrained layer is made of piezoceramic (PZT-
1195) and the viscoelastic material is DYAD-606.  The physical properties of these materials 
are shown in Tables 1 and 2.  It is assumed that the physical properties are independent of the 
frequency and temperature.  The complex shear modulus of the VEM is assumed to be, 

 )1(1020 G 6 i+×=  (21) 

The first three natural frequencies of the uncontrolled fully treated beam made of 32 elements 
are 54 Hz, 335 Hz and 937 Hz, respectively. 
 
Figure 2 shows the frequency response function of the beam when it is fully covered with the 
ACLD and subjected to unit end transverse load.  The beam is divided into 32 equally spaced 
elements. The solid line gives the passive response of the beam when it operates in its open-
loop mode. The dashed line depicts the active closed-loop response using a velocity feedback 
gain Kd=50.  As shown in the figure, considerable attenuation of the first three modes was 
achieved using small feedback gain. 
 
 

Table 1: Physical Properties of the Base Beam and the Viscoelastic Materials. 

Material Length 
(m) 

Thickness 
(m) 

Width 
(m) 

Density 
(Kg/m3) 

Young’s 
Modulus (MPa) 

Steel 0.5 0.0125 0.05 7800 210 000 

VEM (DYAD-606) 0.5 0.00625 0.05 1104 60 
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Table 2: Physical Properties of the Piezoelectric Constraining Layer. 

Length Thickness Width Density 
Young’s 
Modulus 

d31 K31 g31 k3t 

(m) (m) (m) (Kg/m3) (GPa) (m/V)  (Vm/N)  
0.5 0.0025 0.05 7600 63 186e-12 0.34 116e-2 1950 

 
Figure 2: Open and closed-loop frequency response functions of fully treated beam. 

 
 

5. RESULTS AND DISCUSSIONS 

Figure 3 shows the net power flow of the fully treated beam versus the excitation frequency. 
The passive response shows that net power flow attains a maximum at the resonant 
frequencies. The dashed line illustrates the active response corresponding to Kd = 50.  Hence, 
the net power flow is considerably reduced as the feedback gain is increased from zero to 50.  
Such reduction is attributed to the attenuation of the beam vibration. 

 
The net power flow, along the beam, is shown in Figure 4 for three different excitation 
frequencies (54 Hz, 335 Hz and 937 Hz) which correspond to the first three natural 
frequencies of the beam/ACLD composite. Figure 4 shows also comparisons between the 
open-loop (Kd = 0.0) and closed-loop (Kd = 5) characteristics. It is that the spatial profile of 
the net power flow at any particular natural frequency is similar to the corresponding mode 
shape of the beam.  Also, note that there is a significant attenuation of the net power flow due 
to the activation of the ACLD controller even though Kd = 5. 
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Figure 3: Open and closed-loop net power flow of fully treated beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Net power flow versus the beam position for fully treated beam. 
a. 54 Hz,   b. 335 Hz,   c. 937 Hz. 
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6. CONCLUSIONS 

This paper has presented an analysis of the power flow in beams treated with Active 
Constrained Layer Damping (ACLD) treatments.  The power flow method is utilized to 
provide quantitative means for the behavior of beam with patches of the ACLD treatment. The 
power flow method is summarized first and the mechanics of active constrained layer 
treatment is outlined.  Numerical examples are presented to illustrate the net power flow 
characteristics in beams/ACLD systems both in the frequency and the spatial domains.  It is 
evident that the active constrained layer treatment reduces considerably the net power flow in 
beams. 
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APPENDIX A 
 
STIFFNESS AND MASS MATRICES FOR THE ACLD ELEMENT 
 
A.1. STRAIN ENERGIES AND STIFFNESS MATRIX 
The strain energies associated with the various layers of the ACLD treatment are determined 
as follows: 

 a. constraining layer: The energies include: 

 Extension { } [ ] [ ] { }    AE iL
TT

i112
1

1
i

dx ''U ∆∆ 



= ∫ 11 NN  (A-1) 

where E1 and A1 are the modulus of elasticity and area of cross section of the constraining 
layer. 

 Bending { } [ ] [ ] { }     IE iL
TT

i112
1

2
i

dx ""U ∆∆ 



= ∫ 33 NN  (A-2) 

where E1 I1 is the flexural rigidity of the constraining layer. 

 b. visco-elastic layer: The energies include 

 Extension { } [ ] [ ] { }     AE iL
TT

i222
1

3
i

dx U ∆∆ 



= ∫ 55 NN  (A-3) 

where E2 and A2 are the modulus of elasticity and area of cross section of the visco-elastic 
layer.  Also [N5] is an interpolating matrix = ([N1']+[N2']+(h1/2-h3) [N3"])/2. 

 Bending { } [ ] [ ] { }     IE iL
TT

i222
1

4
i

dx U ∆∆ 



= ∫ 66 NN  (A-4) 

where E2 I2 is the flexural rigidity of the visco-elastic layer and [N6] is an interpolating 
matrix = ([N1']-[N2'] + (h1/2+h3)[N3"])/h2. 

 Shearing { } [ ] [ ] { }     AG iL
TT

i222
1

5
i

dx U ∆∆ 



= ∫ 77 NN  (A-5) 

where G2 is the shear modulus of the visco-elastic layer.  Also [N7] is an interpolating matrix 
= ([N1']-[N2'] + h [N3"] ) / h2 
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 c. sensor/beam layer: The energies include 
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where E3 and A3 are the modulus of elasticity and area of cross section of the sensor/beam 
layer. 
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where E3 I3 is the flexural rigidity of the sensor/beam layer. 

From equations (A-1) through (A-7), the total strain energy U can be written as: 
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where [Ki] is the equivalent stiffness matrix of the ith element. 

A.2. KINETIC ENERGIES AND MASS MATRIX 

 a. constraining layer: It is given by: 
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where ρ1 is the density of the constraining layer. 

 b. visco-elastic layer: It is given by: 
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 (A-10) 

where ρ2 is the density of the visco-elastic layer and [N8] = ([N1]+[N2]+(h1/2-h3)[N3'])/2. 
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 c. sensor/beam layer: It is given by: 
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 (A-11) 

where ρ3 is the density of the sensor/beam layer. 

From equations (A-9) through (A-11), the total kinetic energy T can be written as: 
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where [Mi] is the equivalent mass matrix of the ith element. 

APPENDIX B 

CONTROL FORCES AND MOMENTS GENERATED BY THE ACTIVE 
CONSTRAINING LAYER 
 
B.1. WORK DONE BY THE PIEZO-ELECTRIC FORCES 

The work done W1 by the piezo-electric forces Fpj (= - Fpk) during to the extension of the 
piezo-electric constraining layer is given by: 

  W E A dxc pLi
1 1 1

1
2

= ∫ ε ε  (B-1) 

where εc and εp denote the longitudinal strain of the constraining layer and the strain induced 
by the piezo-electric effect respectively.  These strains are given by: 

  ε
∂
∂

εc p c

u
x

and
d
h

V= =1 31

1
 (B-2) 

where d31 is the piezo-electric strain constant resulting from the application of the voltage Vc 
across the piezo-actuator layer.  In equation (B-2), Vc is assumed constant over the length of 
the beam element.  The voltage Vc is generated by applying a proportional and derivative 
control law to the piezo-sensor voltage Vs as follows:  

 V K V K dV dtc p s d s= − −   (B-3) 

where Kp and Kd are the proportional and derivative control gains respectively.  In equation 
(B-3) Vs is obtained form: 
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where Dd is the distance from the beam neutral axis to the sensor surface and f(x) is a 
distribution shape function of the sensor (f(x) = 1 for uniform sensor).  In equation (B-4), the 
sensor is extended between elements is and if.  Also, k31 is the electro-mechanical coupling 
factor, g31 is the piezo-electric voltage constant and C is the capacitance of the sensor which is 
given by: 

 C x Ak ht= −8854 10 12
3 1. /   (B-5) 

here A is the sensor surface area and k3t is the dielectric constant.  

Combining equations (B-1) through (B-5) gives: 
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where  [ ][ ]g E b d k D g Cd= 1
2
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2

31    (B-7) 

and  { } [ ]    000F000F T 
pkpj=pF  (B-8) 

with  ( )[ ]{ }F F K K p g gpj pk p d i= − = + −0 0 0 2 0 0 0 2/ / ∆  (B-9) 

Equation (B-9) indicates that the piezo-electric control forces Fpj and Fpk are linear functions 
of the nodal deflection vector {∆i}.  Also, these forces depend on the parameter g which is 
defined in terms of the control gains and properties of the piezo-sensor and actuator as shown 
by equation (B-7).  
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B.2. WORK DONE BY THE PIEZO-ELECTRIC MOMENTS 

The work done W2 by the piezo-electric forces Mpj (= - Mpk) during to the bending of the 
piezo-electric constraining layer is given by: 
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where { } [ ]T 
pkpj M000M000 =pM  (B-11) 

with ( )[ ]{ }idppkpj  h g002/gh g000 pKKMM ∆−+=−=  (B-12) 

Equation (B-12) indicates also that the piezo-electric control moments Mpj and Mpk are linear 
functions of the nodal deflection vector {∆i}.  Also, these forces depend on the parameter g 
which is defined in terms  
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