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ABSTRACT 

 
To eliminate the need for sensor placement on rotating flexible beams such as turbine blades, 
helicopter rotors, and similar applications, a new approach has been developed based on the linear 
quadratic estimator (LQE) technique for estimating the vibration of any point on the span of a rotating 
flexible beam mounted on a compliant hub (plant) in the presence of process and measurements noise.  
A nonlinear model of the plant is utilized by this study to mimic the actual plant behavior. The 
corresponding plant dynamics of the LQE are in the form of a reduced order linear model constructed 
from the eigenvalues and eigenfuctions of a finite element dynamic model of the plant formulated in 
the state space. A virtual hub deflection (that mimics the actual measurement of the vertical hub 
deflection needed by the estimation process) is generated by the non-linear model of the plant. The 
LQE reconstructs the states of the plant, including transverse deflection of the beam at any point, from 
the measurements of the vertical deflection of the hub, assuming that it is the most accessible state for 
measurement. Estimated beam tip deflection obtained by the proposed technique is then compared to 
the tip deflection generated by the non-linear model and the results show good agreement. 
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 ملخصال
 

ضع أجهزه لقياس الاهتزازات على الأعمدة الدوّارة ذات اللدونة ، فقد تم تطوير طريقة جديدة لتفادي الحاجة إلى و

هذه الطريقة تسمح بتخمين مقدار ) . مخمن كالمن (لتخمين مقدار اهتزازات هذه الأعمدة اللدونة بالاعتماد على طريقة 

تعتمد هذه . ضع جهاز قياس عند تلك النقطة الاهتزازات عند أي نقطة على سطح العمود الدوّار دون الحاجة إلى و

 الدوّار باستعمال الترددات الطبيعة وأشكال الأنحاء التي يتم الحصول عليها دالطريقة في الأساس على بناء نموذج للعامو

والذي يقوم ) مخمن الكالمان(وبناءً على هذه المعلومات يتم تشكيل . عن طريق استعمال تحليل العنصر المتناهي 

 .خمين اهتزازات العمود الدوار من خلال قياس اهتزازات أي نقطة أخرى في المنظومة مثل قياس اهتزازات المحور بت
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1. INTRODUCTION 
 
Rotating flexible beams similar to Figure 1, model turbine blades, helicopter rotors, robot 
arms, and similar systems. Extensive studies on the vibration of rotating flexible beams have 
been dedicated to the development of theoretical models that describe the characteristics of 
such vibration in a pure mathematical fashion [Zhu et al., 1997], [Hu et al., 1994], [Zheng 
et al., 2000], [Mitchell et al., 1988], [Swaminadham et al., 1994], [Bazoune et al., 2001], 
[Kane et al., 1987]. However, few studies have discussed the method by which the vibration 
of the rotating beams could be monitored and/or controlled. Khulief  [Khulief, 2000] has 
proposed the control of a rotating beam mounted on a rigid hub using linear quadratic 
regulator, which required the placement of the sensor and actuator on the rotating beam. 
Elliott et al. [Elliot et al., 2001], Yousefi et al. [Yousefi et al., 2000], Zimmerman et al. 
[Zimmerman et al., 1989], and Mallory et al. [Mallory et al., 2000] all have also suggested 
placing sensors at various locations along the span of the beam for monitoring and control 
purposes. However, their research has focused on either non-rotating beams or large space 
structures. 
 
Real life applications that require on-line monitoring and/or control of rotating beam may face 
many problems regarding sensor(s) placement on the beam such as high speeds, extreme 
temperatures, and high centrifugal forces.  
 
Another issue regarding many of the research studies dealing with the monitoring and/or 
control of vibration of flexible rotating beams is that, they are limited to deterministic models 
of the system. In reality, however, components of structural and mechanical systems often 
exhibit considerable stochastic variations in their properties. Thus, the characteristics of a 
structure corresponding to these properties show some stochastic variations [El-Sinawi et al. 
2001]. This makes it necessary to take account of the uncertainties of system parameters if 
highly reliable models and/or control schemes are to be utilized.  
 
To eliminate the need for a sensor placement on rotating flexible beam such as turbine blade, 
helicopter rotors, and like applications, a new approach based on the linear quadratic estimator 
(LQE) technique for estimating the vibration of any point on the span of a rotating flexible 
beam mounted on a compliant hub and undergoing large planar deformation (plant) and 
subject to process and measurements noise, has been developed.  A nonlinear model of the 
plant is utilized to mimic the actual plant behavior [El-Sinawi et al., 2001]. The corresponding 
plant dynamics of the LQE are in the form of a reduced order linear model constructed from 
the eigenvalues and eigenfuctions of a finite element dynamic model of the plant and 
formulated in the state space [Bazoune et al., 2001], [El-Sinawi et al., 2001], [El-Sinawi, 
1999], [El-Sinawi et al., 1999]. The LQE reconstructs the states of the plant, including 
transverse deflection of the beam, from the virtual measurements of the vertical deflection of 
the hub, which is assumed to be the most accessible state for measurement. 
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2. FINITE ELEMENT MODEL 
 

To implement the proposed scheme on a distributed parameter system such as the beam in 
Figure 1, the structure is discretized into finite elements forming an n-dimensional discrete 
spring-mass-damper system whose dynamics is described by second order matrix differential 
equation of  
 
               (1) 

 
where M , K  and C  are the mass, stiffness, and damping coefficient square, symmetric 
matrices with their dimensions equal to the number of degrees of freedom n [Gawronski et al., 
1991]. )(tx and )(tu  are the displacement and force vectors, respectively. For systems with 
classical damping, i.e., the systems with damping matrix C  proportional to the mass M and 
stiffness K matrices, M , K  and C can be diagonalized using normalized orthonormal 
eigenvectors as the columns of the transformation matrix [El-Sinawi, 1999], resulting 
 
  (2) 

 
where iη , iω , and iζ  represent the transformed coordinates, natural frequency, and damping 

ratio of the structure’s thi − mode of vibration. When the input is point force (as in the case of 
actuators), iQ  are the vector components of the thi − eigenfuction evaluated at the force input 

location. 
 

    
               (3) 

 
 
   
                        (4) 
 
The formulation presented by equations (3) and (4) is the basis for state-space modeling of 
flexible structures, having point force(s) as the input(s) and point displacement(s) as the 
measured output(s). 
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A , B , C , and D   matrices shown in equations (3) and (4), are the dynamic, input, output, 
and direct input matrices, respectively. These matrices describe the state-space model of the 
flexible structure, which are functions of the system (natural frequency, damping ratio, and 
mode shapes (eigenfunctions), i.e., if we assume [ ] niiii andf ,,1,,( L== ψζωθ ) then the 

resulting state-space model format is; 
 

              (5) 
 

                                     (6) 
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The information needed to construct the A , B , C , and D  matrices of equations (5) and (6), 
i.e., (mode shapes and natural frequencies,) can be easily obtained by performing finite 
element analysis on a solid model of the plant using one of the readily available FEA 
commercial software packages. A portion of the finite element model used to generate the 
state-space model of the plant is shown in Figure 2 
 

 
3. OPTIMAL STATE ESTIMATOR (OBSERVER) DESIGN 

 
The first step in designing the proposed optimal estimation technique is the design of the 
Kalman gains [Kalman, 1960], [Kalman et al., 1961]. The plant used for this purpose is the 
one represented by equations (5) and (6).  

Kalman estimator is used to estimate, on the basis of noisy measurements, the values of the 
state variables of a system subject to stochastic input-output disturbances. The input 
disturbances are included in the state-space model by adding the noise input vector v to the 
exogenous input vector u . Moreover, to include measurement noise, the vector w  is added to 
the output of the system. Such noise signals are usually part of the actual mode of the system. 

Kalman estimator takes on a particularly simple structure closely resembling the original 
system [Kalman, 1960], [Kalman et al., 1961]. The state-space model of the Kalman estimator 
is expressed by the following equation, 
 

                      (7) 
 
and, 
 

                      (8) 
 

 
where ŷ  is the vector of the state estimates, y~  is the vector of measured states from the 

actual system, L  is the Kalman matrix of gains, and 0S is the steady state solution of the 

following matrix Riccati differential equation [Kalman, 1960], [Kalman et al., 1961], [Hassibi 
et al., 1999]. 
 

                  (9) 
 

Matrices R and Q are the symmetric, nonnegative matrices that minimizes the following 
performance index J: 
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It is worth mentioning that knowledge of the absolute magnitude of R , and Q  is not 
important, rather, only their relative magnitude is important [Kalman, 1960], [Hassibi et al., 
1999], [Gawronski et al., 1991].  
 
Now, with the linear time-invariant model of the system available, namely equations (5) and 
(6), along with Kalman matrix of gains (L), optimal estimates of the plant states can be 
obtained according to equation (7).  
 
It is worth mentioning that the controllability and observability of the estimator are found by 
obtaining the rank of their corresponding gramians. Full rank gramians indicate a controllable 
and observable system [El-Sinawi, 1999], [Hassibi et al., 1999], [Gawronski et al., 1991]. The 
proposed estimation scheme is shown in Figure 3. 
 
4. NON-LINEAR MODEL OF THE BEAM-HUB SYSTEM (PLANT) 
 
A mathematical model for a flexible beam undergoing large planar flexural deformations, 
continuously rotating under the effect of hub torque and mounted on a compliant hub has been 
developed by Al-Bedoor et al [Al-Bedoor et al., 2001].  Lagrangian dynamics in conjunction 
with the assumed modes method were utilized to derive, directly, the non-linear equivalent 
temporal equations of motion. The following four coupled non-linear ordinary differential 
equations represent the generated non-linear mathematical model: 

 

                                                  
     
                          (11) 

      
      
                 

             

 

(12) 
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(14) 

 

 

where X , and Y  are the hub horizontal and vertical deflections, respectively. θ  is the rigid 
body rotation and q as the beam thi −  modal degree of freedom.  The base flexibility is 

defined as a ratio to the beam flexibility using the parameters EI
lKs X

3

1 =  and 

EI
lKs Y

3

2 = .  For more information on the non-linear model see [Al-Bedoor et al. 2001]. 

5. NUMERICAL SIMULATION AND RESULTS 

The proposed technique is used to estimate the tip deflection of a beam mounted on a 
compliant hub and rotating at a constant angular speed of 2400 rpm and subject to external 
torque. Dimensions and material properties of the beam hub system used in the non-linear 
model are given in Table 1. This model, as we have mentioned before, is assumed to be a 
representation of the actual model. Of course this model is needed to generate what is 
assumed to be the measurable states of the actual system, i.e., the vertical hub deflection as 
shown in Figure 3. 

 
States of the system are generated by numerically integrating equations (11) through (14) 
using Matlab®. 
 
The reduced order linear elastodynamic model of the beam-hub system, i.e., (plant) needed for 
the construction of the Linear Quadratic Estimator (LQE) and the corresponding Kalman 
gains matrix (L) is generated from the eigenvlaues and eigenfuncitons of the finite element 
model according to equations (5) and (6). The finite element model generates the natural 
frequencies and mode shapes from the dynamic solution of a solid model of the plant 
descretized by 162- 8 node shell elements each has a thickness equal to the beam-hub depth. 
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The linear state-space model of the plant is then constructed from the first four modes of 
vibration predicted by the FEA method.  The natural frequencies of the first four modes are 
listed in Table 2. Figure 4 shows the first mode of vibration of the beam-hub system as 
predicted by finite element analysis.  
 
Modal damping of 1% has been added to the system (assuming natural material damping). 
Thus the damping matrix C is constructed based on the initial assumption that C is 
proportional to the mass and stiffness matrices namely, M and K. 

 

Table 1: Simulation data for the beam-hub system 

Item Value 

Beam Length 3 m 

Beam’s mass/unit length 6.44 kg/m 

Beam’s flexural rigidity 3614 

Hub radius 0.2 m 

Hub mass 50 Kg 

Hub stiffness  mNeKK YX 61==  

Torque Applied 
40 N.m @ 5 Hz square wave 

1 N.m @ 20 Hz sine wave 
 
 

Table 2: Modal frequencies generated by FEA 

Mode Modal Frequency (Hz) 

1st mode 6.1183 

2nd mode 17.191 

3rd mode 34.745 

4th mode 61.704 
 
 
With the matrices A, B, and C are now available from the finite element model, the kalman 
matrix of gains (L) is obtained by solving equations (8) through (10), and the Linear Quadratic 
Estimator is implemented to estimate the tip deflection of the beam for the first four modes of 
vibration. 
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Simulation of the proposed technique is carried out using a 5 Hz square wave torque with 
amplitude of 40 N.m added to it 10±  N.m random torque as shown in Figure 4. The purpose 
of adding a random torque profile is to simulate process noise.   Both excitations are shown in 
Figures 5 and six, respectively. 

A random signal was added to the virtual measurements of the vertical hub deflection (output 
of the non-liner model) to simulate measurements noise. Estimates of the transverse beam tip 
deflection are obtained by plotting the corresponding state estimate generated by the LQE.  

Figures 5, 6, 7 and 8 show the estimated beam tip deflection compared to the assumed tip 
deflection (tip deflection predicted by the non-linear model) for the first four modes of 
vibration when the plant is excited by the 5 Hz square wave torque. 
 

 
6. CONCLUSIONS 

A new approach for estimating beam tip deflection via measurements of hub deflection using 
a Linear Quadratic Estimator for a rotating beam mounted on a compliant hub is presented.  
A readily available non-linear model is used to mimic the actual vibration of the beam-hub 
system. Approximate reduced order linear model of the beam-hub system is obtained using 
finite element analysis. 

A linear quadratic estimator is formulated based on the reduced order linear model dynamics 
and the optimal Kalman matrix of gains is determined from the steady state solution of a 
matrix Riccati differential equation.  

With a fully functional estimator available, measurements of the vertical hub deflection is 
compared to the estimated hub deflection and the difference (error) is multiplied by the 
corresponding Kalman gain and fed back to the estimator as a second input. The output of the 
estimator is a vector of two states, namely, hub deflection and beam tip deflection.  

Estimated beam tip deflection is plotted and compared to the tip deflection produced by the 
non-linear model; see Figures 7 through 14. Simulation results show that the proposed 
approach is capable of producing fairly accurate estimates of the tip deflection for most 
modes. However, over estimates of the tip deflection for some modes have persisted 
especially for the second mode (Figures 8 and 12).  The authors have not yet been able to 
justify such discrepancy.  
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Figure 1: Deflected rotating flexible beam mounted on a compliant hub 

 

Figure 2: Finite element model of the plant 
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Figure 3: Schematic of the proposed LQE approach for estimating beam tip deflection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: 5 Hz square wave torque profile with added random torque 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Estimated vs. non-linear beam tip deflection (first mode) 
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Figure 6: Estimated vs. non-linear beam tip deflection (second mode) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Estimated vs. non-linear beam tip deflection (Third mode) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Estimated vs. non-linear beam tip deflection (Fourth mode) 
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