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ABSTRACT 

Stability and dynamics of a Newtonian liquid film flowing down an inclined plane is investigated using 
a nonlinear formalism. For thin supported film having thickness ≤ 100 nm, the long-range 
intermolecular forces assume significance over the viscous forces. A two-dimensional flow, modeled 
as a continuum is represented by Navier-Stokes equations, equation of continuity and associated 
boundary conditions. The excess force due to van der Waals attraction between the film fluid and the 
solid support is substituted for the body force term besides the gravity, in the Navier-Stokes equation. 
The governing equations are rescaled and simplified under long wave approximation to arrive at a 
strongly nonlinear equation of evolution for the film interface, h(x,t). A linear theory gave an estimate 
of the film rupture time. The nonlinear simulations revealed various interesting aspects of film 
dynamics and a true time of film rupture. Important findings are: For thin films (h0 ≤ 100 nm), van der 
Waals force controls the film dynamics while gravity controls flow in thick films (h0 > 100 nm). Degree 
of inclination does not influence the rupture in thin films but it does affect thick films. The film rupture 
time increases with an increase in the film thickness and a decrease in the initial amplitude of 
perturbation. The linear theory may overestimate or underestimate the time of rupture by several 
orders of magnitude. 
 
Keywords: Thin falling film flows, long range intermolecular interactions, van der Waals force, 
nonlinear stability 
 

 الملخص
 

 من المعلوم . ستتم دراسة استقرار ودينامية طبقة من سائل نيوتوني يسيل على مستوى منحدر باستعمال نظريات لاخطية              

 فإن القوى الطويلة المدى المتواجده بين الجزيئات nm 100نه بالنسة إلى الطبقة الرقيقة المدعمة التي لايتجاوز سمكها 

 ثنائي الأبعاد من خلال نمذجتة كوسط مستمر خاضع لعلاقـات           ريانستم دراسة س  . وى اللزوجة تحتل أهمية اكبر من ق    

Navier-Stokes        يتم تعديل العلاقـات بحيـث يـتم        .  بالإضافة إلى علاقة الاستمرارية والشروط الحدية المرافقة لهما

الموجود بين طبقة السـائل والجسـم    van der Waalsاستبدال قوى الجسم والجاذبية بقوى الزيادة الناتجة عن تجاذب 
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 الطويلة للحصـول    ةيس العلاقات الحاكمة وتبسيطها في اطار التقريب المعروف بالموج        يسيتم إعادة  تق   . الصلب الداعم 

 تقريبية للزمن اللازم لتفكـك  قيمة ان النظرية الخطية تعطي . h (x,t)على معادلة عالية اللاخطية لتطورسمك  الطبقة 

. المحاكاة الغير الخطية فإنها أظهرت جوانب مهمة من دينامية الطبقة وايضا الحساب الدقيق لزمن التفكـك               أما  . الطبقة

 تتحكم في دينامية الطبقـة  van der Waals فإن قوى nm 100ومن النتائج المهمة للبحث انه إذا كان السمك لايتعدى 

ان درجة الانحناء لاتؤثر في التفكك في الطبقة        . (100nm<) في الطبقة السميكة     ريانبينما قوى الجاذبية تتحكم في الس     

ان .  الاولـي الاضـطراب ان زمن التفكك يزيد مع زيادة سمك الطبقة ونقصـان مـدى        . الرقيقة بعكس الطبقة السميكة   

 .النظرية الخطية قد تعطى قيما تقريبية لزمن التفكك تزيد او تنقص كثيراً عن الزمن الحقيقي للتفكك

 

1. INTRODUCTION 

The stability and dynamics of thin liquid films, in general are of immense scientific and 
technological importance. Their applications span a wide spectrum ranging from coatings, 
microelectronic deposition, flotation, foams, emulsions and thin film lubrications, to a wide 
range of nano-scale phenomena such as wetting, adhesion, interface heat and mass transfer, 
multilayer adsorption, heterogeneous nucleation and instability related to biological surfaces 
and membranes (Jameel, 1994; Sharma & Jameel, 1992; Sharma & Khanna, 1999).  The 
stability of thin fluid films is essential in applications such as in coatings (paints), 
photographic films and in microelectronic devices -insulating layers (Reiter et al., 1999). 
Characteristics of thin fluid film are significantly different than its bulk phase because of its 
large surface-to-volume ratio, in which case interfacial properties become increasingly 
important (Reiter et al., 1999). When a liquid layer flows downwards, it is subjected to 
surface-wave instability, which causes thinning of the wave trough. Even in the absence of 
other form of instabilities, a thin wave trough is susceptible to long range van der Waals 
attractions, which may eventually lead to film breakup. 
 
The isothermal falling film was first studied using linear theory by Yih (1955, 1963) and 
Benjamin (1957). They characterized the linear stability of film as a function of Reynolds 
number and the angle of inclination. A nonlinear approach was first employed by Benny 
(1966) for isothermal laminar flow on an inclined plane, and he derived a nonlinear equation 
of evolution for the film interface. The work was later extended by other investigators as 
reported by Joo et al. (1991) and Oron et al. (1997). Joo et al. (1991) studied the nonlinear 
stability of non-isothermal two-dimensional films flowing down an inclined plane. This is an 
extension of the previous work of Burelbach et al. (1988) on the stability of  
evaporating/condensing film on horizontal plane. Later Joo and Davis (1992a, 1992b) studied 
nonlinear stability of three-dimensional gravity flows in falling thin film. It is important to 
note here that works of Joo et al. (1991) and Joo and Davis (1992a, 1992b) did not account for 
the role of van der Waals forces in their model. We have shown here that van der Waals 
attraction assumes significance as the film thickness decreases during the course of evolution 
of the instability, and therefore can not be completely ignored. 
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In what follows, we address the role of long range van der Waals interaction on the stability 
characteristics of a two-dimensional liquid film flowing down an inclined plane. A strongly 
nonlinear equation of evolution of the film interface is derived assuming the disturbance 
wavelength much larger than the film thickness. The instability and rupture of the falling film 
is quantified using few selected results from numerical simulations and are compared with the 
linear theory results. 

2. MODEL 

Consider an isothermal Newtonian liquid film of constant density, ρ, and viscosity, µ, flowing 
down a plane inclined at an angle θ to the horizontal (Figure 1). The film of initial thickness, 
h0 is bounded at the free surface by a passive gas and is laterally unbounded. 
 
The flow in the film may be described by the Navier-Stokes(N-S) equation. The excess force 
due to long-range  van der Waals interactions between the film fluid and the solid substrate is 
substituted for the body force in the N-S equation. For two dimensional (X,Z) motion in the 
liquid film, the modified Navier-Stokes equations, the equation of continuity, and the 
associated boundary conditions (Williams and Davis, 1982; Joo et al., 1991; Jameel, 1994; 
Atieh, 2001) can then be expressed in a non-dimensional Cartesian coordinate system (x, z). 
The following scale factors are used for the transformation: length ~ h0 , time ~ h0

2/ν , 
velocity ~ ν/h0 , pressure ~ ν2ρ/h0

2, where h0 is the mean thickness of the liquid layer, and ν is 
the kinematics viscosity of the film fluid. 
 

 

 
 

Figure 1: The physical configuration of thin layer flowing down an inclined plane. 
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N-S Equations: 

xxzzxxzxt Gpuuwuuuu φθ −+−+=++ sin       (1) 

zzzzxxzxt Gpwwwwuww φθ −−−+=++ cos      (2) 
 

where the suffix stands for the derivatives. u and w are the velocity components in the x and z 
direction, respectively, p is the pressure inside the film, and φ is the excess pressure due to 
intermolecular interactions; all in non-dimensional form defined by: 

 
    x=X/h0   , z=Z/h0   , t=T 2/ ohv  

    u=U h0/ν   , w=Wh0/ν ,  p=(P-Pg) ρ22
0 / vh  , φ= 22

0 / vh ρΦ  

 
where the capital letters corresponds to dimensional quantities and Φ is the dimensional 
counterpart of φ .In Eqs. (1) and (2), G (non-dimensional) is defined as, 
 

       G=
v

gh
2

3
0                                                                

where g is the acceleration due to gravity (dimensional). 
 
The potential function φ, due to the long range van der Waals attraction is proportional to the 
reciprocal third power of the local film thickness, h(x,t), 
 
 φ = Ah-3 

 
The constant A(non-dimensional) is related to the (dimensional) Hamaker constant A’  by 

 2
0

'

6 ρυπh
AA =  

 
Equation of continuity: 

0=+ zx wu           (3) 

 
Boundary Conditions: 

(i) No-slip at the solid-liquid interface: 

u=w=0        (4) 
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(ii) Kinematic condition at the free surface, z=h(x,t): 

w = ht + uhx         (5) 

(iii) Shear stress condition at the free surface, z=h(x,t): 

(uz+wx)(1-hx
2)-2hx(wz-ux)=0         (6) 

(iv) Normal stress condition at the free surface z=h(x,t): 

 p-2[ux( hx
2 -1)-hx(uz+wx)]/N2= -3Shxx/N3           (7) 

where h(x,t) is the local thickness of the layer, and N =(1+ hx
2 )1/2. The non-dimensional mean 

surface tension, S is defined as, 

S=
v
h

2
00

3ρ
σ  

 

3. LONG WAVE APPROXIMATION 

In many practical situations, interfacial instability is locally generated and the disturbance 
wavelength, λ is much larger than the thickness of the layer, h0, i.e., λ>>h0. We, therefore, 
focus our interest on flows with a characteristic length in the x-direction proportional to the 
disturbance wavelength, λ. Then the governing equations can be rescaled consistent with a 
lubrication type approximation using transformations, 

ς =kx  , τ =kt        (8) 
 

We follow the long wave reduction procedure of the governing equations as employed by 
previous workers (Williams and Davis, 1982; Burelbach et al., 1988; Joo et al., 1991; Sharma 
and Jameel, 1993; Jameel, 1994). This finally leads to the solution of the Navier-Stokes 
equation for velocity fields, which together with the kinematic boundary conditions yields the 
nonlinear equation describing spatio-temporal evolution of the film interface, h(ς ,τ): 

ζ
ζζζζζζζτ θθεθ 







+′+−++ h

h
AhhShGhhhGhGhh 3326

2
2 cos

3
1sin

15
2sin =0       (9) 

which, in terms of original (nondimensional) coordinates (x,t), using Eq. (8) gives 

0cos
3
1

15
Re2Re 1336

2
2 =








++−++ −

x
xxxxxxxt hAhhShhGhhhhhh θ                       (10) 
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where Re is a Reynolds number defined as, 

 
 

 

4. LINEAR STABILITY ANALYSIS 

The initial (short time) evolution of the film profile is adequately described by linearized 
equation whenever the amplitude of initial disturbance is much smaller than the mean film 
thickness. Linearization of Eq. (10) about the mean film thickness, h=1, leads to the following 
solution, 

                  h=1+ε sin(kx) exp(ωt)                                     (11) 

where ε is the non-dimensional initial disturbance amplitude. The resultant dispersion or 
characteristic equation, gives the relationship between the disturbance growth rate,ω, and the 
wave number, k, as 
 

             



 +−−= ASkGGk 2222 cos

3
1sin

15
2 θθω                                  (12) 

 
Therefore, the film becomes unstable, viz., ω>0 only when k<kn, where kn is a critical wave 
number. 

For neutrally stable wave (i.e., ω =0), the critical wave number, kn is given by, 

      



 +−= AGG

S
kn θθ cos

3
1sin

15
21 222                                     (13) 

The maximum growth rate, ωm of the linear waves occurs for the dominant wave number, km 

which is obtained by setting dk
dω =0 from equation (12). Thus, 

          ==
2

2
2 n
m

k
k 



 +− AGG

S
θθ cos

3
1sin

15
2

2
1 22                           (14) 

 
Thus, the linear theory predicts unhindered growth of surface deformations (ω>0) upto the 
point of film rupture whenever 0<k<kn as given by Eq. (13). It is obvious that the linear 
theory assumes a constant force during all stages of film deformation, whereas in reality, 
thinner and thicker portions of the film encounter different (nonlinear) force fields as 
deformations grow. 
 

θsinRe G=
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In order to assess the role of nonlinearities, we may take the linear theory seriously up to the 
point of film breakup, and determine a time of rupture by setting h=0 at sin (kx)=-1 in the Eq. 
(11). This gives an estimate for the time of film rupture, for a disturbance of wavenumber, k 

               tL=
εω
1ln

)(
1
k

                                                           (15) 

The shortest time of rupture from the linear theory corresponds to  the dominant wave, i.e., 
ω=ωm or k=km. 
 

5. NUMERICAL SOLUTION 

The nonlinear equation of evolution [Eq. (10)] for the film interface, h(x,t) is solved 
numerically using Finite Difference discretization in conservative form as part of an initial-
value problem for spatially periodic solution on the fixed interval 0<x<2π/k. Mid-point Crank 
Nicholson rule with forward difference in time and central difference in space are employed. 
 
The following set of periodic boundary condition over a wavelength, λ (=2π/k) are used: 
 
           λλ ≤≤=∂∂=∂∂ == xixhxh x

ii
x

ii 0);3,2,1,0()/()/( 0         (16) 

and a space periodic initial condition was chosen as, 

 h(0,x)=1+ε sinkx.       ( ε <1)                   (17) 

 
The resulting difference equations are nonlinear coupled algebraic equations, which are 
solved by an iterative procedure using IMSL subroutine DNEQNF and DNEQNJ. These 
subroutines employs Levenberg-Marquardt algorithm, a variation of Newton’s method, for 
solving nonlinear algebraic equations. A finite difference approximation of the Jacobian is 
used in DENEQNF, and a user supplied Jacobian in DNEQNJ (IMSL Maths Library Manual, 
1997). 
 

6. RESULTS AND DISCUSSIONS 

As noted earlier, the linear theory predicts that the film is unstable to infinitesimal 
perturbations with wavelength, λ>λn or having wave-number, k<kn. However, linear theory 
results are only good for small initial amplitudes, ε. True dynamics of film deformation and 
rupture is best represented by the numerical solution of the nonlinear equation of evolution 
[Eq. (10)]. Selected results from nonlinear simulations are discussed to elucidate the stability 
characteristics of inclined film flows. The results presented in the following are for water 
films on solid substrates. 
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Linear theory predicts that the minimum time of rupture occurs at around wave-number of 
0.707. There is no significant effect of film thickness and the angle of inclination of the plane 
(results not shown) on the parameters like dominant wave-number, km, maximum growth 
coefficient, ωm and the rupture time, tL, all from the linear theory, as evident from Tables 1 
and 2. 
 
Nonlinear simulations were carried out for a wide range of parameters. In the following, we 
present some selected results. 
 
 

Table 1:  Rupture time and growth rate as function of wavelength & wavenumber 
at θ=0 & ho=10 nm from linear theory. 

k Wavelength TL ωo 
0.1 62.85714 232.58435 0.0099 
0.2 31.42857 59.96315 0.0384 
0.3 20.95238 28.11459 0.0819 
0.4 15.71429 17.13233 0.1344 
0.5 12.57143 12.28045 0.1875 
0.6 10.47619 9.99386 0.2304 
0.7 8.97959 9.21403 0.2499 
0.8 7.85714 9.99386 0.2304 
0.9 6.98413 14.7 0.1539 
1.0 6.28571 341966.8 0.00001 

kn=1.00000 km=0.70711 ωom=0.25000 tr=9.21034 
 
 

Table 2:  Rupture time and growth rate as function of wavelength & wavenumber 
at θ=0 & ho=100 nm from linear theory. 

k Wavelength TL ωo 
0.1 62.85714 232.61574 0.0099 
0.2 31.42857 59.9714 0.0383 
0.3 20.95238 28.11 0.0818 
0.4 15.71429 17.135 0.1343 
0.5 12.57143 12.282 0.187 
0.6 10.47619 9.995 0.230 
0.7 8.97959 9.2164 0.2498 
0.8 7.85714 9.997 0.2303 
0.9 6.98413 14.97 0.15379 
1.0 6.28571 341966.8 0.00001 

kn=0.99993 km=0.70708 ωom=0. 24997 tr=9.21156 
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6.1 Effect of Inclination and Film Thickness 

Nonlinear time of rupture (i.e., film rupture time from nonlinear simulations) are plotted as a 
function of wavelength for different angles of inclination and for different film thicknesses in 
Figures 2 through 4. There is no significant effect of inclination, θ, on the film rupture time, 
TN for thin films (h0<100 nm) as shown in Figure 2. However, for relatively thicker films 
(h0≥ 100 nm), rupture time, TN increases with the increase in θ and h0 as depicted in Figures 3 
and 4. The increase in TN with inclination and film thickness may be attributed to the 
corresponding increase in film Reynolds number, Re (= G sinθ), which in turn results into 
higher turbulence in the liquid film, thus delaying the appearance of dry spots, and hence the 
film rupture. In Figures 2 and 3, it may also be noted that the minimum time of rupture lies 
very close to λm≅8.9, the dominant wavelength from the linear theory. On the contrary, for 
thick films (h0≥200 nm), the minimum in rupture time shifts to a lower value of λ at around 
6.9 (as shown in Figure 4 for h0=200 nm). That is, nonlinearities select shorter waves for thick 
layers. 
 
 

 
 

 
 
Figure 2: Rupture time as function of wavelength for ho=50 nm and at different inclinations. Curve for 

all different θ values converge to a single curve. 
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Figure 3: Rupture time as function of wavelength for ho=100 nm and at different inclinations. 
 

 
Figure 4: Rupture time as function of wavelength at ho=200 nm and at different inclinations. 
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6.2 Effect of the Amplitude of Disturbance on the Rupture Time 

Invariably, the time of film rupture decreases with increasing amplitude of surface disturbance 
as shown in Figures 5 and 6. As depicted for a film of thickness 10 nm, the rupture time 
decreases gradually with increasing values of ε. It may be noted that even an infinitesimal 
perturbation such as of amplitude 1Å (ε =0.01 in Fig. 6) may engender film breakup in an 
unstable film. This instability is necessarily derived from the attractive van der Waals forces. 
The increased degree of inclination results into slightly higher rupture time. This is due to the 
fact that the increase in θ increases the Reynolds number leading to homogenization of fluid 
film and hence delay in the appearance of dry spots. 
 

6.3 Comparison of Rupture Time from Nonlinear and Linear Theories 

The variations of the ratio of rupture times from linear and nonlinear theories (TN/TL) are 
shown as a function of wavelength at different inclinations, θ (Figs. 7 and 8). Figure 7 shows 
that the minimum deviation between the two predictions occurs around λm, wavelength 
corresponding to minimum rupture time. Further, the influence of inclination becomes 
pronounced only at larger thickness, i.e., h0>50 nm. Figure 8 shows TN/TL for thick film of 
200 nm. For thick films, at low inclination, the linear theory overestimates the rupture time 
while at large inclination, linear theory greatly underestimates the time of rupture. This is due 
to the opposing nonlinear effects of van der Waals and gravity forces at high inclination. 
Gravity imparts stabilizing effect, which is zero for horizontal (θ=0) film and is maximum for 
vertical film (θ=90°). On the contrary, van der Waals attraction tend to rupture the film 
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Figure 5: Rupture Time as function of amplitude of perturbation at θ=0o, ho=10 nm and km=0.7 
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Figure 6: Rupture Time as function of amplitude of perturbation at θ=90o, ho=10 nm and km=0.7 

 

 
Figure 7: Ratio of rupture time as function of wavelength at ho=50 nm and at different                    

inclinations. 
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Figure 8: Ratio of rupture time as function of wavelength at ho=200 nm and at different inclinations. 
 
 
6.4 Evolution of Film Profile 

Finally, Figure 9 shows the evolution of film interface with time. It may be noted that the 
approach to film rupture is catastrophic after initial (slow) growth of instability. That is, the 
rate of increase in the gradient of the film profile increases as the film approaches towards 
rupture and jumps sharply to very high values near the rupture. This behavior is reminiscent 
of the fact that as the wave troughs get thinner, the van der Waals force takes over the surface 
tension and gravity effects leading to sharp gradient as h decreases. 
 
7. CONCLUSIONS 

The role of long range van der Waals interactions on the stability of the gravity flow on an 
inclined plane has been investigated. Linear theory can predict the fastest growing surface 
wave and gives an estimate of the time of rupture. It has been shown that the body force due 
to gravity tends to be  insignificant as the liquid layer approaches the thin film dimensions, 
i.e., h0 ≤ 100 nm, in which case long range van der Waals interaction controls the film 
dynamics. In this case, the rupture is rather catastrophic compared to thick films, primarily 
due to strong van der Waals attraction, which appear in the evolution equation as reciprocal 
fourth power to the film thickness. On the contrary, for relatively thicker films (h0>100 nm), 
the van der Waals force becomes insignificant and the force of gravity takes over the film 
dynamics. 
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Figure 9: Film profile at different times for van der Waals and gravity system. The initial amplitude is 
0.1, ho=50 nm, θ=60o & k=1.0. The rupture proceeds explosively at TN= 13.898. 
 
 
The fastest growing nonlinear waves are found to have wavelengths close to the predictions of 
the linear theory for all types of films. It appears that the degree of inclination does not affect 
the time rupture of the thin film, i.e., h0 ≤ 100 nm. However, Inclination does affect the growth 
of instability in thick films (h0 > 100 nm). The film rupture time increases with increasing film 
thickness on inclined planes. The increased degree of inclination and the film thickness results 
into increased Reynolds number leading to homogenization of fluid film and subsequent delay 
in the appearance of dry spots. Invariably, the time of film rupture decreases with increasing 
amplitude of surface disturbance for all film thicknesses. 
 
The deviation between the predictions of nonlinear and linear theories results is a minimum 
around dominant wavelength. The linear theory may overestimate or underestimate the time 
of rupture by several orders of magnitude depending upon film thickness. Similar trend was 
also reported for horizontal films (Jameel, 1994). In essence, linear theory is inadequate to 
capture all aspects of thin film dynamics, and therefore, a nonlinear formalism is inevitable 
for the study of thin film stability. 
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