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Abstract

Sequential circuit test generation using deterministic,
fault-oriented algorithms is highly complex and time
consuming. New approaches are needed to enhance
the existing techniques, both to reduce ezecution time
and improve fault coverage. Ewvolutionary algorithms
have been effective in solving many search and opti-
mization problems. A common search operation in se-
quential ATPG is to justify a desired state assignment
on the sequential elements. State justification using
deterministic algorithms is a difficult problem and is
prone to many backtracks, which can lead to high ez-
ecution times. In this work, we propose a hybrid ap-
proach which uses a combination of evolutionary and
deterministic -algorithms for state justification. A new
method based on Genetic Algorithms is proposed, in
which we engineer state justification sequences vector
by vector. This is in contrast to previous approaches
where GA is applied to the whole sequence. The pro-
posed method is compared with previous GA-based ap-
proaches. Significant improvements have been obtained
for ISCAS benchmark circuits in terms of state cov-
erage and CPU time. Furthermore, it is demonstrated
that the state-justification sequence generated, helps the
ATPG in detecting a large number of hard-to-detect
faults.

1 Introduction

Testing of integrated circuits is an important area
which nowadays accounts for a significant percentage
of the total design and production costs of ICs. Var-
ious design for testability (DFT) techniques are used
to obtain acceptably high quality tests [1]. In the first
technique, called full-scan design, all memory elements
are chained into shift registers so that they can be set
to desired values and observed by shifting test patterns
in and out. In large circuits however, this technique ad-
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versely affects the test application time as all the test
vectors have to be scanned in and out of the flip-flops.
In order to alleviate the test complexity, a second tech-
nique, called partial-scan design, is used. This involves
scanning a selected set of memory elements. A sequen-
tial test generator is necessary for partial or no-scan
designs. For sequential circuit ATPG, the worst-case
search space is 9™, where m is the number of flip-flops.
This exponential search space makes exhaustive ATPG
search computationally impractical for large sequential
circuits [2]. In the last years, one of the main goals
of researchers was to develop effective algorithms for
sequential circuit test pattern generation (3]. Both de-
terministic and simulation-based algorithms have been
used. The bottleneck in deterministic algorithms is line
justification and backtracking. In simulation-based ap-
proaches, the search proceeds in the forward direction
only. Hence, there are no backtracks and state justifi-
cation is easier as compared to deterministic ATPGs.
The main drawback of simulation-based approaches lies
in their inability to detect untestable faults. In this
work, a hybrid state justification approach is proposed,
where both deterministic and genetic-based algorithms
are used. Several approaches to test generation using
genetic algorithms have been proposed in the past [3] -
[8]. A major difference in various GA-based approaches
lies in the way the fitness is computed. Some techniques
use logic simulation for evaluation of candidate vectors
or sequences, while other techniques use fault simula-
tion. In addition, there are certain other techniques
which target different objectives in various phases of
test generation. These techniques typically, use both
logic and fault simulation in evaluating candidate se-
quences. Genetic Algorithms have been used for state
justification in [5]. The length of the sequence was a
function of the structural sequential depth of the cir-
cuit, where sequential depth is defined as the minimum
number of flip-flops in a path between the primary in-
puts and the farthest gate. In case of feed-back loops,



the structural sequential depth may not give a correct
estimate of the number of vectors required for justifying
a given state. Thus, if a state requires longer justifi-
cation sequence, it will not be justified. The approach
also does not take into account the quality of interme-
diate states reached and evaluates a chromosome only
on the basis of the final state reached. In this work, we
will use an incremental approach in which the length
of the sequences will be dynamic. State justification
sequences will be genetically engineered vector by vec-
tor. Even if some state remains unjustified after the
genetic phase, the best sequence obtained in a given
number of generations will be viewed as a partial solu-
tion. The determinisitc ATPG will be seeded with this
sequence so that it may become able to reach previously
unvisited regions of the search space. The remainder
of this paper is organized as follows: In Section 2, the
proposed genetic-based state justification technique is
presented. Experimental results are given in Section 3.
Section 4 concludes the paper.

2 Genetic-based State Justification

State justification is the most difficult task in sequen-
tial ATPG. Storing the complete state information for
large circuits is impractical. Similarly, keeping a list
of sequences capable of reaching each reachable state
is also infeasible. State justification is therefore per-
formed by using a GA. In [5] and [9], deterministic algo-
rithms were used for fault excitation and propagation,
and a GA was used for state justification. Sequences
were evolved over several generations. The fitness of
each individual was a measure of how closely the final
state reached matched the desired state. A chromo-
some was represented by a sequence of vectors. Can-
didate sequences were simulated starting from the last
state reached at the end of the previous test sequence.
The objective was to engineer a test sequence that jus-
tified the required state. If a sequence was found which
justified the required state, the sequence was added to
the test set. In this work, we use GA for traversing from
one state to another. Individual vectors are represented
by chromosomes in the population and genetic opera-
tors are applied at individual bit positions. Determin-
istic ATPG is run for every target fault. First, the fault
is activated and propagated to a primary output. Next,
state justification is attempted. If the required state is
justified by the deterministic ATPG, then the derived
sequence is fault simulated and all detected faults are
dropped from the fault list. Otherwise, our GA-based
algorithm attempts to justify the required state. If the
state remains unjustified, the generated sequence is still
saved, as the reached state is close to the required state,
which could help the ATPG in justifying it in the next
attempts. The generated sequence is then fault sim-
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ulated and the detected faults are dropped. A block
diagram of the methodology is shown in Figure 1.

Select Target Fault

Run detarministic
ATPG

Justify state using
Genetic Algorithm

Fault simutate
generated ssquance

Figure 1: A block diagram of the methodology.

We have proposed an evolutionary meta-heuristic for
the state justification phase. A flowchart of the heuris-
tic used is shown in Figure 2, and is described in the
subsequent subsections.

2.1 Encoding of the chromosome

In this work, a binary encoding is used. A chromosome
is represented by a single vector. Each bit of a vector
corresponds to the value at a primary input.

2.2 Fitness Function

In Genetic Algorithms, a solution is considered to be
better than another if its fitness is higher. We logic
simulate each vector to get the state reached. This
state is compared with all the flip-flop assignment val-
ues of the target state. The fitness f(v;) of a vector v;
is computed as follows:

fvi) =

m(si,s;)

B(s;)
where s; is the state reached by vector v;, s; is the
target state and m(s;, s;) are the number of matching
specified bits in s; and s;. B(s;) gives the number of
specified bits in s; (i.e. those which are not ‘x’).

2.3 Crossover and Mutation

We use One-point uniform crossover as mentioned in
[10] in this work. In one-point uniform crossover, a
random cut-point is selected. Each of the two parents
are divided into two parts at this random cut point. We
generate an offspring by catenating the segment of one
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Figure 2: A flowchart of the algorithm used.

parent to the left of the cut point with the segment of
the second parent to the right of the cut point. Muta-
tion introduces new characteristics in the offspring by
randomly changing values of some genes. In this work,

mutation corresponds to flipping a randomly selected
bit.

2.4 Forming a new generation

A generation corresponds to an iteration of GA where
parents are selected for crossover and offsprings are cre-
ated. A constant number of individuals are selected
" from the offsprings for the new generation. The new
population thus consists of both members from the ini-
tial generation and the offsprings created. In this work,
three replacement strategies have been experimented
with:
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2.4.1 (n+1) selection strategy. In this strategy,
one chromosome is changed in every generation. A
crossover is performed on two selected parents. A child
replaces the worst member of the previous generation,
if its fitness is higher. Hence, the best n-1 members are
selected for the new generation from a population of n.

2.4.2 Random Elitist strategy. We produce n off-
springs, by performing n/2 crossovers on a population
of n chromosomes. Best n/2 members of both the off-
springs and the original population, are transferred to
the next generation. The remaining n/2 members of
the new generation are selected randomly from the left-
over chromosomes.

2.4.3 Roulette Elitist strategy. This strategy is
the same as Random Elitist strategy except that the
second half of the members of the new generation are
selected based on a roulette wheel mechanism. This
gives an advantage to the relatively more fit members of
the population to be transferred to the next generation.

2.5 Traversing from a state to a state

We run the algorithm for a fixed number of generations.
If we reach the desired state, the algorithm stops and
picks the next state from the list. However, if the al-
gorithm is unable to reach the desired state, it picks
the best chromosome found until then and adds it to
the state justification sequence. As the state reached
is nearer to the desired state in terms of the Hamming

. distance, it is probable that it will help the ATPG in

reaching the required search space and detecting the
associated fault. The following parameters have been
used to guide the search.

2.5.1 Tabu List Size. A Tabu List is used to pre-
vent the algorithm from visiting recently visited states.
On reaching a state, the algorithm looks into the Tabu
list. If the state reached is present, the next fit vector
is chosen.

2.5.2 Backtrack limit. We backtrack to the last
visited state, when all the chromosomes in the pop-
ulation are unable to reach a new state (a state which
is not in the Tabu List). An upper limit is imposed
on the number of backtracks and the algorithm stops
searching for a state when this limit is exceeded.

2.5.3 Nlimit parameter. At least Nlimit number
of states are traversed before the algorithm gives up the -
search for a desired state. If the fitness of the currently
visited state, fit(s), is less than the average fitness of
the last Nlimit states, fit(Nlimit), the algorithm stops
further searching of the desired state; otherwise the



search is continued.

2.6 Removing the reached states from the list
of desired states

When a sequence is generated by the algorithm for a
target state, we compare the states reached by the se-
quence with the list of desired states. All the desired
states reached by the sequence are removed from the
list of target states. This prevents us from searching
again for those states which we have already reached
while searching for some other target state.

3 Experimental Results and Discussion

In this work, we have compared our state justification
technique in which we use GA for traversing from a
state to a state, with the one proposed in [5][9}. In [5],
GA has been used in state justification and sequences
are genetically engineered. GA has been applied on
a sequence of vectors as opposed to individual vectors
in our case. We have used five ISCAS89 benchmark
circuits [11] and four re-timed circuits given in [12]
for which which HITEC {13] requires very large CPU
times. A list of target states was obtained for hard-to-
detect faults in each of the circuits (those faults which
HITEC aborted after 1000000 backtracks). We have
experimented with several parameters and found that
in general, a population size of 32, a generation limit
of 400, backtrack limit of 10 and tabu list size of 15
gave the best results. Better results were obtained for
an Nlimit value which was 1.5 times the number of
flipflops present in the circuit. A roulette wheel selec-
tion scheme as given in [4] gave the best results. Three
replacement policies were experimented with. The re-
sults of the simulations carried out using these three
replacement policies are shown in Table 1.

In Table 1, the number of states reached (SR) and the
time taken to reach those states are given for each re-
placement strategy described above. It was observed
that the (n+1) replacement strategy was the best in
terms of execution time. It also reached a comparable
number of states for most of the circuits. This strategy
changes only one member of the previous generation
and hence the number of operations in one genera-
tion of (n+1) replacement strategy requires less time
as compared to other strategies. Moreover, changes in
the characteristics of the population do not occur as
abruptly as in the other two schemes. Figure 3 shows
the average and best fitness of the population against
the number of generations for one of the target states
that is justified by the algorithm using the (n+1) re-
placement strategy. It can be seen that the average
fitness increases monotonically with the number of gen-
erations. This is due to the fact that we are always pre-
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serving the best chromosome in each generation. One-
point crossover was used with a probability of 1 and
mutation rate was kept at 0.01. In Figure 4, we show

1.21

1
0.3]‘—__—_/_—_/
O.G_M
0.4 1
0.2
O_Wmmrm

-~ O 0O W = N

- - N O ™M
No. of generations

—s— Avg. Fitness

Fitness

—— Best Fitness

Figure 3: Average and best fitness vs. number of gener-
ations.

the state traversal for one of the target states of the
circuit s1423 that has been reached by the algorithm.
It can be seen that we progress towards better states in
terms of the hamming distance as the algorithm runs
for more iterations. Less fit states are reached if we
we are unable to reach a better state because of the
Tabu restriction. Moreover, we move towards the best
state among all alternatives, even if that state is worse
than the current state. This helps in avoiding the local
minima. The example is for one of the target states of
51423 circuit. ’
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4: State traversed vs the fitness of reached states
for a target state of s1423 circuit.

Figure

The parameters proposed in [5] were 32 chromosomes
and 8 generations. The number of vectors in each chro-
mosome was 4 times the sequential depth of the circuit.

To compute the fitness of chromosomes, we have used
the logic simulator HOPE (14]. The experiments were
run on SUN ULTRA 10 stations and the results of com-
paring the two state justification techniques are shown



T ___(n+1) T Random Elitist | Roulette Elitist |
circuit CHR | GEN | BT | NLimit | TLS | SR | Time | SR | Time | SR | Time |
51423 16 100 10 120 150 58 126 19 508 32 748

32 100 10 120 150 64 365 31 778 49 3586
64 100 10 120 150 64 572 49 11300 68 13704
3271 16 800 20 225 150 20 4592 11 5023 15 11214
32 100 20 225 150 21 6244 18 11805 20 18113
256 100 20 225 150 21 10625 19 12976 21 109612
53384 16 800 10 375 150 65 11849 23 14912 34 17445
64 800 10 375 150 66 231156 51 24905 41 30023
256 800 10 375 150 66 41225 65 68428 50 100615
55378 16 400 10 275 150 64 25294 22 84225 45 112610
32 400 10 275 150 113 29274 53 100324 61 141251
64 400 10 275 150 115 34893 55 117520 61 161225
56669 16 10 10 375 150 19 130 19 871 22 914
16 100 10 375 150 27 503 19 5151 22 8681
16 400 10 375 150 30 1664 22 17905 22 24668
scfRjisdre 16 100 10 40 150 18 25 17 285 26 836
64 100 10 40 150 19 42 34 832 43 6700
256 100 10 40 150 20 114 46 5055 50 48820
s832jcsrre 16 400 100 100 150 7 79 6 77 6 82
256 400 100 100 150 7 190 7 1946 7 2126
1024 400 100 100 150 9 360 8 3441 9 4956
s510R jcsrre 16 400 10 45 150 12 14 8 120 6 140
256 400 10 45 150 16 132 23 523 23 1208
512 400 10 45 150 23 260 31 2340 31 5038
s510Rjosrre 16 800 10 45 150 12 92 5 233 4 305
64 800 10 45 150 19 661 13 1171 11 2841
256 800 10 45 150 19 2740 17 9870 19 19342
Table 1: Comparison of the selection schemes
our approach approach in [5] approach in [5]
Name # of | Target states time(sec) | gens states time(sec) | gens [ -states time(sec)
FF states | reached reached reached
51423 74 135 74 3119 8 50 2743 50 61 3953
83271 116 45 21 6015 8 15 1664 200 18 6319
3384 183 102 67 18314 8 31 3794 250 45 21161
s5378 179 524 115 31281 8 45 3133 100 48 225160
56669 239 32 30 1764 8 23 1701 50 24 2289
scfRjisdre 20 267 48 803 8 25 501 100 31 5196
s832jcsrre 31 57 8 139 8 7 120 100 7 2170
s510Rjcsrre 30 114 16 163 8 12 61 100 13 504
s510R josrre 32 114 16 181 8 9 62 100 13 583

Table 2: Comparisonr of the two state-justification techniques

in Table 2.

The first column in the table shows the circuit name.
In the second and third columns, the number of flip-
flops (FFs) and the number of target states respectively
is given for each circuit. The states reached and CPU
time obtained by our algorithm are mentioned in the
next two columns. For comparison purposes, we ran
the algorithm proposed in [5] for several number of gen-
erations and the results are shown in the next columns.

It can be observed from the results that the number of
desired states reached by our technique are more than
those reached by the technique used in [5] for all the
circuits. Furthermore, our proposed technique reached
a higher number of states than [5] in all the circuits

even when the latter was run for a greater amount of
CPU time.

In order to verify the effectiveness of the generated
state justification sequences in detecting hard-to-detect

- faults, we seeded them to a deterministic test pattern
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generator HITEC [13]. HITEC makes use of previously.
visited states while doing state justification. The faults
detected by an initial run of HITEC with 1000000 back-
tracks were removed from the fault list. The results are
shown in Table 3.

It can be observed that a large number of hard-to-
detect faults are detected when we seed HITEC with
the state justification sequence obtained by the pro-
posed strategy. The number of faults detected are



faults detected reached states
Name “TF approach in [5] | our approach [ TS [ approachin [5] | our approach
31423 926 312 578 135 61 74
$3271 61 34 - 41 45 18 21
3384 376 91 116 102 45 67
$5378 1221 103 285 524 48 115
56669 40 29 31 32 24 30
scfRjisdre 1920 1397 1802 267 31 48
s832jcsrre 293 38 147 57 7 8
s510Rjcsrre 374 45 85 114 13 16
s510Rjosrre 459 232 431 114 13 16

Table 3: Faults detected by the two state-justification techniques

significantly higher than the faults detected when the
ATPG is seeded with the state justification sequences
generated by the technique proposed in [5]. Apart from
justifying more states, our technique takes advantage
of the partial justification sequences generated.

4 Conclusion

In this work, we have proposed a hybrid approach
which uses a combination of evolutionary and deter-
ministic algorithms for state justification. Genetic Al-
gorithms (GAs) were used for generating sequences
that will help the Automatic Test Pattern Generator
(ATPG) in detecting more faults by reaching specific
states. A new state justification technique based on
GA is proposed which engineers the sequence vector by
vector. In previous approaches, GA has been applied
to the whole sequence. The previous approaches fail
to justify many hard-to-reach states because of fixed-
length sequences. Moreover, they evaluate a chromo-
some only on the basis of the final state reached. In
this work, we propose dynamic length sequences and
the fitness measure takes into account all the states
reached by the sequence. The approach has been com-
pared with previous approaches and improvements in
reached states and fault coverage have been demon-
strated.
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