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Abstract: A Fuzzy Simulated Evolution algo-
rithm is presented for multi-objective minimiza-
tion of VLSI cell placement problem. We pro-
pose fuzzy goal-based search strategy combined
with a fuzzy allocation scheme. The allocation
scheme tries to minimize multiple objectives and
adds controlled randomness as opposed to orig-
inal deterministic allocation schemes. Experi-
ments with benchmark tests demonstrate a no-
ticeable improvement in solution quality.

1 Introduction

Very Large Scale Integration (VLSI) Placement is a com-
binatorial optimization problem. It consists of arrang-
ing circuit blocks on a layout surface such that cost is
optimized. This is an NP-Hard problem [1]. Intelli-
gent methods known as “heuristics” are used to get near
optimal solutions. Simulated Evolution (SE) [2], sim-
ulated annealing [3] and genetic algorithm [4] are iter-
ative stochastic heuristics. SE falls in the category of
algorithms which emphasize the behavioral link between
parents and offspring, or between reproductive popula-
tions, rather than the genetic link [5]. SE combines iter-
ative improvement and constructive perturbation. The
advantage of this heuristic is that it requires less ex-
ecution time compared to simulated annealing and ge-
netic algorithm [2]. In this paper, we report our study of
multi-objective optimization of VLSI placement by using
fuzzy logic in Simulated Evolution algorithm. During
placement process, all desirable objectives can only be
imprecisely estimated. Fuzzy logic provides a rigorous
algebra for dealing with imprecise information. Further-
more, it is a convenient method of combining conflicting
objectives and expert human knowledge. It has been
used in many studies related to VLSI placement [6-10].
Most of these studies have used fuzzy logic in construc-
tive heuristics except in [10] where fuzzy cost measure is
used in genetic algorithm for the floorplanning problem.

Our proposed Fuzzy Simulated Evolution Algorithm
carries out multi-objective optimization of VLSI stan-
dard cell placement. In standard cell design, circuit
blocks have fixed height and variable widths. Circuit
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blocks are placed in rows on a two-dimensional layout
alternated by routing channels [1]. In our scheme, we
minimize three cost parameters of the layout: intercon-
nection wire length, circuit delay, and layout width. The
SE algorithm consists of three distinct steps: evalua-
tion, selection and allocation. Allocation is the most
important step of the algorithm [11]. Therefore we pro-
pose fuzzification of this step. We propose a “fuzzy con-
trolled stochastic” allocation instead of the previously
purely constructive sorted individual best fit allocation
strategy. Experiments show that our proposed alloca-
tion scheme results in an overall improved solution qual-
ity compared to the weighted average allocation scheme.
In order to identify the best solution generated by SE
algorithm, we use a fuzzy goal-based cost computation,
which constitutes another major novelty of this work.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly review the simulated evolution algo-
rithm and fuzzy logic. In Section 3 we describe the pro-
posed fuzzy allocation scheme and the fuzzy goal-based
cost computation. Results of our experiments are given
in Section 4. The paper ends with conclusion in Sec-
tion 5.

2 Preliminaries
2.1 Simulated Evolution Algorithm

Simulated Evolution (SE) is a general iterative heuris-
tic proposed in [2]. This scheme combines iterative im-
provement and constructive perturbation and saves itself
from getting trapped in local minima by using stochastic
search approach. This algorithm iteratively operates a
sequence of evaluation, selection and allocation steps
on one solution. Other than these three steps, some in-
put parameters like stopping condition, selection bias
(BIAS) and valid starting solution are initialized in an
earlier step known as initialization. The flowchart of
the algorithm is given in Figure 1.

In the evaluation step, goodness for each element
of the current solution is computed. The goodness of
an element is a ratio of its optimum cost to current cost
estimate. The goodness is used to probabilistically se-
lect elements in the selection step. Elements with low



Figure 1: Flow chart of SE algorithm.

goodness have a higher probability of getting selected
for reposition. Selection BIAS is used to compensate
errors made in estimation of optimum cost. Its objec-
tive is to inflate or deflate the goodness of elements. A
high positive value of BIAS decreases the probability of
selection and vice versa. A carefully tuned BIAS value
results in good solution quality and reduced execution
time [11]. The selection step results in a partial solution
of only unselected elements, while selected elements are
saved in a queuc for allocation.

The purpose of allocation is to perturb the current
solution in such a way that the selected elements are
assigned to better positions. Different constructive al-
location schemes are proposed in [2]. One such scheme
is sorted individual best fit, where all the selected
clements are sorted in descending order in a queue with
respect to their connectivity with the partial solution.
The sorted elements are removed one at a time and trial
moves are carried out for all the available empty posi-
tions at that time. The clement is finally placed in a
position where maximum reduction in cost for the par-
tial solution is achieved. This process is continued un-
til the selected queue is empty. The overall complex-
ity of this algorithm is O(s*) where s is the number
of selected elements. Other more elaborate allocation
schemes are weighted bipartite matching allocation
and branch-and-bound search allocation [2]. How-
ever, these schemes are more complex allocation strate-
gies than “sorted individual best fit”, while the quality
of solution is comparable [2]. In this work we have used
fuzzy sorted individual best fit allocation scheme.

2.2 Fuzzy Logic and Fuzzy Set Theory
(FST)

A crisp set is normally defined as a collection of elcinents
or objects z € X, where each clement can either belong
to a set or not. However, in rcal life situations, objects
do not have crisp [1 or 0] membership criteria. fuzzy
set theory (FST) aims to represent vague information,
like “very hot” and “quitc cold”, which are difficult to
represent in classical (crisp) set theory. In fuzzy sets, an
element may partially belong to a set. Formally, a fuzzy
set is characterized by a membcrship function which pro-
vides a measure of the degree of presence for every ele-
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ment in the set [12].

Like crisp sets, set operations such as union, inter-
section, and complementation etc., are also defined on
fuzzy sets. There are many operators for fuzzy union
and fuzzy intersection. For fuzzy union, the operators
are known as s-norm operators while fuzzy intersection
operators are known as t-norm. Generally, s-norm is
implemented using max and t-norm as min function.
However, formulation of multi criteria decision functions
do not desire pure “anding” of t-norm nor the pure
“oring” of s-norm. The reason for this is the complete
lack of compensation of t-norm for any partial fulfill-
ment and complete submission of s-norm to fulfillment
of any criteria. Also the indifference to the individual
criteria of each of these two forms of operators led to the
development of Ordered Weighted Averaging (OWA) op-
erators [13]. This operator allows easy adjustment of the
degree of “anding” and “oring” embedded in the aggre-
gation. According to [13], “orlike” and “andlike” OWA
for two fuzzy sets A and B are implemented as given in
Equations 1 and 2 respectively.

pa) 5(2) = Bxmax(up,pua)+ (1= ) x 3 (wa+ss) (1)

b 5(@) = Bxmin(ua, up) +(1—B) x > (wa+up) (2)

B is a constant parameter in the range [0,1]. It repre-
sents the degree to which OWA operator resembles the
pure “or” or pure “and” respectively.

Fuzzy reasoning: Fuzzy reasoning is a mathematical
discipline invented to express human reasoning in vig-
orous mathematical notation. Unlike classical reason-
ing in which propositions are either true or false, fuzzy
logic establishes approximate truth value of propositions
based on linguistic variables and inference rules. In order
to represent imprecise ideas, Zadeh [14] introduced the
concept of linguistic variable. A linguistic variable is
a variable whose values are words or sentences in natural
or artificial language [6]. The set of values a linguistic
variable can take is called a term set. This set is con-
structed by means of primary terms and by placing mod-
ifiers known as hedges such as “more”,“many”,“few”
etc., before primary terms. The term set represents a
precise syntax in order to form a vast range of values
the linguistic variable can take. The linguistic variables
can be composed to form propositions using connectors

like AND, OR and NOT.

3 Fuzzy Simulated Evolution Al-
gorithm

In this section we describe our proposed Fuzzy Simu-
lated Evolution Algorithm. Several stages of SE algo-
rithm can be fuzzified, for instance allocation, evalu-
ation and selection. In this paper, our emphasis is on
fuzzification of the allocation stage. After describing the
implementation details of evaluation and selection stages
of the SE algorithm in Sections 3.1-3.2, we describe the
proposed fuzzy allocation scheme in Section 3.3. In order
to evaluate the quality of each layout generated by SE
algorithm, we have used a “fuzzy goal-based cost com-
putation” measure. This measure is described in Sec-



tion 3.4.

3.1 Evaluation

In this stage of the algorithm, individual cell good-
nesses are computed, where a cell is a circuit block.
The goodness measure proposed in [2] computes the cell
goodness on the basis of wirc length. For such a mea-
sure, goodness of cell ¢; which is a part of {vy,vs,..., vk}
nets, where a net is an equipotential interconnect of pins
on different cells, is computed as follows.

k *
1 . ij
ge; = % jE_l min <ij R 1.0)

where L} and Ly, are respectively optimum and actual
wire length of nct vj. The L} is computed by placing
the cells of a net next to each other on the layout surface
and then estimating the wire length.

®3)

3.2 Selection

In this stage of the algorithm, for each cell ¢; =
{c1,02,0ny cng) a random number in the range [0,1] is gen-
crated and compared with g., + BIAS. If the generated
random number is greater than g., + BIAS then cell ¢;
is selected for allocation and removed from the layout.
The location of cell ¢; is marked as empty.

3.3 Allocation

During allocation stage of the algorithm, the selected
cells are repositioned on cmpty locations in such a way
that they result in reduced cost. As described in Sec-
tion 2.1, “sorted individual best fit” is an allocation
scheme for SE algorithm. In this scheme, we identify
the best location for the first cell known as head of line
cell in selected queue which results in maximum reduc-
tion in cost. The best location is removed from the list of
empty locations for remaining cells in the selected queue.
For single objective minimization, it is straightforward
to identify such a location. The original SE (OSE) pro-
posal [2] places the cell in a location which results in
maximum reduction in wire length cost. However, for
multiple and conflicting objectives the decision to iden-
tify the best location for sclected cell will require many
tradeoffs. One way of converting a multi-objective task
into a single-objective task is to get a weighted aver-
age of multiple objectives. For cach trial placement, re-
duction in cost duc to individual objective is estimated,
normalized and summed together using weights assigned
for each objective. The selected cell is finally placed in a
position which results in the highest value for the overall
reduction in cost.

Assuming a cell ¢; is temporarily placed in a location
I during the m!® iteration of the SE algorithm. This cell
is part of {v1,...,vr} nets. Let  be the row number of
the cell location I. The quality of this trial placement
can be measured as follows.

gaing, = wi X ALe,; +ws X AD., 1+ w5 x AWe,;

3
> wh =10 (4)

h=1
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where AL, 1,AD,, 1,andAW,, are respectively mea-
sure of the gains in wire length, delay and width of the
layout for the trial placement of cell ¢; on location !. Sim-
ilarly wf, w§ and w§ are respectively averaging weights
for these gains in wire length, delay and width of the
layout. These gains are computed as follows:

k -
Ej=1(L:’; '— LL’}

AL, (5)

E_?:l LL’;—-I
k -1 m
iy E.I;ZI D;E—l
Wept — WM
AW, = 2" r
ol Wor (M

In Equation 5, Lv"’j_1 and L7 are respectively wire length
estimates for net v; in m — 1°* and m*? iterations of SE
algorithms. Similarly D,’}]’,'l and D,’,’]f in Equation 6 are
propagation delays for net v; in m — 15 and m®* iter-
ations respectively (computation of propagation delays
is given in [15]). The W,y in Equation 7 represents
the optimum row length (lower bound on maximum row
length) for the layout. It is computed by adding the
widths of all the cells and dividing it by the number of
cell rows. While W™ is the row length of row r during
the trial placement of cell ¢;.

The above weight based sorted individual allocation
scheme has two problems.

1. It is difficult to come up with appropriate weights
for Equation 4.

2. It is possible that the leading cell in the selected
queue will block optimum positions for remaining
selected cells.

The use of proper fuzzy rules and membership func-
tions can overcome the first problem. One solution to
the second problem is to allow creation of empty space
by shifting other cells. However, this will disturb many
well placed cells resulting in reduction in overall quality
of solution. Therefore we propose a fuzzy allocation
scheme which is characterized by following two proper-
ties. .

1. It uses fuzzy rules and membership functions to
combine multiple objectives.

2. It adds a controlled randomuness in placing a cell
on an empty location. In this scheme it is possible
that a cell is placed any where on a set of empty
locations within a fuzzy window. The fuzzy window
contains locations which result in near identical re-
ductions in cost.

The logic behind the “controlled randomness” is that it
decrecases the chances of blocking an optimal location for
the rest of the selected cells by head of line cell. In the
following text we describe the proposed fuzzy alloca-
tion scheme.
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Figure 2: Membership functions for three fuzzy variables used in “Fuzzy Allocation Scheme” of the SE algorithm

Fuzzy Allocation Scheme

Following the sorting of selected cells in descending or-
der with respect to their connectivity with partial place-
ment, the head of line cell is trial placed on all the avail-
able empty locations at that time and the membership
of these locations in a fuzzy sct of good location is com-
puted. The fuzzy subset of good location falling within a
Sfuzzy window is 1dentified and it is called favorable loca-
tions. The cell will be randomly placed on any location
within this subset. Following is the description of how
these sets are formed and what rules govern them.

Good Location

Assume E is the set of empty locations and S is the set of
selected cells. A location ! € E will be a member in the
fuzzy set good location for ccll ¢; € S with membership
function pg (1). The detcrmination of this mernbershlp
function is carried out through the following rule and is
evaluated using Equation 8 below:
Rule 1: IF a location results in
small length AND
reduced timing AND
small layout width
THEN it is a good location.

pe, () = B* xmin(pu (1), p3 (1), p3 (D) +(1-5%) % 3

d_ouiD)
i=1
(8)

where ug (1) is the fuzzy sct of good locations and §¢
is a constant parameter in the range [0,1]. The values
(D), pg(l) and p§(!) represent the membership values
of location [ in fuzzy scts small length, reduced timing
and small layout width respectively.

The base values X;(l), Xa(l) and Xg(l) for corre-
sponding membership functions u$(l), p5({) and p3(l),
are computed below using the notation of Equations 5-7.

W=

Yo, L
X = W (9)
j=1~Y;
i1 D5
Xa(l) = W (10)
j=1""%;
i n rm
X3() = T (11)

Following the computation of base values, memberships
in respective fuzzy sets are determined using the func-
tions given in Figure 2.

Favorable Locations

The subset of fuzzy set good locations is named as fa-
vorable locations. The upper and lower boundaries for
favorable locations are determined by a fuzzy window.
For a cell ¢; € S, location ! € F will fall within fuzzy
window if it satisfies the following inequality:

where E is the set of empty locations, S is the set of
sclected cells and w is a small positive value which de-
termines the lower limit of u (1) for presence in fuzzy
window. It controls the randomness in the fuzzy allo-
cation scheme. All locations falling in the fuzzy window
will be identified as favorable locations. The cell will be
placed randomly in any of the locations within this set.
The presence of the ratio of number of unplaced cells to
selected cells will make sure that the size of favorable lo-
cation set will decrease as allocation progresses. This
is because the head of line cell is strongly connected
with the partial layout thereforc there are many loca-
tions with near identical gains. We can place the cell
on any of these locations without adversely affecting the
quality of solution. Due to this, a bigger subset is iden-
tified for leading cells. However, the cells at the end of
the sclected queue are sparsely connected. Therefore a
narrow favorable location set is used for them.

We experimented with different values for w in our
proposed fuzzy allocation scheme. It is observed that
for small values of w in the range (0.05,0.1) the qual-
ity of solutions improves. However, as the value of w is
increased the quality decreases due to increased random-
ness.

# of unplaced cells
# of selected cells

max(yc (e)) x {1-0 -

<wp ()< max(pg () (12)

3.4 Fuzzy Goal Based Cost Computation

VLSI placement is a multi-objective combinatorial op-
timization problem. A placement is evaluated against
several objective criteria such as, wire length, delay and
layout width. The best placement is the one which scores

94



Fuzzy (Fa_SE) Classical Sum (CSE) % Gain
Circuit | L (mic) LD (ns) l W (mic) | L (mic) | D (ns) | W (mic) L | D | w
highway 7735 5.56 520 9919 6.15 520 22.0 | 9.5 0.0
fract 31528 13.62 784 37285 14.58 800 15.4 | 6.5 2.0
c499 56506 14.13 1200 59278 14.51 1200 4.6 2.6 0.0
c532 80779 37.96 1160 72789 38.55 1184 -109 | 1.5 2.0
c880 137309 29.46 1872 135509 | 30.92 1848 -1.32 | 4.7 | -1.2
c1355 290221 27.05 2320 335589 28.41 2344 13.5 4.7 1.0
struct 667850 28.8 3336 685328 | 26.65 3312 25 | -8.0 | -0.7
c3540 750153 | 46.01 3152 844069 | 54.03 31562 11.1 | 14.8 | 0.0

Table 1: Best layout found by Fa_SE and CSE. “L”, “D” and “W” respectively stand for wire length, delay and

width costs of layouts.

lowest with respect to all objectives. A notion of op-
timality that respects the integrity of each of the sep-
arate criteria is the concept of Pareto optimality [16].
However, the Pareto optimality concept does not assist
in making a single choice. One usually has to tradeoff
these various objectives. In such a case, the concept of
optimum is not clear. Traditional approach consists of
combining all objectives in a weighted sum cost function,
and the placement with lowest weighted sum is reported
as the best solution [15]. This approach is at best con-
troversial. Furthermore, the individual placement objec-
tives are very imprecise. In this work we adopt a goal
directed search approach, where the best placement is
the one that satisfies as much as possible a user specified
vector fuzzy goals.

Let there be II solutions generated by the SE algo-
rithm. Assume that we are optimizing a p-valued cost
vector given by C(z) = (Ci(z), Cz(x),...,Cp(z)) where
z € II. Assume that a vector O = (01,04, ...,0p) gives
lower bound estimates on individual objectives such that
O; < Ci(z) Vi, Vz € II. These are lower bounds on each
objective which usually are not achievable in practice.
Further, assume that there is a user specified goal vector
G = (g1,92,..-,gp) which indicates the relative accept-
able limits for each objective. It means that z will be an
acceptable solution if Cj(z) < gi x O; where Vi, g; > 1.0.
For a two dimensional optimization problem, Figure 3
shows the region of acceptable solutions.

Ca(x)
A
9202 ....... e .
] :
:Acceptable
1Solutions :
X :
Oz ------
Lower
Bound
: » C1(X
04 9104 160

Figure 3: Range of acceptable solution set.
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Figure 4: Membership function within acceptable range.
By lowering the goal g; to g} the preference for objective
“” has been increased.

In our proposed scheme, the acceptable solution set is
a fuzzy set. For VLSI cell placement problem of mini-
mizing three parameters, we propose the following rule
to determine the membership in fuzzy set acceptable so-
lution. This rule is implemented by Equation 13.
Rule 2: IF a solution is
within acceptable wire length AND
within acceptable circuit delay AND
within acceptable width
THEN it is an acceptable solution.

pe(2) = B° x min(pi(z), p3(z), us(z))+

3
(1= x 3 3 ki) (13
i=1

where u¢(z) is the membership value for solution z in
fuzzy set acceptable solution. While u for i = {1,2,3}
represents the membership values of solution z in the
fuzzy sets within acceptable wire length, within acceptable
circust delay and within acceptable width respectively.
The solution which results in the maximum value for
Equation 13 is reported as the best solution found by
the SE algorithm. The membership function for a gen-
eral objective “4” is shown in Figure 4. User preferences
can be easily expressed in goal vector G. For example
by decreasing the goal value g; to g7 in Figure 4, the
subsequent membership value p$*(z) for objective i will
decrease. This might dictate the acceptance or rejection
of solutions. In this work, the lower bounds on objectives
are computed at initialization by the placement program.
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4 Experiments and Results

In order to compare the cffects of fuzzification of the
allocation stage of SE algorithm, we implemented two
versions of the algorithm. One implementation, identi-
fied as Fa_SE, uscs the proposed fuzzy allocation scheme.
The second implementation is called classical SE (CSE)
and it uses the weighted average allocation strategy. For
weighted allocation, several cxperiments were carried out
to find appropriate weight valucs for Equation 4. The
weight combination Swi‘ = 0.6,w§ = 0.1,w§ = 0.3) re-
sulted in the best solution. Both these algorithms use
a uniform “fuzzy goal-bascd cost” measure to identify
the best solution. These algorithins were tested on eight
ISCAS-89 benchmark circuits. Initial solutions are ran-
domly generated and algorithms are executed for a fixed
number of iterations.

Table 1 compares the quality of final solution gener-
ated by Fa_SE and CSE. The circuits are listed in order
of their complexity. From the results, it is clear that
except for few cases (like ¢532 and ¢880) the proposed
fuzzy allocation scheme is able to generate better qual-
ity solution with respect to wire length. The wire length
increase for ¢532 and ¢880 can be attributed to the fact
that the weight combination in CSE allocation strategy
is suitable for medium range circuits only. For smaller
circuits (like highway) or bigger circuits (like ¢3540)
these weight combinations do not perform well. More-
over for ¢532 and ¢880, the reduction in circuit delay
compensates the loss in wire length.

With respect to the circuit dclay objective, the pro-
posed scheme generates better quality solutions for all
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(f)

respectively compares the current wire length,
f) plots the corresponding best values of these

circuits. The struct circuit is an exception because it
is a structured multiplier which contains all the paths
of similar complexity, therefore reduction in the net de-
lays of all nets forming those paths is required to achieve
overall reduction in the circuit delay. The layout width
of both schemes is comparable for all circuits. This is
due to the fact that the widths of generated layouts are
very close to the respective lower bound on maximum
width.

In order to make a complete search space compari-
son between Fa_SE and CSE, we have drawn different
cost values versus iteration count of the algorithm for
circuit ¢3540, which has above 2000 cells. Figure 5(a)
& (b) shows the current wire length and circuit delay
cost versus iteration count for both schemes. Respec-
tive best values are shown in Figure 5(d) & (e) of the
same figure. From these plots it is clear that Fa_SE is
able to find solutions with less interconnect length and
delay than CSE. Figure 5(c) & (f) compares the current
and best overall quality of solution found by drawing the
membership in fuzzy set acceptable solution respectively.
From these plots it is clear that fuzzy allocation based
SE algorithm is able to generate overall better quality
solutions than weight based SE algorithm.

We also compared the original SE (OSE) algorithm
which uses only wire length based sorted individual best
fit allocation scheme [2] with our proposed Fuzzy SE al-
gorithm (Fa_SE). For largest test circuit ¢3540 results
are summarized in Figure 6. As it is clear from Fig-
ure 6, Fa_SE produced naticeably better results than
OSE. Similar results were observed with other circuits
but are not included here due to lack of space.
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Figure 6: Comparison of Fa_SE algorithm with OSE. (a),(b) & (c) respectively compares the best values for wire

length, circuit delay and membership in acceptable solution.

5 Conclusion

In this paper, we have proposcd a Fuzzy Simulated Evo-
lution Algorithm. In the proposcd scheme, we have fuzzi-
fied the allocation stage of the SE algorithm. This
scheme combines controlled random move in a purely
constructive sorted individual best fit allocation tech-
nique. The identification of favorable locations for a cell
is carried out through the usc of fuzzy rule and mem-
bership functions. Being thie most important stage of
SE algorithm, fuzzy allocation results in noticeable im-
provement in the quality of final solution.

VLSI placement is a hard and ill-defined problem with
many conflicting objectives. In order to identify the best
solution generated by the placement algorithm, we pro-
posed a novel approach of fuzzy goal-based cost measure.
This approach avoids the problems associated with the
controversial weighted sum approach. It also allows easy
incorporation of user preferences for different objectives.
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