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ABSTRACT

The problem of partitioning appears in several areas ranging from
VLSI, parallel programming, to molecular biology. The interest in
finding an optimal partition especially in VLSI has been a hot issue
in recent years. In VLSI circuit partitioning, the problem of obtain-
ing a minimum cut is of prime importance. With current trends,
partitioning with multiple objectives which includes power, delay
and area, in addition to minimum cut is in vogue. In this papet,
we engineer two iterative heuristics for the optimization of VLSI
netlist bi-Partitioning. These heuristics are based on Genetic Al-
gorithms (GAs) and Tabu Search (TS) and incorporate fuzzy rules
in order to handle the multiobjective cost function. Both heuristics
are applied to ISCAS-85/8% benchmark circuits and experimental
results are reperted and compared.

1. INTRODUCTION

‘Until the beginning of this decade, two main objectives of VLSI
-circuit design were the minimization of cut-set and the improve-
rment of timing performance. A large number of efforts targeting
either one (especially cut-set) or both of the above objectives are
reported in the literature-[1, 2]. The power consumption of the cir-
cuit was not of main concem while trying to optimize the above
two objectives. Nevertheless quite a reasonable number of tech-
niques aiming at low power objective are proposed for all phases
in physical design including partitioning of circuit, floorplanning,
placement and routing [1]. As different techniques are applica-
ble and have been reported at different steps of the VLSI design
process [3], the need for a system which incorporates all the three
aspects of the design process (delay, cut, power) is increasing.

In this work, we address the above probleém in the partitioning
step at the physical level. Two iterative approaches based on Ge-
netic Algorithm (GA) and Tabu Search (TS) are presented to solve
the multiobjective optimizatien problem of partitioning. This pa-
per is organized as follows: In the next section, the problem and
the cost functions are formulated. Section 3 presents the employed
approaches. Experimental results are reported and discussed in
section 4,

2. PROBLEM FORMULATION AND COST FUNCTIONS

This work addresses the problem of VLSI netlist partitioning with
the objective of optimizing power consumption, timing performance
(delay), and cut-set while considering the Balance constraint (same
as area constraint as unit area is assumed for every gate). For-
mally, the problem can be stated as follows: Given a set of modules
V = {v1,v2, ..., U}, the purpose of partitioning is to assign the
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modules to a specified number of clusters k (two in our case) satis-
fying prescribed properties. In general, a circuit can have multi-pin
connections {nets) apart from two-pin and therefore it is better to
represent it by a hypergraph. A hypergraph H(V, E) is defined
where V is a set of nodes and F is a set of hyperedges. Node
v; € V corresponds to an eiement (e.g., a gate) in the circuit, and
hyperedge e; € F comesponds to a net in the circuit. Hyperedge
¢; consists of the signal source node S{e;) and a set of destina-
tion nodes D{e;) and e; = (S(e;), {P(ei)}). The signal source
node S{e;} of the net e; comresponds to the output of a gate and
the set of destination nodes D(e;) corresponds to the inputs of the
gates. Given a hypergraph H(V, E)with E = {e;, 2, - -+, em}
being the set of signal nets, each net is a subset of V' containing
the modules connecting the net. It is assumed that for each hyper-
edge e € F, |e| > 2 (it connects at least two nodes). Our task is to
divide V into 2 subsets (blocks) Vg and V) in such a way that the
objectives are optimized, subject to some constraints.

Cutsize The set of hyperedges cut by a cluster C is given by
EC)={e€e E:0<|enC| < le]}ie,e € E(C) ifa
least one, but not all, of the pins of e are in C, The set of nets
cut by a partitioning solution p™ can be expressed as E(p*) =
UL, E(ci) or equivalently E(p*) = {e € E| Ju,v € e,h # 1
with w € Ch and v € Ci}. We say that | E(p*)} is the cutsize of
p*. The cost function can be written as follows :

Minimize f= Z w(e) (h

ey

where ¢ C E denotes the set of off-chip edges. The weight
w{e) on the edge e represents the cost of wiring the corresponding
connection as an external wire. If all weights equal one, the cost
function becomes simpler:

Minimize

=1l @
where |1| denotes the cardinality of the set 3.

Delay In order to deal with a signal path, a hypergraph is decom-
posed into directed edges ex = (S(ex)),w) for ex € F and
w € D(ex). Let the graph which consists of a set of nodes V' and
a set of decomposed directed edges E be the directed graph d =
{V, E). A signal path is represented by an alternating sequence of
nodes and directed edges vy, e1,va, €2, ..., Uk—1, €k—1, Vi, Where
e =l <I<k—-Dandy #v;,i>1,7<k
, 1 # j. The path from node v; to node v; is denoted by pi;.
Nodes which are included in the path p;; are defined as V (py;). A
path-cut number of path p;;, denoted ncut{p;, ), is the number of
nets cut which are included in the path p;;. In the general delay
model where gate delay d{v) and constant inter-chip wire delay
are considered, d. 3 d{v) where d, is due to the off-chip capac-
itance denoted as Ciys. Let the delay of node v; € V be d(v;)
and the delay of net e, € E which is cut be d.. Given a partition
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® : (Va,Vs), the path delay d(pi;) between nodes v; and v; is
the sum of the node delays d(v;) € V(pi;) and the delay of nets
which are cut, that is :

Minimize d{pi;) =

Z d{vg) | + de X neutlp:;)  3)

viEV{rij)

Power The average dynamic power consumed by a CMOS logic
gate in a synchronous circuit is given by:

2
Vdd C:aadN‘. (4

cycle

Pinuerage —=0.5

where €929 {5 the load capacitance, V4 is the supply voltage,
Teycle is the global clock period, and M; is the number of gate
output transitions per clock cycle. In our work NN; is calculated
using the symbolic simulation technique of [4] under a zero delay
model. Ci°%¢ in Eqn. 4 consists of two components: CPes*
which accounts for the load capacitances driven by a gate before
circuit partitioning, and the extra load C£®® which accounts for
the additional load capacitance due to the external connections of
the net after circoit partitioning. Then, the total power dissipation
of circuit ¢ is:

2 .
P= ﬂTﬂ“ Z(Gz'b“m + Cicatru)N‘_ ®
cyeale
i€g

where (3 is a constant that depends on technology. When a cir-
cuit partitioning corresponds to a physical partitioning, C'f””f“ of
a gate that is driving an external net is much larger than CP2°%,

Area or Balance constraint If we assume that the area of all cells
is identical, then the problem reduces to balancing the two parti-
tions in terms of the number of cells. The balance constraint is
given bellow:

181 — Ba| <

—_——e Lo

¢

where [3; is the number of cells in partition 4, ¢ is the total number
of cells in the circuit, o is the tolerance which is equal zero in case
of a perfect balance.

(©

2.1. Overall Fuzzy Cost Function;

In order to solve the multiobjective partitioning problem, linguistic
variables are defined as: cut-set, power dissipation, delay and bal-
ance. The following fuzzy rule is used to combine the conflicting
objectives:

IF a solution has
Small cut-set AND
Low power consumption AND
Short delay AND
Good Balance
THEN it is a GOOD solution.
The above rule is translated to and-like OWA fuzzy operator
[6] and the membership p(x) of a solution = in fuzzy set good
solution is given as:

Eraco(®) = B° x min(uy (2), pg(e), ue(z), pi(2)) +
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Figure 1. Membership functi%ns

where pf(z) is the membership of solution z in fuzzy set of ac-
ceptable solutions, 5., () is the membership value in the fuzzy
sets of “ within acceptable power”, “within acceptable delay”, “within
acceptable cut-set” and “within acceptable balance” respectively.
B¢ is the constant in the range [0, 1], the superscript ¢ represents
the cost. In this paper, u°(z) is used as the aggregating function,
The solution that results in maximum value of ¢°(zx) is reported as
the best solution found by the search heuristic.

The membership functions for fuzzy sets Low power consumption,
Short delay, Small cui-set, are shown in Fig. 1{(a) We can vary the
preference of an objective j in the overall membership function by
changing the value of g; which represents the relative acceptable
limits for each objective whrere g; > 1.0. Fig. 1(b) represents
the membership functions for fuzzy set good Balance. (; is the
estimate of lower bound on the cost of an individual ¢, and C; is
the actual cost of ¢. Oy’s are independent of iteration, therefore,
these are estimated only in the beginning. Whereas, C; has to be
calculated in every iteration for every element.

3. PROPOSED APPROACHES

In this section, implementation details of the proposed approaches
are described. First, the details of the partitioning Genetic Algo-
rithm for multiobjective optimization are discussed, followed by a
brief description of the Tabu Search (TS) implementation.

3.1. Genetic Algorithm (GA) For Timing and Low Power Driven
Partitioning

GA algorithm starts with a set of initial solutions called population
that is generated randomly. In each iteration (known as generation
in GA terminology), all the individual chromosomes in the popu-
lation are evaluated using a fitness function. Then, in the selection
step, two of the above chromosomes at a time are selected from
the population. The individuals having higher fitness values are
more likely to be selected. After the selection step, different op-
erators namely crossover, mutation act on the selected individuals
for evolving new individuals called offsprings. These genetic op-
erators are described below.

[n GA implementation we use an encoded representation of
solution in the form of a simple string made up of symbols called
genes. The string of genes is called chromosome.

One important genetic operator is crossover . It is applied on
two individuals that were selected in the selection step earlier to
generate an offspring. The generated offspring inherits some char-
acteristics from both its parents in a way similar to natural evolu-
tion. There are different crossover operators namely simple(single
point), order, partially mapped, and cycle, The simple crossover,
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for instance, works by choosing a random cut point in both par-
ent chromosomes (the cut point should be the same in both par-
ents) and generating the offspring by combining the segment of
one parent to the left of the cut point with the segment of the other
parent to the right of the cut [7]. For description of other crossover
operators see [2, 7, 8].

The mutation operator is used to introduce new random infor-
mation in the population. It is usually applied after the crossover
operator. It helps in producing some. variations in the solutions so
that the scarch does'not get trapped in a local minima. An example
of mutation operation is the swapping of two randomly selected
genes of a chromosome. However, mutation is applied with a low
rate so that GA does not turn into a memeory-less search process
[2]. Two mutation variation are used the first one is by random
selection of a cell and swapping its partition. The second is by
randomly selecting two cells one from each partition and swap-
ping them.

For addressing a multi-objective optimization problem to min-
imize three mutually conflicting objectives, a measure is needed
which can quantify the overall quality of a solution with respect
to all three objectives collectively, Fuzzy membership functions
and fuzzy rules are used for evaluating the fitness of a solution. A
fitness value between 0 and 1 is assigned to each solution. The
fitness value of a chromosome is its membership value p(z) in the
fuzzy set of acceptable solution. This membership is computed
using Eqn. 7. Individuals are selected based on the elitism-random
selection {ernd)where the best Hf- chromosomes are selected and

the remaining Ezﬂ are setected randomly. Based on experimental
results, this scheme offers better choice than other schemes, be-
cause it provides balance between greediness and randomness.

3.2, Tabu Search Approach

In what follows TS implementation is described briefly. Tabu
search starts from an initial feasible solution and carries out its
search by making a sequence of random moves or perturbations.
A Tabu list is maintained which stores the attributes of a number of
previous moves. This list prevents taking the search process back
to recently visited states. In each iteration, a subset of neighbor so-
lutions is generated by making a certain number of moves and the
hest move (the move that resulted in the best solution)} is accepted,
provided it is not in the Tabu list. Otherwise, if the said move is
in the Tabu list, it is accepted only if it leads to a solution bet-
ter than the best solution found so far (aspiration criterion). Thus,
the aspiration criterion can override the Tabu list restrictions. The
solution enceding and initialization steps are similar to those de-
scribed above for GA. In each iteration, we generate a number of
neighbor solutions by making perturbations as follows: two cells
are selected randomly, then their locations are interchanged. The
number of neighbor solutions generated in each iteration is depen-
dent on circuit size. The characteristic of the move that we keep
in Tabu list is the indices of the cells involved in interchange. The
size of Tabu list is taken also depending on the circuit size ie.,
10% of the total number of celis. In this work, short term memory
element was used for TS implementation. The aspiration criterion
used is as follows, if the current best solution is the best seen so
far i.e., better than the global best, then it is accepted and Tabu
restriction is overridden.

3.3. Experimental results and Discussion of GA versus TS

The results obtained from GA and TS are compared in terms of
overall quality of best solution and run time in Table 1. P{sp)
represents the cost due to power, that is the sum of the switching
probabilities of all the cut nets; it has no unit since switching prob-
ability has no unit. D(ps) is the delay of the most critical path
in picoseconds (ps), ps(x) is the membership value, T'{s) is the
total run time, and Best(s) is the execution time in seconds for
reaching the best solution. In both TS and GA each run consists of
10, 000 iterations or generations.

The results shown are the best case results obtained after the
tuning of various algorithmic parameters of GA and TS (only one
time for all circuits). In the case of GA the population size is 10,
the crossover used is'simple with a probability equal to .99, while
for mutation it is 0.01. In case of TS, the size of neighborhood is
also 10, while Tabu list size is chosen to be 0.1 the size of the cir-
cuit. From the results, it is clear that TS performed better than GA
for most of the circuits in terms of the quality of the best sclution
as well as run time. In terms of quality of solution, TS consistently
performs better, and the advantage of TS over GA gets emphasized
when the size of the circuit gets bigger. Also execution time of GA
increases significantly with the increase in circuit complexity. The
higher execution time of GA can be attributed to its parallel nature
i.e., a population of solutions is to be processed in each generation.
Fig. 2 shows the performance of TS and GA against execution time
in seconds. Itis clearly noticed that TS is by far faster and of better
final quality. Fig. 3 and Fig. 4 show the trend of solution’s (a) cut-
set, (b} delay, (c) pewer, (d) balance, (e) average fitness, (f) best
fitness for GA and TS respectively, in case of circuit $12307. Itis
clear from the shown plots that TS achieves a membership that is
better than that reached by GA.

Gananc Va Taby with respect |0 1508 i saconds.

0.

) 1000 zo‘m so'm 4000 m‘m m‘m 7000 mloo 9000
Times in Seconds

Figure 2: Comparison between GA and TS for the circuit 813207
with respect to execution time in seconds.

4. CONCLUSIONS

In this paper, two multiobjective optimization iterative algorithms
namely GA and TS for VLSI partitioning were proposed. Fuzzy
logic is used to integrate the objectives namely power, delay, cut-
set and balance into a scalar cost value. It is clear from the results
that TS outperforms GA in terms of final solution costs and execu-
tion time, and the difference gets higher with the increase in circuit
complexity. The higher execution time of GA can be contributed
to its parallel nature i.e., a population of solutiens is to be pro-
cessed in each generation. The superiority of TS can be attributed
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Table 1: Comparison between costs of the best solutions generated by GA and TS

GA TS

Circuit | D (ps) | Cut | PGsp) | p{z) [ T(s) [ Best(s) | D(ps) [ Cwt [ PGsp) [ p(z) [ T(s) | Best(s)
5298 233 19 1013 .79 123 43 197 24 926 0.81 62 21
§386 356 36 1529 0.75 163 151 366 30 1426 0.76 82 77
Se41 1043 45 2355 0.83 1868 1540 889 59 2281 0.85 939 g18
S832 444 45 3034 | 0.68 289 276 446 50 2731 0.682 148 80
5953 526 96 2516 0.69 618 182 466 99 2518 | 0.734 ] 313 225
51196 396 123 5443 0.76 375 373 M 106 4920 | 0.801 184 134
S1238 475 127 5713 0.72 397 365 408 79 4597 0.75 187 160
51488 571 104 5648 0.71 1238 1183 528 98 5529 0.72 616 405
51494 614 102 5474 0.70 1228 1040 585 101 5339 0.71 616 427
52081 302 26 787 0.73 94 32 225 17 770 0.79 47 16
$3330 571 299 10358 | 0.75 2096 2074 533 295 10298 0.79 1078 994
55378 587 573 18437 | 0.74 2687 2686 590 430 16527 0.79 1338 1100
59234 1313 1090 | 38149 | 0.72 5963 5949 1052 918 | 34055 0.81 2992 2821
§13207 1399 1683 | 45611 | 0.74 8098 8097 843 1332 | 41114 0.79 4001 3690
S15850 1820 | 2183 | 51747 | 0.74 | 10214 | 10206 1411 1671 [ 47480 [ 0.831( 5131 5130
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Figure 3: Performance of Ga for the circuit s13207.
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Figure 4. Performance of TS for the circuit §13207.

to its directed search approach and its higher greediness tendency
as compared with GA to obtain a good solution.

Acknowledgment: The authors thank King Fahd University of
Petroleum & Minerals, Dhahran, Saudi Arabia, for support, under
project #: COB/ITERATE/221

(1

2]

£3]

i4]

5]

(6]

[7

—

{8]

V-500

5. REFERENCES

Sadig M. Sait and Habib Youssef. VLSI Physical Design Au-
tomation: Theory and Practice. McGraw-Hill Book Company,
Europe, 1995.

K. Shahookar and P. Mazumder. VLSI Cell Placement Tech-
niques. ACM Computing Surveys, 2(23):143-220, June 1991.

M. Pedram. CAD for Low Power: Status and Promising Di-
rections. IEEE International Symposium on VLSI Technology,
Systems and Applications, pages 331-336, 1995.

A. Ghosh, §. Devadas, K. Keutzer, and J. White. Estimation
of Average Switching Activity in Combinaticnal and Sequen-
tial Circuits. Design Automation Conference, pages 253-259,
1992.

H. Vaishnav and M. Pedram. Delay optimal partitioning tar-
geting low power VLSI circuits. [EEE Trans. on Computer
Aided Design, 18(6):298-301, june 1999.

R. R. Yager. On Ordered Weighted Averaging Aggregation
Operators in Multicriteria Decisionmaking. IEEE Transaction
on Systems, MAN, and Cybernetics, 18(1), January 1988.

Sadiq M. Sait and Habib Youssef. lterrative Compurer Algo-
rithms with Applications in Engineering: Solving Combinato-
rial Optimization Problems. 1EEE Computer Society Press,
California, December 1999.

1. P. Cohoon and W. D. Paris. Genetic placement. IEEE Trans.
on CAD, pages 956-964, 1987.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


