A Modified Ant Colony Algorithm for Evolutionary Design of Digital Circuits

Mostafa Abd-El-Barr, Sadiq M. Sait, Bambang A. B. Sarif, Uthman Al-Saiari
Computer Engineering Department ‘
KFUPM Box 673, Dhahran-31261
{mostafa, sadiq, sarif, saiarios} @ccse kfupm.edu.sa

Abstract- Evolutionary computation presents a new
paradigm shift in hardware design and synthesis. Ac-
cording to this paradigm, hardware design is pursued by
deriving inspiration from biological organisms. The new
paradigm is expected to radically change the synthesis
procedures in a way that can help discovering novel de-
signs and/or more efficient circuits. In this paper, a mui-
tiebjective optimization of logic circuits based on a mod-
ified Ant Colony (ACO) algorithm is presented. The per-
formance of the proposed algorithm is evaluated using a
set of randomly generated circuits. The results obtained
using the proposed algorithm are compared to those ob-
tained using existing ACQO-based techniques. 1t is shown
that the designed circuits using the proposed algorithm
cutperform those of the existing techniques.

1 Introduction

Conventional logic design techiniques tend to depend on
domain-specific knowledge. which is somewhat limited
hoth by the training and experience of the designer. While
tterative heuristics. with little domain knowledge, allow the
search for solutions in a much larger, and often richer, de-
sign space beyond the realms of conventional design tech-
niques. ‘

The Ant Colony Optimization (ACO) algorithm is a
new meta-heuristic that combines distributed computation,
auto-catalysis (positive feedback) and constructive greedy
heuristic in finding optimal solutions for combinatorial op-
timization problems [1]. Unlike Genetic Algorithms (GAs),
which are blind, ACO involves cooperating agenis (ants).
In ACO, interaction between components of a designed sys-
tem can be easily analyzed. Some daemon actions or other
heuristics can also be easily incorporated to further improve
the quality of selutions. In this context, it is possible to
use some rules from the Jogic synthesis domain to guide the
search process (o obtain not only better quality results, but
also faster ones.

In the early 1990%s. Hugo de Garris suggested the estab-
lishment of a new field of research called Evolvable Hard-
ware (EHW) [2]. The first work in evolutionary design of
digital circuits, Designer Genetic Algorithms (DGA), was
proposed by Louis [3]. Later. the work of Thompson [4] that
produced a tone discriminator circuit without input clock
showed the emergence of a new way of designing circuits.

0-7803-7804-0 /03/$17.00 © 2003 [EEE

In a recent development [5, 6], much attention is given
to the evolutionary design of arithmetic circuits as they pro-
vide the essential building blocks needed for larger DSP
applications. Such effort has resulted in the development
of arithmetic circuits that range from a simple sequential
adder to the more complex 3-bit multiplier. The work of
Fogarty {71 and Milfer {5. 8] claimed to build some arith-
metic circuits that cannot be produced by human designer’s
conventional methods, Coello et al. [9] proposed a similar
approach to evolve a circuit, which they claimed was bet-
ter than that of Miller's. Several other algorithms such as
Cartesian Genetic Programming, Ant Colony Optimization,
and Particle Swarm Optimization have also been used for
evolutionary logic design [6, 10, 11]. A complete review
and taxonomy of the field could be found in [12. 13, 14].

Although most of the existing techniques in evolutionary
design were able to arrive at solutions that are difficult to
obtain using conventional methods, there exist many open
problems that were still not addressed. A number of these
problems are described below.

Circuit representations: Most of .the published work in
evolutionary logic design used a two-dimensional matrix
of n X m to represent a circuit. The position of circuit’s
outputs will most likely be placed at cell(0,m — 1). How-
ever, 1t may happen that the best solution can be found at
cellit,§),. 0 < i < n, 0 < j < m. Bul some redundant
gales existing between this cell and the output cell may
degrade the quality of the solution. The problem becomes
complicated even further when the number of circnit’s
output is more than one. Figure 1 illustrates the problem
arises from circuit representation.

Functional fitmess calculation: The value of functional fit-
ness depends on the number of correct matchings between
the output’s pattern of the obtained solution and the truth
table of the intended circuit. The higher the number of hits
achieved, the higher the value of the functional fitness. This
argument i$ not always true in logic design. A solution that
has low functional fitness can be inverted to have a high
functional fitness (see Figure 2).

Objectives. of the optimization: Most of the existing tech-
niques use gate count as their objective for optimization.
With the increasing need for high performance and low

708

{a}

F2

)

Figure 1: Problems that may appear in matrix represeniation.

F1

FD__D‘_L_ F1

F1

SZDJ :_*;DJ

iy >

@

)

()

Figure 2: An evolved two-hit odd parity circuit. (a) Fitness of F1 = 0 (b) Adding an inverter. fitngss of F1 = 1 {c) Toggle

the 1ype of gate (XNOR — XOR), fitness of F1 = 1.

power circuils, the objective of only minimizing gate count
is not anymore accepiable,

This paper is organized as follows: first, problem and
cost function formulation are presented. Then, the mod-
ified ACO for logic design is discussed. Finally, perfor-
mance evaluation and comparison with existing techniques
are given.

2 Problem and Cost Function Formulation

Evolutionary computation views the problem of logic de-
sign as a search task. The methodology explores a solution
space-larger than that of the desired function. but gradually
pulls the specification of the circuit towards the target truth
table. However. the design space of digital circuits is huge.
There are 2™ (C?") possible solutions that satisfy 2 — 1 out
of 2" truth table’s pattern for an n inputs single output func-
tion. In addition to that, the number of possible structures
representing each of these solutions is many. These differ-
ent structures represent different design objectives and/or
constraints. Exploring the whole search space ts impracti-
cal. Therefore, the search space sampled by the algorithm
must have its size Iimited.

In this paper, we use the structure proposed in [3]. Each
cell of the n x mm matrix contains the information of the
gaie type and its corresponding inputs. However, unlike the
fixed interconnection rules vsed in [3]. we allow the output
of each cell in column j to be connected to any of the cells
incolumn j 4+ 1(7 > 0, j+ 1 < m). Thus, it is possible

that cell(é, k), 0 < i < n, 0 < k < m.is not connected to
any of the cells in column £ + 1.

Tt is known that each type of gate has different character-
istics for different technology. These characteristics include
area, base delay and capacitance input (output) of the gate.
Although we can build any logic circuit using AND, OR and
NOT gates, we need to have a rich (but limited) gate library
to be able to obtain different structures of the circuits. The
best circuit can then be chosen based on the multiobjective
criteria applied in the algorithm. Therefore, ten types of
gates are considered. Table 1 shows these gates.

Gate ID | Inputs Gate Output
0 a,b | WIREI a
t a,b | WIRE2 b
2 a.b | NoOTY [
3 a,b | NoT2 B
4 a. b AND a-b
5 a.b OR a+b
6 a,b XOR adb
7 a,b | NAND | a b
8 a, b NOR a+b
9 a.b | XNOR | a @b

Table §: Gate types, Gate ID, and its correspending Boolean
function. .
2.1 Fitness Calculation

The fitness of a solution consists of two parts: functional
fitness and objective fitness. These are explained below.

706

Functional Fitness: The functional fitness deals with the
functionality of the solution, i.e., how good the solution is in
satisfying the truth table of the intended Boolean function.
Several functional fitness formulations are reported in the
literature [13]. The commonly used one is the ratio of the
number of correct hits to the length of the truth table. If F'F
denotes the functional fitness, then theé formulation below is
apptied.

_ Number of hits
" Length of the truth table

n

The solution has to be “inverted” if the value of F'F is less
than 0.5. Therefore, the formulation of normalized FF
(F'Fy,) below is applied:

FF, = Max{FF,1- FF} (2}

Objective Fitness: The objective fitness {OF) is the mea-
sure of the quality of solution in terms of optimization ob-
jectives such as area, delay, gate count and power consump-
tion. Formulation of cost functions used to estimate these
values is given as follows.

If G is the set of possible gate types and g; € G, the cost
for gate count is formalized as follows:

COStgate_caun_t = Z ai 3
i€GiEWIRES

The cost for area of VLSI circuits is stated as follows.

> Alg) (4)

i€GiAWIRES

. COStareu =

Where A(g;) is the area of gate g{%).

The propagation delay of signals in VLSI circuit consists
of two elements, switching delay of gates and interconnect
delay. If a path # consists of n.gates {v1, vs, ..., v}, then,
the delay T along 7 is expressed by the following equation:

; - . .
Tp =3 (CDi+ ({LFi+ Ri) x C))
=1

Where CD); is the switching delay of the cell driving pate
v;. LF; is the load factor of the driving block, R; is the
interconnect resistance’ of net v;, and C; is the load capac-
itance of cell i given-by Equation 5. Since the value of R;
is constant, it can be neglected. The overall circuit delay
is determined by the delay along the longest path (the most
critical path).)

The total capacitance C; of gate 7 consists of the iner-
connect capacitance ai the output node of gate ¢ and the sum
of the capacitances of the input nodes of the gaies driven by
gate i. : :

C:=Ci+) €F ' (5)
- JEM; -

Where Cj.' is the capacitance of the input node of a gate j
driven by gate’s and C7 represents the interconnect capaci-
tance at the output node of cell 4.

The total power consumption can be approximated by
the following equation {15].

' 1
Pi=) 5Ci-Vip-f-Sip ()

iEM

Where P is the total power consumption, Vpp is the supply
voliage, S; is the switching probability at the output node of
cell 4, i.e., the average number of transitions per clock cycle
al the output of gate i, f is the clock frequency and 3 is a
technology dependent constant.

The cost of the overall power consumption in VLS] ¢ir-
cuits can then be estimated as follows.

GOSthwgr = Z Si C‘1 (7
€M
In order to indicate whether a given solution is satisfying
a certain constraint, objective fitness is formulated as fol-
lows. Note that the constraint values states the upper bound
for a specific objective.

_ Cost
" Cost + Constraint .

Obj (@)
With this formulation, the solution that satisfies the area
constraint will have Objare, greater than 0.5, Any solution
that has Objgpe, Jess than 0.5 will not be considered. The
objective fitness is then calculated as follows.

— Lwcon; k- Obin

or
ZkEobj Wk

9

The weights for each elements of OF decide the
emphasis of the optimization process. It is also possible to
consider more-than one objective.

Overall Fitness Calculation: The formulation of overall
fitness function js shown in Equation 10. W is the weight
for functional fitness. The value of W, determines the
trade-off in the searching process, whether to have solutions
better in terms of FF (or OF). Since the goal is to obtain
waorking circuits, the value of Wy must be large enough.
However, it should not be too large in order 1o accommo-
date the OF part. Initial experiments showed that the set-
ting of Wy = 0.5 is appropriate for small circuits (up to four
variables). However, these values cannot be used for bigger
circuit.

OvF =W;-FF + (1 - W;) - OF (10)

710

@y @ (@ y)z +.\'_\'E
.
Y e (@& oy
Xy .\‘;.‘
(r@)y

AN ,\'\:

o (X+ ¥ 0y @)
XH¥

X+ vz

Figure 3: Some of the possible paths in the function f.

3 Proposed Approach

Consider the Boolean function f = Tyz + z¥z + x3Z,
Fizure 3 shows a graph of some possible paths connect-
ing literal z to the inlended function f. Assume that the
ants start the tour from literal z. The ant will traverse the
paths by selecting the branches through a probabilistic pro-
cess. Assume that the goal is to find the shortest path to
represent function f. Therefore, the ants that found the path
T = (z+y) = (z+y)zy © 2) would return the best
representation for function f.

The number of paths in Figure 3 is more than eleven.
Traversing all possible paths is however, impractical. We
need to modify, the ACO algorithm to handle this huge
search space.

SO0 | SO.1) | .. Si0.m-1)
S(1.0) | 8(1.1) S(1.m-1}
S-1,01{S-1.1)| Sl

Figure 4: Nest cell and matrix A for ant to be traversed.

A circuit is modelled as a matrix M of size » x m. The
content of matrix A is dynamically filled. At first, matrix
M is filled with randomly generated cells. Then, each ant
will traverse the matrix. These ants originate from a dummy
cell called nest (see Figure 4), and raverse each state (a cell
in a column) until it reaches the last column or a cell that
has no successor.

After the ants finish traversing the matrix, all cells are
checked 10 see whether to be kept or not. Each cell can
assume wo different status, namely: 1" (locked) or 1" (re-
moved). The cells that are included in the best path(s) will
assurne the status of ‘1’ (locked). And the cells that are feed-

711

ing locked cells will be locked as well. All other cells will
assume the status ‘" {removed). The cells that assume sta-
tus ‘" will be removed at the end of each iteration. These
empty cells will be then fitled up again at the beginning of
the next iteration. Figure 5 shows the pseudocade of the
proposed algorithm. '

Modified ACO algorithm
For MAXITER number of iteration do
Fili the matrix
ACO algorithm
Ant activity
Pheremone update
Remove unfit cells
End For
Return the best path
end Algorithm

Figure 5: Modified Ant Colony Algorithm.

3.1 Pheromone Trail Calculation and Update

The selection of which edge to traverse is determined by
a stochastic process, e.g. Roulette Wheel. Therefore, the
probability of choosing each edge must be calculated in ad-
vance. This probability depends on the pheromone value
() and the heuristic value (1) of the corresponding edge (or
the next cell), or can be formulated below.

[ri;(£)]°
Ztesl [ra(t))®

The value of & and 3 imply the preference of the search,
whether it depends more on the pheromone value or the
heuristic value. Every newly created cell will be given an
initial and small amount of pheromone. value. This value
will be updated every iteration by the ant.

["71 1]

Pylt) = W

(y

The heuristic value () depends on the distance of FF;,
values beiween cells. The distance d between cells is for-
mulated as follows.

d=FF,(i+1) ~ FF,(i) (12)

n=d+05 (13)

The addition of 0.5 in the calculation of 77 is meant t0 nor-
malize the value of 1 into [0,1]. A decrease of the functional
fitness means that the value of # is in the range of [0,0.53),
while an increase of the functional fitness makes the value
of i in the range of (0.5. 1]

While traversing the matrix, every ant carries the infor-
mation of the paths taken so far. e.g., the row index of all
cells that are visited. If an ant reaches a cell that has no suc-
cessor, the overall fitness of the solution built by the ant will
be evaluated. .)

When all ants finish their tour, pheromone update is per-
formed. The pheromone update consists of two procedures,
pheromone addition and pheromone evaporation. However,
fl.S has been shown in [i6), it is better to limit the number
of ants that can put additional pheromone. Thus, only cer-
tain number of ‘the best’. ants can track their path(s) back
and put some additional pheromone on it. The pheromone
addition is performed using the following equation:

(14)
(15)

Ar=\-OvF)
Cr{t) =7(t) + AT
where OuF () denotes the overall fitness of the solution that
the ants built, A7 is the additional pheromone and A is a
constant. o :
Next, pheromone evaporation will take place using the
following formula.

T=(1-p)x 71, with p=(0,1] (16)

While traversing the matrix, the ants will memorize the
best cell visited along the path. The paths from nest to the
best cell will be returned. The remaining part of the path
will be discarded by the ant. o

When the maximum number of iterations is reached. the
best solution is returned. In case of multiple output cir-
cuits, multiple colony of ants are used. In this contex(. each
colony of ants 1s assigned to find a specific output of the
© circuit. All colonies will share the same matrix. The pos-
sibility of using the same sub-functions is established by
sharing the pheromone value among different colonies.

4 Experimental Setup

The technology parameters are obtained using. CMOS 0.25

micron library from MOSIS [17]. The parameters used for
experiments are as follows:

.1 :

Wf=105.0.75]

. Number of ants = 10 * number of inputs

. Number of generation = 10

. Maximum iteration = 2000 (four input circuits) or
3000 (five input circuits)

SO e

8. Number of runs = 10-15
9. Size of the matrix = (2 * number of inputs) x (2 *
number of inputs)

1t should be noted that we avoid using gate count as the
measure of abjective for several reasons. Firstly. the term
“gate’ or hasic module for the evolutionary logic design de-
pends on the definition of the gate library that is used. One
may use NAND gates, or a set of AND, OR and XOR gaies,
or MUXes, or a combination of all these. Secondly, each of
the aforementioned gates has different charactéristics. We
can assume that an XOR gate as an atomic gate. How-
ever. this may not be the case for all warget implementa-
tions. For examiple, in standard cell design, an XOR gate
requires more area compared to an AND gate, and an AND
gate requires more area than an NAND gate. This is in con-
trast with FPGA. in which all types of gate can fit into one
ceil. Nevertheless, if the target implementation is an FPGA,
calculating the area is proportional to calculating the gate
count. In this context. the proposed algorithm is more gen-
eral as compared to the existing techniques. However, since
most of the published work in evolutionary logic design use
the gaie count as a measure of quality, we provide a com-
parison of our results in terms of gate count as well.

5 Performance Evaluation and Comparison.

Several circuits of different complexity have been used to
test the proposed algorithm. For the sake of simplicity, the
truth table of the circuits will be represented as a string of
zeros and ones. Table 2 shows the circuits used for perfor-
mance evaluation. Note that these circuits represent single
output Boolean functions.

Name Inputs " Truth Table
Circuit T I OTOTTTOTOOTO0TTT
Circuit? I
Cirenit3 Y OTTTTOIGOTTION0N
Circuit 5 | TO0OTTTITO0TOTTITO0TI0TO0T {11010
Circuity 5 OTOOOTOTOTDOTOTONTTIOT0000H0T THH
Circulth 3 QOCTOTTO
Circuit N TTOTOOTTTG00T00
Circuil ER TONOTTTTITINOTON

Table 2: Circuits used to test the perfarmance of the pro-
posed approach.

Figure 6 shows the behavior of the proposed algorithm
for area optimization of Circuit] for the first 100 iterations,

712

0.4

h\

AW

|

———=Functional Fitness
----- Narmalized Area
—— Normalized Delay
Normabhzed Power Consumption

&1 oo

Figure 6: Functional fitness and satisfaction of objectives tor the first 100 iterations.

In this figure, the area, delay and power consumption are
normalized so that the behavior of the proposed approach
can be observed easily. As can be seen, an increase in func-
tional fitness mostly requires an increase in some of the ob-
jectives. But then. if there is no increase in the functional
fitness, minimization of objectives is observed. The pro-
posed algorithm is able to arrive at a functionally correct
circuit for the intended truth table after only 20 iterations.
Around iteration 100, a significant increase in the delay of
the solution is observed. However, since the emphasize of
the currem course of action is optimization of area. then new
solution that has less area but higher delay is accepted.

F Circuit | Objectives Delay Optimized | Power Optimized
’ Best | Average | Best | Average
area 1.14 1.13 1.00 1.09
Circuit! delay 0.81 0.99 1.00 104
power 1.67 1.10 1.00 1.06
area 1.27 1.20 0.92 1.00
Circuit2 delay 099 1.02 1.00 1.14
power 1.29 1.17 0.92 0.97
arca 0.96 1.04 0.87 0.90
Circuit3 delay 1.00 0.92 0.87 0.94
power 0.94 -1.00 0.87 0.91
area 1.44 104 1.18 1.0%
Cirenid delay 0.83 0.97 116 0.98
power {41 .04 1.05 1.07
area 0.94 1.00 0.75 0.97
Circuits delay 1.05 0.94 1.54 1.09
power 0.94 0.97 0.78 0.96

Table 3: Results for the delay and power optimization. nor-
malized with respect to the results of area optimization.

The results of delay optimized and power optimized cir-
cuits are given in Table 3. Note that these values are normal-
ized with respect to the results obtained from the area opti-
mized circuits. The normalized area for each circuit in Ta-

ble 3 should be less than or equal to one. As can be seen, ex-
cept for Circuit5, the delay optimization scheme produced
better circuits in terms of delay (normalized delay < 1). at
the expense of larger area and/or power consumption, These
resulls show the effectiveness of the proposed algorithm.

In order to compare our algorithm with known published
work, some circuits are tested and compared to the results
reported in {9, 10]. Some selected circuits from Table 2 with
the addition of 2-bit multiplier and 2-bit adder with carry
circuits are used for comparison. An overall comparison is
shown in Table 4.

For multiple output circuits. multiple colony of anis are
used. In a 2-bit adder circuit for example, we need three
colony of ants o find all the three outputs of the circuits.
Each colony will find the assigned circuit’s output. The
sharing of pheromone value between colonies makes the
sharing of sub-functions possible. However, this sharing
can indeed bias the search,.since the second colony of ants
“smell” the pheromone that was updated by the first colony
of ants, and the third colony will 'smeli* the pheromone that
will be updated by the second colony, and so on. This is
the reason why the value of 3 of Equation 11 is set equal
to 2 during the course of the expertment. With higher value
of f3. the search is more dependent on the heuristic value 7.
which emphasizes finding the functionally correct circuits.
Figure 7 shows the functional fitness value of each outputs
of a 2-bit adder circuit, Notice that the ants will find outputs
of the circuit one by one. In analogy with the process of ants
finding the food. the simplest function (the closest) will be
obtained first and the mosi complext funciion (the furthest)
will most likely be obtained the last. In this comext. for 2-
bit adder circuit, the first sum will be obtained firsi while
the carry out will be obtained the last.

713

= inverter at the output(si is not considered

Circuit - Algorithm Resulting Function Gate Count | Area (micron)
MGA [9] F=Z(X+Y)o XY 4 9477
Circuitt Ant System [(] F=(ZaXYHX +Y) 4 9477
Proposed Approach F=(X+YYZ0 XY 4 1776
MGA[® | F=((WeWX)s((Z+X+Y)a Z)) 70 17496
Circuit7 | Ant System {10] F={((W+Y)®Z)+ X")((YZ) & (X' W) 9 19197
Proposed Approach F=(X+Z)+ (¥ z))o (WXY) 6 L 2393 |
MGA (9] F={({A@B)& AD)+ (C+ (4 DY) 6% 13332
Circuitg Ant System [10] F=({BeD)alA+D)e{((B+C)+(As D) 7= 18468
Proposed Approach "F=({AaD)-C') (AD® (40 B)) 7 14337
Fo=AB. F1 = AD & BC
MGA [9] : 7 17253
Fo= (CD@ABCD: Fy = ABCD
} Fo=AB: Fi1 =AD& BC
2 Ant System {10] 7 17253
. F2=CD&ABCD: Fy= ABCD |
e Fo=AB: F\ = ADgBC .
Proposed Approach —_— =_— 7 12636
. Fy=CD.-AB: F3 =BC. -AD
Fg=AGBGC
add2 | | Proposed Approach M=(A0B)+CO(DOEG(A+ B)) 1 24300
L B=DE (A¥B)+ (DGE)Y+((AD By 4 C)

.

Table 4: Comparison with existing techniques in terms of gate count and area of the circuits.

6 Cpnclusion" - ‘

In this paper, we have presented a modified ant colony al-
gorithm for evolutionary logic design. The modification is
performed in order to suit the problem instance and to han-
die some of the problems that are not addressed by exist-
ing techniques. Performance of the proposed approach and
comparison with the existing techniques are shown. In all
cases, the results obtained using the proposed approach out-
performed those obiained using existing techniques.

Acknowledgment-

We would like to acknowiedge the continued support for
our research from King Fahd University of Petroleum &
Minerals. This work was supported under project entitled
“Tterative Heuristics for the Design of Combinational Logic
Circuits”. ‘ i :

Bibliography

[1] M. Dorigo, M. Maniezzo, and A. Colorni. The Ant
Systems: An Autocatalytic Optimizing Process. Re-
vised 91-016, Dept. of Electronica, Milan Polytechnic,
1991,

12} Hugo de Garis. Evolvable Hardware: Genetic Pro-
gramming of a Darwin Machine. Proceedings of the
International C orrférence inr Innsbruck, Austria, pages
441-449, Springer-Verlag. 1993,

31 Sushil J. Louis. Genetic Algorithins as a Computa-
tional Tool for Design. PhD thesis. Department of
Computer Science, Indiana University, Aug 1993,

{41 Adnan 'Thompson. Silicon Evolution. Proceedings
of the First Annual Conference on Genetic Program-
ming, pages 444-452, MIT Press, 1996.

74

0.7 1

95 —4m———————

101 201 301

Figure 7: Functional fitness of 2-bit adder. :

(5] L F Miller. D. Job. and Vassilev V. K. Principles in the
Evolutionary Design of Digital Circuits - Part L. Jour-
nal of Genetic Programming and Evolvable Machines.
1(1):8-35, 2000.

6] J.F Miller and P. Thomson. A Developmental Method
for Growing Graphs and Circuits. Fiftlt International
Conference on Evolvable Svstems: From Biglogy to
Hardware. 2606:93-104, Mar 2003.

{7} T. Fogarty, J. F. Miller. and P. Thomson. Evolving
Digital Logic Circuits on Xilinx 6000 Family FPGAs.
The 2ud Online Conference.on Soft Computing in-En-
gineering Design and Manufacturing, pages 299-305,
Springer-Verlag, London, 1998,

(8] J. E Miller. T. Fogarty, and P Thomson. Designing
Electronic Circuits Using Evolutionary Algorithms.
Arithmetic Circuits: A Case Study. Genetic Algo-
rithms and Evolution Srraregy in Engineering and
Coniputer Science. John Wilex and Sons, Chichester.
pages 105-131, 1998,

[9] C. A. Coelio and A. H. Aguirre..
tiobjective Design of Combinational Logic Circuits.
Proceedings of the Second NASA/DoD Workshop on
Evelvable Hardware, pages 161--170. Jul 2000.

[10] C. A. Coello, A. D. Christiansen. and A. H. Aguirre.
Ant Colony System for the Design of Combinational
Logic Circuits. Evolvable Systems: From Biology to
Hardware. Edinburgh, Scorland. pages 21-30, April
Springer Verlag, 2000.

[11] C. A. Coello and Hernandez Luna and Erika and A H.
Aguirre. Use of Particle Swarm Optimization to De-

Evolutionary Mul- ~

—
——Eunctional Fitnéess {1) ’
H
|

— Functional Fitnass (2)

77777 Functional Fitness {3)

401 501 > - 701

e

sign Combinational Logic Circuits, Evolvable Svs-
tems. From Biology to .Hardware. 5th Inrernational
Conference, ICES 2003, 2606:398-409, Mar 2003.

[12} R. 8. Zebulum. M. A. Pacheco. and Marley Vellasco.
Evolvable Systems in Hardware Design: Taxonomy,
Survey and Applications. Evelvable Svstem: From
Biology to Hardware. Proceeding of the First Inrer-
narional Conference. ICES 96 Tsukba, Japan, Lecture
Naotes in Computer Suence 1259:344--358, Oct. 1997.

{131 R. S Zebulum, M, AL Pacht,co, and Maria Vellasco.
FEvolutionary Electronics: Automaric Design of Elec-
tronic Circuits and Svstems by .Genetic Algorithms.
CRC Press. 2002.

{14} Xin Yac and Tetsuya Higuchi. Promises and Chal-
-lenges of Evolvable Hardware. ' [EEE Trans. an Svs-
tems. Man, and Cybernetics - Part C: Applzcanonsand
Reviews, 29(1):87-97. 1999,

115) Srinivas Devadas and Sharad Malik. A Survey of Opti-
mization Techniques Targeting Low Power VLS Cir-
cuits. 32nd ACM/IEEE Design Automation Confer
ence, pages 242-247, 1995,

[16] T. Stutzie and H. Hoos. Improvements of the ant sys-
tem: Introducing MAX-MIN ant system. Proceed-
ing of the Iiternational Conference on Arntificial Nes-
ral Networks and Genetic Algorithms, page: 245-249,

1997.

117} MOSIS Standard Cell - Library for CMOS.
htip:/fwww.mosis.org/Technical/Designsupport/sid-
cell-library-semos.html.

715

