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Abstract- Evolutionary computation presents a new 
paradigm shift in hardware design and synthesis. Ac- 
cording to this paradigm, hardware design is pursued by 
deriving inspiration from biological organisms. The new 
paradigm is expected to radically change the synthesis 
procedures in a way that can help discovering novel de- 
signs andor more efficient circuits. In this paper, a mul- 
tiohjective optimization of logic circuits based on a mod- 
ified Ant Colony (ACO) algorithm is presented. The per- 
formance of the proposed algorithm is evaluated using a 
set of randomly generated circuits. The results obtained 
using the proposed algorithm are compared to those ob- 
tained using existing ACO-based techniques. It is shown 
that the designed circuits using the proposed algorithm 
outperform those of the existing techniques. 

1 Introduction 

Conventional logic design techniques tend to depend on 
domain-specific knowledge. which is somewhat limited 
hoth by the training and experience of the designer. While 
iterative heuristics. with little domain knowledge, allow the 
search for solutions in a much larger, and often richer, de- 
sign space beyond the realms of conventional design tech- 
niques. 

The Ant Colony Optimization (ACO) algorithm is a 
new meta-heuristic that combines distributed computation, 
auto-catalysis (positive feedback) and constructive greedy 
heuristic in finding optimal solutions for combinatorial op- 
timization problems [ I ] .  Unlike Genetic Algorithms (GAS). 
which are hlind, ACO involves cooperating agents (ants). 
In ACO, interaction between components of a designed sys- 
tem can be easily analyzed. Some daemon actions or other 
heuristics can also be easily incorporated to further improve 
the quality of solutions. In this context, it is possible to 
use some rules from the logic synthesis domain to guide the 
search process to obtain not only better quality results. but 
also faster ones. 

In the early 1990's. Hugo de Garris suggested the estab- 
lishment of a new field of research called Evolvable Hard- 
ware (EHW) [2]. The first work in evolutionary design of 
digital circuits, Designer Genetic Algorithms (DGA), was 
proposed by Louis 171. Later. the work of Thompson 141 that 
produced a tone discriminator circuit without input clock 
showed the emergence of a new way of designing circuits. 

In a recent development 15, 61: much attention is given 
to the evolutionary design of arithmetic circuits as they pro- 
vide the essential building blocks needed for larger DSP 
applications. Such effort has resulted in the development 
of arithmetic circuits that range from a simple sequential 
adder to the more complex 3-hit multiplier. The work of 
Fogarty [7] and Miller [5. 81 claimed to build some arith- 
metic circuits that cannot he produFed by human designer's 
conventional methods. Coello et al. [9] proposed a similar 
approach to evolve a circuit, which they claimed was het- 
ter than that of Miller's. Several other algorithms such as 
Cartesian Genetic Programming. Ant Colony Optimization, 
and Particle Swarm Optimization have also been used for 
evolutionary logic design [6, IO,  I I ] .  A complete review 
and taxonomy of the field could he found in [12. 13, 141. 

Although most of the existing techniques in evolutionary 
design were able to arrive at solutions that are difficult to 
obtain using conventional methods, there exist many open 
problems that were still not addressed. A numher of these 
problems are described below. 

Circuit representations: Most of .  the puhlished work in 
evolutionary logic design used a two-dimensional matrix 
of n x m to represent a circuit. The position of circuit's 
outputs will most likely be placed at cell(0,rn - 1). How- 
ever, i t  may happen that the hest solution can be found at 
ceIKi,j), 0 < i < n, 0 < j < m. But some redundant 
gates existing between this cell and the output cell may 
degrade the quality of the solution. The problem becomes 
complicated even further when the number of circuit's 
output is more than one. Figure I illustratrs the problem 
arises from circuit representation. 

Functional fitness calculation: The value of functional fit- 
ness depends on the numher of correct matchings between 
the output's pattern of the obtained solution and the truth 
table of the intended circuit. The higher the numher of hits 
achieved, the higher the value of the functional titness. This 
argument is not always true in logic design. A solution that 
has low functional fitness can be inverted to have a high 
functional fitness (see Figure 2). 

Objectives of the optimization: Most of the existing tech- 
niques use gate count as their objective for optimization. 
With the increasing need for high performance and low 
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Figure 1 :  Problems that may appear in matrix representation. 

(a) e) (d 

Figure 2: An evolved two-hit odd parity circuit. (a) Fitness of F1 = 0 (h)  Adding an inverter. fitness of FI = I (c)~Toggle 
the type of pate (XNOR --f XOR), fitness of FI = I 

power circuits. the ohjective of only minimizing pate count 
is not anymore acceptable. 

This paper is organized as follows: first. problem and 
cost function formulation are presented. Then. the mod- 
ified ACO for logic design is discussed. Finally. perfor- 
mance evaluation and comparison with existing tachniques 
are given. 

2 Problem and Cost Function Formulation 

Evolutionary computation views the problem of logic de- 
sign as a search task. The methodology explores a solution 
space larger than that of the desired function. hut gradually 
pulls the specification of the circuit towards the target truth 
tahle. However. the design space of digital circuits is huge. 
There are 2" (C:") possible solutions that satisfy 2" - 1 out 
of 2" truth tahle's pattern for ann  inputs single output func- 
tion. In addition to that, the number of possible structures 
representing each of these solutions is many. These differ- 
ent structures represent different design ob.jectives and/or 
constraints. Exploring the whole search space is impracti- 
cal. Therefore, the search space sampled hy the algorithm 
must have its size limited. 

In this paper, we use the structure proposed i n  [3]. Each 
cell of the n x m matrix contains the information of the 
gate type and its corresponding inputs. However, unlike Ihc 
fixed interconnection rules used in [3]. we allow the output 
of aach cell in column j to he connected to any of the cells 
in column j + 1 (j > 0, j + 1 < m).  Thus, it is possible 

that cell(i: k)? 0 < i < n, 0 < k < m. is not connected to 
any of the cells in column k + 1. 

It is known that each type of gate has different character- 
istics for different technology. These characteristics include 
area. base delay and capacitance input (output) of the gate. 
Although u'e can build any logic circuit using AND, OR and 
NOT pates. we need to have a rich (hut limited) gate library 
to he able to obtain different structures of the circuils. The 
best circuit can then be chosen based on the multiohjective 
critefia applied in the algorithm. Therefore, ien types of 
gates are considered. Table I shows these fates. 

Gate ID I Inputs I Galr 1 Output 
0 )  a,b 1 WlKEl 1 a 

NOT2 

9 

Table I :  Gate types. Gate ID. and its corresponding Boolean 
function. 

2:l Fitness Calculation 

The fitness of a solution consists of two parts: functional 
fitness and ohjective fitness. These are explained below. 
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Functional Fitness: The functional fitness deals with the 
functionality of the solution. i.e.; how good the solution is in 
satisfying the truth table of the intended Boolean function. 
Several functional fitness formulations are reported in the 
literature 1131. The commonly used one is the ratio of the 
number of correct hits to the length ofthe truth table. If F F  
denotes the functional fitness, then the formulation below is 
applied. 

( 1 )  
Number of hits  

Length o f  the truth table 
F F  = 

The solution has to he 'inverted' if the value of F F  is less 
than 0.5. Therefore. the formulation of irormali:ed F F  
(FF,) below is applied: 

FF,, = h.laz{FF, 1 - F F }  ( 2 )  

Objective Fitness: The ob,jective fitness ( O F )  is the mea- 
sure of the quality of solution in terms of optimization oh- 
jectives such as area, delay, gate copni,and power consump- 
tion. Formulation of cost functions used to estimate these 
values is given as follows. 

If G is the set of possible gate types and gi E G, the cost 
for gate count is formalized as follows: 

COStgate.eount = si (3) 
iEG,i#WIRES 

The cost for area of VLSI circuits is stated as follows. 

COStnreo = ' 4 g i )  (4) 
i t G , i # W I R E S  . 

Where A ( g i )  is the area.of gate g ( i ) .  
The propagation delay of signals in VLSI circuit consists 

of two elements, switching delay of gates and interconnect 
delay. If a path ?I consists of n gates {vl, v2, ..., vn}, then, 
the delay T, along ?I is expressed by the following equation: 

T,, = c ( C D i  + ( (LFi  + Ri) X C;)) 

Where CDi is the switching delay of the cell driving gate 
ui. LFi is the load factor of the driving block, Ri is the 
interconnect resistance of net u i ,  and Ci is the load capac- 
itance of cell i given-by Equation 5. Since the value of Ri 
is constant, it can he neglected. The overall circuit delay 
is determined by the delay along the longest path (the most 
critical path). 

The total'capacitance Ci of bate .i consists of ihe inter- 
connect capacitance at the output node of gate i and the sum 
of the capacitances of the input nodes of the gates driven by 
gate i. 

.. 
"-1 

i= 1 

c, = c: + c," 
]EM. 

Where C: is the capacitance of the input node of a gate j 
driven by gate'i and C; represents the interconnect capaci- 
tance at the output node of cell i. 

The total power consumption can he approximated by 
the following equation 1151. 

Where Pt is the total power consumption, VDD is the supply 
voltage. Si is the switching probability at the output node of 
cell i, i.e.. the average numher of transitions per clock cycle 
at the output of gate i. f is the clock frequency and p is a 
technology dependent constant. 

The cost of the overall power consumption in VLSI cir- 
cuits can then be estimate3 as follows. 

COStpou,ler = c si ' ci (7) 

In order to indicate whether a given solution is satisfying 
a certain constraint, objective fitness is formulated as fol- 
lows. Note that the constraint values states the upper hound 
for a specific objective. 

i E M  

(8) 
Cost 

Cost + Constraint 
Obj = 

With this formulation. the solution that satisfies the area 
constraint will have Obj,,,, greater than 0.5. Any solution 
that has Obj,,,, less than 0.5 will not he considered. The 
objective fitness is then calculated as follows. 

The weights for each elements of O F  decide the 
emphasis of the optimization process. It is also possible to 
consider more.than one objective, 

Overall Fitness Calculation: The formulation of overall 
fitness function is shown in Equation IO.  U,./ is the weight 
for functional fitness. The value of T4-t determines the 
trade-off in the searching process, whether to have solutions 
better in terms of F F  (or OF).  Since the goal is to ohtain 
working circuits. the value of IVj must he large enough. 
However, it  should not be too large in order to accommo- 
date the O F  part. Initial experiments showed that the set- 
ting of bV/ = 0.5 is appropriate for small circuits (up to four 
variables). However, these values cannot he used for bigger 
circuit. 

OvF = Wf.FFF+ (1 - W f )  . O F  ( I O )  
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Figure 3: Some ofthe possihle paths in the function .f 
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Figure 4: Nest cell and matrix A4 for ant tn he traversed. 

A circuit is modelled as a matrix A.I of sire n x m. The 
cnntent of matrix A I  is dynamically filled. At first. matrix 
M is filled with randomly generated cells. Then, each ant 
will traverse the matrix. These ants originate from a dummy 
cell called nesf (see Figure 4). and traverse each state (a cell 
in a column) until it reaches the last column or a cell that 
has no successor. 

After the ants finish traversing the matrix, all cells are 
checked to see whether to he kept or not. Each cell can 
assume two different status, namely: 'I' (locked) or 'r' (re- 
moved). The cells that are included in the hest path(s) will 
assume the status of 'I' (locked). And the cells rhat are feed- 

ing locked cells will he locked as well. All other cells will 
assume the status 'I' (removed). The cells that assume sta- 
tus 'r' will he removed at the end of each iteration. These 
empty cells will he then filled up again at the beginning of 
the next iteration. Figure 5 shows the pseudocode of the 
proposed algorithm. .. 

Modified ACO algorithm 
For MAXITER numher of iteration d o  

Fill the matrix ' 

ACO algorithm 
Ant activity 
Pheromone update 

Remove unfit cells 
End For 
Return the hest path 

end Algorithm 

Figure 5 :  Modified Ant Colony Algorithm. 

3.1 Pheromone Trail Calculation and,Update 

The selection of which edge to traverse is determined by 
a stochastic process. e.g.. Roulette Wheel. Therefore. the 
probability of choosing each edge must be calculated in ad- 
vance. This probahility depends on the pheromone value 
( r )  and the heuristic value (7) of the corresponding edge (or 
the next cell), or can be formulated below. 

The value of CY and f i  imply the preference of the search, 
whether i t  depends more on the pheromone value or the 
heuristic value. Every newly created cell will he given an 
initial and small amount of pheromone value. This value 
will be updated every iteration hy the ant. 
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The heuristic value ( q )  depends on the distance of FF, 
values between cells. The distance d between cells is for- 
mulated as follows. 

d = FF,(i + 1) - FF,(i) 

1) = d + 0.5 

(12) 

(13) 

The addition of 0.5 in the calculation of 1) is meant to nor- 
malize the value o fq  into l0.11. A decrease of the functional 
fitness means that the value of 1) is in the range of [0,0.5), 
while an increase of the functional fitness makes the value 
of 17 in the range of (0.5. I ]  

While traversing the matrix, every ant carries the infor- 
mation of the paths taken so far. e.g., the row index of all 
cells that are visited. If an ant reaches a cell that has no suc- 
cessor, the overall fitness ofthe solution built by the ant will 
he evaluated. 

When all ants finish their tour, pheromone update is per- 
formed. The pheromone update consists of two procedures. 
pheromone addition and pheromone evaporation. However, 
as has been shown in [161, it is better to limit the number 
of ants that can put addirional pheromone. Thus. only cer- 
tain number of 'the best'. ants can track their path(s) hack 
and put some additional pheromone on it. The pheromone 
addition i~s performed using the following equation: 

T ( t )  T ( t )  +AT (15) 

where OvF(b) denotes the overall fitness of thc solution that 
the ants built, AT is the additional pheromone and A is a 
constant. 

Next, pheromone evaporation will take place using the 
following formula. 

7 = (1 - p )  x 7,. with p = (0 :  11 (16) 

While traversing the matrix. the ants will memorize the 
best cell visited along the path. The paths from nest to the 
hest cell will hcreturned. The remaining part of the path 
will be discarded hy the ant. . . 

When,the maximum number of iterations is reached. the 
best solution is returned. In case of multiple output cir- 
cuits. multiple colony of ants are used. In this context. each 
colony of ants is assigned to find a specific output of the 
circuit. All colonies will share the same matrix. The pos- 
sibility of using the same suh-functions is established by 
sharing the pheromone value among different colonies. 

4 Experimental Setup 

The technology parameters are obtained using CMOS 0.25. 
micron library from MOSIS 1171. The parameters used for 
experiments are as follows: 

1. Q = I  
2.  p = 2  
3. p=0 . I  
4. 1r;f = [ O S .  0.751 
5. Numherpf ants = 10 
6. Numher of generation = 10 
7. Maximum iteration = 2000 (four input circuits) or 

3000 (five input circuits) 
8. Number ofruns = 10-15 
9. Size of the matrix = (2 * number of inputs) x (2 * 

numher of inputs 

number of inputs) 

It should he noted that we avoid using gate count as the 
measure of objective for sewral reasons. Firstly. the term 
'gate' or hasic module for the evolutionary logic design de- 
pends on the definition of the gate library that is used. One 
may use NAND gates, or a set of AND, OR and XOR gates. 
or MUXes. or a combination of all these. Secondly. each of 
the aforementioned gates has different characteristics. We 
can assume that an XOR gate as an atomic gate. How- 
ever. this may not be the case for all target implementa- 
tions. For example, in standard cell design, an XOR. gate 
requires more area compared to an AND gate. and an AND 
gate requires more area than an NANDgate. This is in con- 
trast with FPGA. in which all types of gate can tit into one 
cell. Nevertheless. if the target implementation is an P G A .  
calculating the area is proportional to calculating the gate 
count. In this context. the proposed algorithm is more gen- 
eral as compared to the existing techniques. However, since 
most ofthe published work in evolutionary logic design use 
the gate count as a measure of quality, u e  provide a com- 
parison of our results in terms of gate count as well. 

5 Performance Evaluation and Comparison, 

Several circuits of different complexity have been used to  
test the proposed algorithm. For the sake of simplicity. the 
truth table of the circuits will he represented as a string of 
zeros and ones. Table 2 shows the circuits used for perfor- 
mance evaluation. Note that these circuits represent single 
output Boolean functions. 

Table 2: Circuits used to test the performance of the pro- 
posed approach. 

Figure 6 shows the behavior of the proposed algorithm 
for area optimization of Circuit1 for the first 100 iterations. 
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Figure 6: Functional fitness and satisfaction of objectives for the first 100 iterations. 

Circuit Oh,ircrivrs 

In  this figure, the area, delay and power consumption are 
normalized so that the behavior of' the proposed approach 
can he ohserved easily. As can he seen. an increase in func- 
tional fitness mostly requires an increase in some of the ob- 
jectives. But then. if there is no increase in the functional 
fitness. minimization of objectives is ohserved. The pro- 
posed algorithm is able to arrive at a functionally correct 
circuit for the intended truth table after only 20 iterations. 
Around iteration 100, a significant increase in the delay of 
the solution is ohserved. However. since the emphasi7.z of 
the current course of action is optimization of area. then new 
solution that has less area but higher delay is accepted. 

Delay Optimized 1 Power Optimized 
1 Ax'erage 1 Best 1 Average BeE, 

Circuill 
~~ .... ~. ~. ~. 

delay I 0.81 I 0.99 1 1.00 1 1.04 
power 11.07 I 1.10 I 1 . 0 0  1 1.06 

Circuit? 

__ 
Circuii i 

__ 
Circuit4 

. .  , -. , 
area 1 0.94 1 1.00 1 0.75 I 0.97 

Circuit5 delay I 1.05 1 0.91 1 1.54 I 1.09 
power I 0.94 I 0.97 1 0.78 I 0.96 

Table 3: Results for the delay and power optimization. nor- 
malized with respect to the results of area optimization. 

The results of delay optimized and power optimized cir- 
cuits are given in Tahle 3. Note that these values are normal- 
ized with respect to the results obtained from the area opti- 
mized circuits. The normalized area for each circuit i n  Ta- 

ble ? should he less than or equal to one. As can he seen. ex- 
cept for Circuit5, the delay optimization scheme produced 
hetter circuits i n  terms of delay (normalized dclay 5 I ). at 
the expense of larger area andlor power consumption. These 
results show the effectiveness of the proposed algorithm. 

In order to compare our algorithm with known puhlished 
work. some circuits are tested and compared to the results 
reported in 19, IO]. Some selected circuits from Table 2 with 
the addition of ?-bit multiplier and 2-hit adder with carry 
circuits are used for comparison. An overall compdrison is 
shown in Table 4. 

For multiple output circuits. multiple colony of ants are 
used. In a 2-hit adder circuit for example, we need three 
colony of ants to find all the three outputs of the circuits. 
Each colony will find the assigned circuit's output. The 
sharing of pheromone value hetween colonies makes the 
sharing of sub-functions possible. However, this sharing 
can indeed bias the search..since the second colony of ants 
'smell' the pheromone that was updated hy the first colony 
ofants, and the third colony will 'smell' the pheromone that 
will he updated by the second colony, and so on. This is 
the reason why the value of p of Equation I 1  is set equal 
to 2 during the course of the experiment. With higher value 
of /3. the search is more dependent on the heuristic value q. 
which emphasizes finding the functionally correct circuits. 
Figure 1 shows the functional fitness value of each outputs 
of a 2-hit adder circuit. Notice that the ants will find outputs 
of the circuit one by one. In analogy with the process of ants 
finding the food. the simplest function (the closest) will he 
obtained first and the most complex1 function (the furthest) 
will most likely be obtained the last. In this context. for 2- 
bit adder circuit. the first sum will be obtained first while 
the carry out will he obtained the !as. 
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Resultins Function 1 Gatr Count 1 Am(rnicron1 

Circuit7 

Circuit8 

_ _ _  
Proposed Approach F = (X + YjZ 0 XY 1 7776 

MGA 191 F=((o' .ewx)0((z+x+Y)eZ)j'  7" 17496 

AnISystemjlO] F = ( ( ( M ' + Y ) O Z ) + X f ) ( ( ~ ' Z ) ' Q ( X ' C I . ) )  9 19197 

Proposed Approach F = ((-1 + (Y 0 2) )  0 (Wm) 6 12393 

6.: 1552  

AnlSysleniIlOl F = ( ( B ~ D ) R ( A + D ) ) e ( ( B + C ) + ( . A 0 D j ) '  ,* I8468 

7 14337 

__ 

MGA I91 F = ((At? B) €J AD) + ( C  + (A 0 D))' 

Proposed Approach F = ( ( A  0 D) . C') , (m 0 (.4 0 E ) )  

MGA (91 
Fo = AB: Fi = AD 8 BC 

7 17253 
F2 = CD .4BCD: F3 = ABCD 

6 Conclusion . '  
In this paper, we have presented a modified ant colony al- 
gorithm for evolutionary logic design. The modification is 
performed in order to suit the problem instance and to han- 
dle some of the problems that are not addressed by exist- 
ing techniques. Performance of the proposed approach and 
comparison with the existing techniques are shown. In all 
cases, the results obtained using the proposed approach out- 
performed those obtained using existing techniques. 

mu12 

add?, 
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Fo = AB: FI = AD 8 BC 
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_ _  
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