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Abstract

This paper describes a new loop based scheduling al-
gorithm. The algorithm aims at reducing the runtime
processing complezity of path based scheduling tech-
niques. It partitions the control flow graph of the input
specification into subgraphs before scheduling the dif-
ferent paths of each subgraph. Benchmark tests as well
as simulation results on the scheduling algorithm in-
dicate that the proposed algorithm results in sizeable
reduction in runtime.

1 Introduction

High-Level Synthesis (HLS) refers to the process of
translating a high-level specification of the behavior
of a circuit into a structural design, in terms of an
interconnected set of RTL components, such as ALUs,
registers and multiplexers.

Scheduling is defined in the context of HLS of syn-
chronous digital systems as, the task of assigning op-
erations to control states so as to minimize an ob-
Jective function while meeting certain constraints [4].
Scheduling is an NP-hard problem [3]. Several heuris-
tic algorithms have been developed to find a good so-
lution rather than an optimal one [3, 7, 8]. The input
to the scheduling algorithm is usually a control flow
graph (CFG) or a control data flow graph (CDFG). A
possible classification of scheduling algorithmsis based
on the level at which the algorithm handles the con-
trol flow graph (CFG). In this context scheduling al-
gorithms are classified into operation based and path
based. Operation based scheduling (OBS) algorithms
visualize the CFG as a set of operations and utilize
the available parallelism to assign operations to con-
trol states. Most of the known scheduling algorithms
fall into this class, such as the force directed schedul-
ing used in HAL [9], and the scheduling algorithm
used in the YSC [7]. Path based scheduling (PBS)
algorithms visualize the CFG as a set of paths and
exploit the mutual exclusion of operations in different
paths while assigning operations to control states. Al-
gorithms that fall in this class include AFAP [1] and
DLS [2].

This paper describes a new PBS algorithm that
aims at reducing the processing complexity of the
AFAP scheduling algorithm. In the following section,
we present the necessary terminology and formulate
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the problem. In Section 3, the AFAP scheduling al-
gorithm is briefly described. Section 4 presents our
new scheduling algorithm called Loop Based Schedul-
ing (LBS). Benchmark tests and experimental results
are presented in Section 5. Finally, in Section 6 ad-
vantages and limitations of the approach are discussed
and conclusions are drawn.

2 Problem Formulation

In this section we present some definitions that will
be used in the formulation of the scheduling problem.
These definitions are taken from {1] and presented here
for the sake of completeness. Other definitions are
introduced for the sake of comparison.

The input to the scheduling problem is a behavioral
description expressed as a directed control-flow graph
(CFG) G = (V,E). The nodes v € V represent oper-
ations to be scheduled, and the edges give the prece-
dence relation, i.e. (v;,v;) € E iff v; is an immediate
predecessor of v;. The node v; is called an immediate
successor of v;. Figure 1 is a behavioral specification
of the greatest common divisor (GCD) benchmark test
[6]. Figure 2(a) shows the CFG of this circuit. The
nodes are numbered according to the statement num-
bers of the input specification given after the “— —” in
Figure 1.

The interpretation of G is: an operation is exe-
cuted if one of its predecessors is executed. If a node
v has more than one successor, v is said to be a con-
ditional branch (for example node 2 in Figure 2(22).
Only one of the successors will be executed. The de-
cision of which successor is chosen is taken according
to a condition predicate cond(vi,v;) attached to the
corresponding edge (cond(vz,v;) in the CFG of the
GCD 1s EQ1). If cond(vi,v;) is true, then v; is exe-
cuted after v;. The conditions on outgoing edges from
conditional branches must be all mutually exclusive.
Conditions are arbitrary boolean functions that are
derived from conditional constructs in the behavioral
description language like IF, CASE, WHILE, etc. The
control-flow graph has a unique first operation, v; at
which execution starts. It should be possible to reach
all other operations from v;.

A longest path through the control-flow graph is
a path starting at node v; and ending at an opera-
tion with no successor. The set of all longest paths is



denoted as P;. It represents all possible operation se-
quences, excluding repetition of cycles, that the spec-
ified behavior allows. The set P, for the GCD bench-
mark is shown in Figure 3(a).

A loop entrance node is the first node in a loop
body. Let these nodes be identified as v} where i is
a running index starting at 1. The index i is incre-
mented each time a loop entrance node is encountered
in the graph. Hence v} is the first node in the first

loop of the CFG. Similarly, v} is the first node in the
second loop of the CFG. For example node 1 in the
CFG of the GCD is v}, while node 5 is v?. Let P,
be the set of all paths starting at all loop entrances
(except for the paths starting at v1, since they are al-
ready included in the set P;. The set P, for the case
of the GCD benchmark is shown in Figure 3(b).

ged:
EQL = (rst == 0) --1
If EQ1 goto ged --2
X =xi --3
y=yi -4

L10:
EQ2 = (y == x) -=h
If EQ2 goto L6 --6
LT1 = (y < x) -7
If 'LT1 goto L7 --8
y=y-Xx --9
goto L10

L7:
X=Xx-y --10
goto L10

L6:
out = x --11
goto ged

Figure 1: Behavioral description of the GCD bench-
mark.

Operations that can be executed in parallel may be
clustered in one node or ordered arbitrarily. If they are
clustered in one node, they will be always scheduled
in one control state (they will be treated as one large
operation). If they are ordered, they may be scheduled
in one or more control states.

3 As Fast As Possible Scheduling Al-

gorithm
The AFAP scheduling problem was formulated in
(1} as: “Given G = (V,E) and a set of constraints,
schedule all operations v € V such that all possible
longest paths P; execute in the minimum number of
control states and all constraints are met.”

The AFAP algorithm starts by converting the CFG
into a directed acyclic graph (DAG) by eliminating
the loops and keeping lists of such eliminations, along
with the conditions of transfer either back to the loop
or out of it. The second step of AFAP is to schedule
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Figure 2: CFG and DAG of the GCD benchmark.
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Figure 3: Paths of the GCD benchmark.



all paths of the DAG individually. Let the set of all
paths processed by AFAP be denoted as Pyr4p, then

Parap = PIJP.

Constraints are found for each of the paths in the
Parap. Constraints are either user specified or in-
herent to the specification. User specified constraints
could be on area, timing or a combination. Inherent
constraints are:

1. Variables can only be assigned once in a control
state (or step).

2. I/O ports can be read or written only once in a
control state.

3. Functional units can be used only once in a con-
trol state. This constraint is only relevant if the
amount of hardware is constrained.

4. The maximal delay within one control state lim-
its the number of operations that can be chained
(i.e., operations that feed data to each other and
are executed in the same control state).

For example, in Figure 2 a constraint of type 1 exists
between nodes 4 and 9 because the variable y is as-
signed twice along this path in these two nodes. These
two nodes have to be scheduled in different states in
the resulting schedule. Hence the path has to be cut
between nodes 4 and 9.

For one path, the nodes are totally ordered. Thus
to each constraint corresponds an ordered sequence of
nodes (a sub-path). A constraint is interpreted as an
interval (from the first node to the last node of the
sequence). Once all constraints are found, an interval
graph is formed. The nodes of this interval graph rep-
resent constraints, and the edges join overlapping con-
straints. The problem of finding the minimum number
of cuts along a given path is formulated as a minimum
clique covering problem. The result of this step is a
set of intervals. Intervals are called cuts because the
path has to be cut at a node of the interval to satisfy
all the constraints. An additional cut is added for each
path at the first node of the path (i.e., an additional
cut is added for each loop entrance node v € v} and
for v1).

To overlap the schedules of individual paths, an-
other interval graph is generated. The nodes of this
graph correspond to the cuts found in the previous
step (remember that a cut is a set of nodes). Edges
join nodes corresponding to overlapping cuts. A min-
imum clique covering of this graph will generate the
minimum set of cuts that fulfills the fastest schedule
for all paths.

Due to this overlapping of cuts, and since each loop
entrance node is associated with a cut, the following
lemma can be stated.

Lemma 1 The number of loop entrance nodes in the
CFG is the lower bound for the number of states of the
schedule resulting from AFAP scheduling technique.

78

The proof of this lemma is obvious from the previ-
ous discussion and is left here (it is assumed that v1 is
a loop entrance node given that control is transferred
to vl after a node with no successor).

An FSM controller is then synthesized. Conditions
to control the transitions between states and to con-
trol which operations are executed within each state
are derived from the path execution conditions. For
more details, interested readers are referred to [1] for
a detailed description of the algorithm. To reduce
the run-time complexity of using the clique partition-
ing technique, several heuristics are presented in [1] .
However, since the number of paths explodes for real-
istic examples, the technique is limited in practice to
small sized designs.

4 Loop Based Scheduling

As the name suggests, the AFAP scheduling tech-
nique results in a schedule that will execute all se-
quences of the input specification in the fastest way.
However it is very expensive for large realistic circuits
due to two reasons:

1. The use of the clique partitioning technique twice.

2. The algorithm processes all possible execution
paths of the CFG. The number of paths explodes
for large realistic examples.

In this work we present a new path based schedul-
ing algorithm. The problem to be solved by this new
algorithm is formulated as follows:

“Given a CFG G = (V, E) and a set of constraints,
schedule all operations v € V such that all constraints
are met, while trying to minimize the number of con-
trol states.”

The algorithm aims at scheduling the operations
of the input specification utilizing the mutual exclu-
sion among operations in different paths, while main-
taining the run-time practically manageable. This is
achieved by considerably reducing the number of pro-
cessed paths by the use of a partitioning technique. In
this technique the CFG is partitioned into subgraphs.
Paths within each subgraph are used to generate its
corresponding schedule. Then the schedules of the
individual subgraphs are combined to generate the
schedule of the specified design. The algorithm is
called loop based scheduling (LBS) and consists of the
following steps:

1. Partition the CFG into subgraphs.

2. Schedule each subgraph while meeting con-
straints.

3. Combine individual subgraphs schedules.

4.1 Partitioning of the CFG

The first challenge is to decide where to partition
the CFG. Our choice was to partition the CFG at loop
entrance nodes (LENs). This choice was guided by the
result stated in Lemma 1 and the following argument.



e Partitioning the CFG results in the negative effect
of preventing possible chaining, and hence may
result in a slower schedule. This is true whether

From | To | sg {Cond

the graph is partitioned at LENs or at any other (D S S ER E
node in the CFG.
Inter-subgraph list
e LENs always force new states, since two execu- O G  Ater subgraph
tions of the loop can not be scheduled in the same formationfor =gt
control state. This implies that losses in speed GO
of the resulting schedule due to the partitioning é
process will be limited to a single execution of &
the loop in the worst case. If loops are expected ©
to execute for a relatively large number of times, e ot
then the resulting schedule will be close to As- O w11 1 | Tre
Fast-As-Possible. This argument requires further Inter-subgraph list
study and experimentation. ) O e 2
The CFG is partitioned such that each subgraph (D d
contains exactly one loop entrance node. Figure 4 S
shows the subgraphs of the CFG of the GCD example. @)
Subgraphs are generated from G as follows: © D
1. Partition the CFG. Starting at the first node of O, O
G, v1, subgraph 1 (denoted as sg1) is constructed
by adding nodes until v} is reached. Subgraph O ©
sgo is then constructed the same way starting at © D
v? and adding nodes until another loop entrance
node is reached. This process is repeated until all CFG Subgraphs
nodes of the CFG are consumed. (a) (b)
2. Collect inter-subgraph branching information. ¢ e Trea] Cond O

This is done by keeping a list of all branches BE 2 Tue

outside the subgraph boundaries, their conditions - i
and their corresponding destinations. An addi- Aoroag

tional entry is added to this list from the last node (2)  formationforsg! G
of the subgraph to the first node in the following ©
subgraph. This step is illustrated in Figure 4(&2 D
Note the addition of the entry in sg; from node D O
#4 to node #5 of sg3, and the branch from node
#11 in sg, to node #1 of sg;.
h b h A b h d From | To | sg Cond Combine into one state
3. Check branching consistency. Any branch outside n [ 1 ] V] T gt >
a subgraph should be to thg ﬁrstynode of another Sl 2] T (& __ O
subgraph. If a branch does not satisfy this condi- s rosbaraphis
tion, the destination subgraph is broken into two proivor- O® O
subgraphs satisfying this condition. To illustrate s formation for sg2 D D
this, assume that node #3 of sg, is a conditional
branch to node #7 of sg» (not shown in the fig- ] O (&)
ure.) This will lead to cutting sg» just before node !
#7 producing three subgraphs instead of two. ©,
2 (9
4.2 Scheduling Individual Subgraphs -
Each subgraph sg; is scheduled separately as fol- D
lows: 1
1. Convert each subgraph into a DAG. D??s Pl:l‘;-ls
c

2. Generate paths of each DAG.
3. Schedule individual paths. Figure 4: Subgraphs and paths for GCD in LBS.

4. Combine schedules of individual paths.
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Converting subgraphs into DA Gs:

Each subgraph is converted into a directed acyeclic
graph (DAG). This conversion is done by eliminat-
ing loops back to the first node of each subgraph and
adding an entry for it with the associated conditions
in the inter-subgraph list. These lists are to be used
later for transitions among subgraphs. In the GCD
example, the branch from node #2 back to node #1
1s eliminated in sg;. The same applies to the branches
from nodes #9 and #10 back to node #5 of sg3, as
depicted in Figure 4(c).

Generating paths of each subgraph:

All possible execution paths of each subgraph are
traced starting from the first node. Each node in ev-
ery path is associated with an execution condition.
Execution conditions are derived from the branching
nodes in the subgraph. The paths of both subgraphs
of the GCD example are shown in F igure 4(d).

Scheduling individual paths:

Paths are scheduled individually in an as soon as pos-
sible (ASAP) fashion. Each path is traced from its
starting node and constraints are checked (possible
constraints are described in Section 3). Whenever a
constraint is violated, the path is cut. All the nodes
traced up to the cutting node (i.e., the last node be-
fore the cut) will be scheduled in the same state in
a later step.” Associated with each subgraph is a cut-
list. This list includes an entry for each cut. The
entry consists of the cutting node, the successor node
and an associated transfer condition between the two.
This condition is equal to the execution condition of
the cutting node. Tracing is resumed after the cutting
node until another cut is required or the path is con-
sumed. This process will result in cutting each path
into a set of intervals, each consisting of a set of nodes.
Note that each node might exist in more than one in-
terval associated with different execution conditions
in different intervals. In the GCD example no paths
require cutting.

Combining schedules of individual paths:

Cutting individual paths as in the previous step re-
sults in a set of intervals for each path. Intervals that
start with the same node are collected together to form
a control state, thus scheduling the operations of the
subgraph into control states. Each node is associated
within each interval with a different execution condi-
tion. These execution conditions are ORed to produce
the execution condition for the instruction (or node)
within the state. This results in scheduling each sub-
graph into a set of states. Transitions among states
within each subgraph are taken from the collected in-
formation at each cutting point in the cut-list.

4.3 Combining schedules of subgraphs
To combine the schedules of the individual sub-
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rstl=0 Xl=y
4
x*({x!=y)AND(x>y)) <=x-y
x*(rst!=0) <= xi X*((x!=y)AND{y>x)) <zy-x
y'(rsti=0) <= yi out*(y=x) <= x
State 1 - Y/ State 2

Figure 5: Finite State Machine of the GCD.

graphs, the inter-subgraph lists are used to produce
the transitions from the associated subgraph. Note
that each of these transitions is associated with a con-
dition. This condition together with the execution
condition of the node from which the branch is taking
place are ANDed to form the state transition condi-
tion to the subgraph being branched to. By finishing
this step the scheduling is complete, and the FSM con-
troller 1s produced. Figure 5 shows the FSM for the
GCD.

5 Experimental results

LDesign | Method | States [ Paths | Transition;"

AFAP 2 3 3

Prefetch? DLS 3 3 -
LBS 2 2 3

AFAP 2 6 4

GCD DLS 2 6 4
LBS 2 4 4

AFAP 8 19 18

TLC DLS 7 19 14
LBS 5 19 14

AFAP 4 3 -

DiffEq DLS - - -
LBS 3 3 3

Table 1: WSHLS92 Benchmark Results.

In order to compare LBS with previous PBS tech-
niques, we used benchmark! tests from the WSHLS92
[6]. The results are summarized in Table 1. We used
the number of states and the number of transitions
among the states as a measure of the solution qual-
ity, and the number of processed paths as a measure
of heuristic time complexity (columns labeled States,
Transitions and Paths, respectively). LBS outper-
formed previous PBS techniques in all tests. For ex-
ample for the traffic light controller (TLC) circuit, the
number of states for LBS is 5, compared to 8 for AFAP
and 7 for DLS. The column labeled Transitions gives
the number of transitions between the states of the re-
sulting schedule. This is an indication of the controller
complexity.

!Prefetch is taken from f1].



Reduction
1.0
~a— Loop Prob:0.0256
0.8 ~a~ | oop Prob:0.0512

@ .
06 Loop Prob:0.0032

: —a— Loop Prob:0.0128
041 %
i Branching Probability: 0.16

o2y

0.0 L) Nodes

0 200 400 600 800 1000 1200

Figure 6: Simulation results.

The CFG partitioning used in LBS algorithm was
introduced for the main purpose of maintaining the
number of paths practically small. However, this was
not manifested from the small benchmark tests. In
order to demonstrate the effectiveness of this parti-
tioning idea, CFGs with various sizes and structures
were randomly generated. The topology of the gener-
ated CFGs was determined by three factors.

o The number of nodes in the CFG.

e The branching probability which is the probability
that a certain node is a branch (fork) node.

e The loop probability which is the probability that
a certain node is a branch (fork) and that this
branch generates a loop in the CFG.

For each generated CFG, the number of paths that
would have been processed by LBS and other PBS al-
gorithms was counted. The results indicate a sizeable
decrease in the number of paths to process (close to
100% reduction for graphs with more than 200 nodes.)
The simulation results for a branching probability of
0.16 and various loop probabilities are depicted in Fig-
ure 6.

6 Conclusions

AFAP scheduling is a PBS algorithm that uses
a clique partitioning technique twice to solve the
scheduling problem. The outcome is the fastest ex-
ecuting schedule for all the paths of the CFG. How-
ever, the processing complexity of the algorithm is too
expensive for realistic large examples. By partition-
ing the CFG into subgraphs, our new scheduling al-
gorithm, LBS, reduces the run time of the algorithm
considerably due to the sizeable reduction in the num-
ber of paths processed.

We do not expect partitioning at loop entrances to
have a noticeable negative effect on schedule quality.
However, a side effect of this technique which requires
that branching always takes place to the first node
in another subgraph may result in the prevention of
possible chaining, thus leading to a slower schedule.
This point requires more extensive experimentation.
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The algorithm uses an ASAP scheduling technique
while scheduling individual paths. This may be fur-
ther enhanced by applying the AFAP algorithm at the
subgraph level resulting in faster schedules.
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