IEEE Pacific Rim Conference on Cc

ications, C

p and Signal Processing, May 9-10, 1991

A STATE MACHINE SYNTHESIZER WITH
WEINBERGER ARRAYS

Aiman H. El-Maleh
Department of Electrical & Computer Engineering,
University of Victoria, P.0.Box 3055, Victoria, B.C. Canada V8W 3P6
Sadiq M. Sait
Department of Computer Engineering, KFUPM #673, Dhahran-31261, Saudi Arabia

Abstract

In this paper we describe the development of a digital circuit
synthesis program. The program accepts the transition table
of a state machine and returns equations for an implementation
that assumes a sum-of-product next-state and output function-
s. From the equations for the next-state and output functions,
an nMOS VLSI layout for a Weinberger array (WA) is generat-
ed. D flip-flops are assumed for memory elements. Using this
tool, tedious manual calculations can be avoided and layouts
are generated automatically from state table descriptions.

Introduction

A state machine is a sequential circuit containing memory and
combinational logic. The contents of memory define the state,
and the logic defines the output and the next state as a function
of the current state and the external inputs. State machines
are widely used by engineers for digital circuit design. Synthe-
sis of state machines is becoming an important part of VLSI
design[3].

Since much of the work in implementing a state machine
involves tedious calculations, it is preferable that once the tran-
sition table of a state machine is specified the final design and
implementation be obtained automatically.

In VLSI design of state machines, generally Programmable
Logic Arrays (PLAs) are used for combinational logic [1, 5].
In this paper, we synthesize the circuit using Weinberger Ar-
rays (WAs) [10]. The structure of a WA, the advantages and
disadvantages etc, are discussed in [6, 7, 8, 9].

Since the combinational logic is for a state machine, there
is a constraint on the order of rows. This is to avoid the feed
back lines through memory from crossing each other. The other
constraint arises from the fact that inputs for both the present-
state and next-state signals must appear on the same side of
the array where the flip-flops are placed. These constraints
make the optimization of the generated WA difficult.

In this paper, we describe the development of a state ma-
chine synthesizer program. The program calculates and re-
duces the equations for the next state and output variables of
the state table. In addition, it generates a WA for the given
state machine if needed. Column folding is attempted but the
uptimization of the array with the above mentioned constraints
is still an open problem. In the following sections, we present
the algorithms and the implementation details of the state ma-
chine synthesizer program. Furthermore, the generation of the
WA for the modelled state machine is discussed.

CH2954-6/91-0000-753

State Machine Synthesizer

In this section, we briefly present the algorithms used in the
development of the state machine synthesizer program. Dis-
cussed are the notations used, the main algorithm, and a gener-
alized Quine procedure for the generation of prime implicants.
tautology [2, 4, 9].

Definitions

Boolean switching functions can be represented in two equiv-
alent forms : the normal form Boolean switching expression
and a cubical representation. For example, the expression
17, + «,x3 is represented in its cubical form as 10z,1zl.
The cubical notation is used in this paper because it is concise
and lends itself to direct, easy computer implementation.

® An n-tuple ¢ = (¢1¢;...¢,) where ¢; € {0,1,z} is said to
be a cube. A 0-cube is an n-tuple ¢ = (¢1¢;...c,,) Where
¢i € {0,1}. Given that C is a set of cubes,K°(C), the
0-complex defined by C, is the set of all 0-cubes, each
of which is covered by some element of C. A cube ¢
defines a Boolean product term P(c), and vice versa. If
r elements of ¢ are z’s, we say that ¢ is an r-cube. An
r-cube is said to cover or contain 2" 0-cubes, namely all
those 0-cubes which can be obtained from ¢ by replacing
the 2's by 0’s and 1’s.

-

SUBSUMING (=) : Let a = (a1a2...a,) and b = (b;b,...b,)
be two arbitrary cubes. We say cube a subsumes cube
b; written a = b iff all the 0-cubes covered by a are also
covered by b (i.e. K°(a) C K°(b)).

CONSENSUS (¢) : The consensus of two product terms
P and @ is defined only for the case where there exists
exactly one ¢ such that z; is a literal in P and T; is a
literal in @. In this case, we can write P = z;.P/ and
@ = 7,.Q/, where P/ and Q/ are not functions of z;, and
therefore the consensus of P and Q is PrQ.

SHARP PRODUCT (}) : The sharp product between t-
wo cubes a and b, denoted by affb is defined to be the set
of cubes such that P(afb) is the set of all prime impli-
cants of the function defined by P(a)P(b). Equivalently,
afb is the set of all prime implicants for the complex
K°(a) - [K°(a) N K°(b)).

$1.00 © 1991 IEEE

Components Of The Program

The synthesizer program is divided into five main modules.
The function of each module is briefly described below.

1. EXPAND MODULE : This module is used to expand
the truth/state table entered by the user, if needed, from
singular cover form into 0’s and 1’s form.

(3

. QUINE MODULE : This module is used to calculate the
equations for the next state and output functions.

3. FCCOVER MODULE : This module is used to reduce
the equations to reduce the size of the resulting circuit
by forming an irredundant cover.

4. FNOR MODULE : This module is used to represent the
equations in NOR form and to label the product terms
for the functions.

5. WEINBERGER MODULE : This module is used to gen-
erate a WA for the given machine.

After the truth/state table for the machine is read, the
expand module is called. Every column of the previous state
and input variables in the table is checked. If a 2 (meaning
a don’t care) is found in any row, the row containing it will
be replaced by two rows one having 0 in place the 2 and one
having 1. Following this way, the table will be expanded to 0-
cubes in order to find the prime implicants for every function
properly. More details of the algorithms are given in the next
section.

Algorithms

The main difficulty with simplification procedures is that they
require the generation of the set of prime implicants Z which
can be quite large. A technique for rapidly obtaining an initial
connection cover C'o is used . Once é’n is obtained, redundan-
cies in it can be eliminated, and an irredundant connection
cover obtained. In this procedure each function f* is simpli-
fied individually, hence the amount of computation grows only
linearly with the number of functions[2, 9].

Main Algorithm

number of functions = number of states + number of outputs
Stepl :

For i = 1 to number of functions do
Generate an irredundant cover C* for function f*
from initial covers C? and DC". (Cf represents the
true vertices of f*, DC' represents the don’t care
vertices of f*).
Step2 :

CCOVER= ¢.
For ¢ = 1 to number of functions do

CCOVER=CCOVERUC".
Step3 :

For each ¢ e€CCOVER do
Obtain an element ce in CCOVER, where ¢; = 1
iff cfC* = ¢, Otherwise
e; = 2, that is, this cube c is not a product term
for function f*.

754

Step4 :

For each row r of CCOVER do
Raise column e; of vector e by placing 2 instead of 1
in column e; if the test below is positive :

1. Find the set R of rows other than r consisting of
cubes ¢ with 1 in column e¢;. Let gi,...,g, be the
terms corresponding to the rows of R.

2. let hy + -+ + h,, be the complement of the term
represented by row r.

3. Test whether hy+: « ~+hp+g1+- - -+gy is a tautology.
Step5 :

For every row r in CCOVER eliminate row r
if the e vector of that row consists of entirely 2’s.

Step6 :

[Generate the product terms for every function f;]
For ¢ = 1 to number of functions do
if e; = 1 for row r then

fi=fiue

Explanation of Steps : Step 1 generates the irredundant
cover C" for every function i. Steps 2&3 are used for generating
a connection cover for all the functions. Steps 4&5 are used
for removing redundancies in the connection cover. And Step
6 forms the product terms for every function.

Algorithm For Generation Of Prime Implicants Z

Given below is the generalized Quine’s procedure which is used
for generating the prime implicants Z [2, 4].

Step! A, = S[C, U DC]
Step2 For r = 0,n we have :

a) Z" is the set of all r-cubes a € A, such that aNC, # ¢
and no element in the set ac¢A, is an (r + 1) cube.

b) A,-+1 = S[A'r U (ATQA")] -z

¢) If A,41 = ¢, the process can be terminated since
Z'=¢forallr+1<s<n.

Stepd Z = Up_,Z".

Weinberger Array Generation

In this section we present an algorithm for the generation of a
WA for a state machine

Stepl :

[Change the functions to NOR-representation]

Getting the equations of the next-state and output func-
tions, they are first converted to NOR form. As an ex-
ample, consider the state table given in Fig.l which is
the input to the synthesizer. Irredundant covers for the
functions and their corresponding NOR representation
are given in Fig. 2.

Step2 :

Every product term in a function needs a pull-up and a
row in the WA. A product term consisting of one variable
need not have a pull-up and a specific row in the array
since it can be taken from the previous state or input
variables rows. These rows (of WA) are labeled from M,
to M; (i can be as large as needed). (i can be as large
as needed). Before labeling the rows (corresponding to
the product terms) of the functions, they are ordered
using a certain criteria. This criteria is that the common
product terms are pushed down (i.e. labeled at the end).
This criteria allows overlapping of pull-ups from both
directions of the WA (top & bottom) if possible, thus
reducing area as in column folding.

Step3 :

This step consists of forming the set of pull-ups to be
placed in the top side of the array and the set of pull-ups
to be placed in the bottom side of the array.

Top Pull-ups (STP) & Bottom Pull-ups (SBP):

TFor i =1 to # of functions do

If |fi = 1 then there is no need for a pull-up since the
function will be either an input , state or M; variable.

If the function has a product term consisting of one
variable and |f;| > 1 Then
STP « STPU f;
Otherwise
If for all M; € f;, j > ¢—1 then
SBP « SBP U f;
Otherwise

STP— STPUf;

Step4 :

The rows in the WA used for previous state variables
are ordered to avoid the crossing of wires while con-
necting the next-state rows, through the memory, to the
previous-state rows. This is done easily by looking at the
order of representation of the next-state variables in the
WA, and ordering the previous states rows in an opposite
order.

By performing the above four steps, an irredundant WA is gen-
erated for the state machine.

Output Format of WA :

o Either of the symbols P; or PU; is used to represent a
pull-up (i represents the number of the pull-up).

The symbol ‘4’ is used to represent the placement of a
transistor.

The symbol “*’ represents the end of the metal line run-
ning from the output of the top pull-up, and it also rep-
resents the placement of a contact cut.

Mapping of this array to stick diagram and hence to lay-
out is straight forward.

The automatically generated WA in the above discussed format
and its corresponding stick diagram in mixed notation for the
state-table in Fig.1 are given in Fig.3 and Fig.4 respectively.

755

Conclusion

A state-machine synthesis program that provides a useful aid
in digital-circuit design and synthesis is developed. Stick dia-
grams and layouts of the WA for the input state diagram are
generated automatically.

Referring to Fig.4, it is obvious that the area can be further re-
duced by optimization. As an example, interchanging rows for
X and A= allows the folding of columns M3 and M4 without
violating the earlier mentioned constraints. However, this was
not done primarily in order to make the variable and its com-
plement beside each other. Algorithm for row compaction [7]
and column folding [8] can be modified and applied to reduce
the arca further. The system, as was explained earlier can also
take only the truth table of combinational logic circuits and
provide the VLSI layouts for WA automatically. However, in
this case the earlier mentioned optimization constraints will be
relaxed.

The algorithms are coded in Pascal and the software runs on
[BM PC. Copies of the software can be obtained by writing to
the authors.

References

[1] Ayres, Ronald F. VLSI : Silicon Compiler and the Art
of Automatic Chip Design, Prentice Hall, 1983.

[2] Breuer, Melvin, Design Automation of Digital Systems,
Englewood Cliffs, New Jersey, 1972, ch. 2.

3

Christopher R. Clare, Designing Logic Systems Using
State Machines, McGraw Hill Book Company, New York,
1973.

E. J. McCluskey, ‘Minimization of Boolean Functions.’
Bell System Technical Journal, vol. 35 (1956), pp. 1417-
1444.

] C. Mead and L. Conway, Introduction to VLSI Systems,
Addison Wesley 1980.

Mukherjee Amar, Introduction to nMOS and CMOS
VLSI Systems Design, Prentice Hall International, En-
glewood Cliffs, New Jersey, 1986.

Sadiq M. Sait and Fayez A. Al-Khulaiwi, ‘Automatic
Weinberger Array Synthesis from a UAHPL Description’
International journal of Electronics, vol. 69, no. 2 , pp.

211-224, 1990.

Sadiq M. Sait and Muhammad Abdul-Aziz Al-Rashed,
‘An Efficient Algorithm for Weinberger Array Folding,’
International Journal of Electronics, vol. 69 , no. 4 , pp.
509-518, 1990.

=3

[9] Ullman, J. D., Computational Aspects of VLSI, Comput-

er Science Press.

[10] Weinberger A.,‘Large Scale Integration of MOS Complez
Logic : A Layout Method,” IEEE J. of Solid State

Circuits SC-2:4,pp.182-190.

[A- B- X A+ B+ Z
0 0 0 0 1 1
00 1 0 0 0
01 0 1 o0 1
6 1 1 0o 1t o
1 06 0 1 1 1
1 0 1 1 0 0
I 10 0 0 1
1 1 1 1 1 0

Figure 1: Input State Table of Example 1

A+

A- B- X

0 10

1 0 2

1 2 1

B+

A- B- X

2 0 0

2 1 1

Z
A- B- X
2 2 0
(a)
A+
A- B- X
Mi 1 0 1
M2 0 1 2
M3 0 2 0
B+
A- B- X
M4 2 1 1
M5 2 0 0
7

A- B- X
2 2 0

Figure 2: (a) Irredundant covers for functions of Example 1
(b) NOR representation of functions of Example 1

PU1 PU2 PU3 PU4 PU5
B- + +
BY + +
A- 4+
A~ + +
X o+ +
X~ + +
Ml +*
M2 + *
M3+ *
M4 + *
M5 + *
Ay X
B+ *

PU6 PUT

(Note : This symbol " means the complement of the variable)

Figure 3: Automatically generated WA for the state table of
Example 1

756

X~

M1

M2

M3

M4

MS

B8+~

Figure 4: ntMOS Stick Diagram for WA of Fig.3

PU1

PU2 PU3

PU4 PUS

4 1

4 1= -rr3 -1
-1 d-F 4 -
:
- e P e el e e —f — —
4 - -+ - 1
.
J e + = =}
- -4 -} 4 -}
A -4+ 41— F 4 -} 4
]
T
4 r—f— % —J—FF 1 —F 1
0
4 == F 4 —} -
:
- e - —F A -}
:
4 =4 — — }F — —3— 4
L
g
g - - —}F - — - 4
g4 - - - - — -
PU6 PU7

- = —= ~Polysilicon

s Me tol

Diffusion

