
AREA-TIME OPTIMAL ADDER WITH RELATIVE PLACEMENT GENERATOR
Aamir A. Farooqui 1, Vojin G. Oklobdzija 2, Sadiq M. Sait3

1Synopsys Inc.
Synopsys Module Compiler

700 Middlefield Road,
Mountain View CA 94043

USA
aamirf@synopsys.com

2ACSEL Laboratory
Electrical Engineering Dept.

University of California
Davis, CA 95616

USA
vojin@ece.ucdavis.edu

3 Department of Computer Engineering
KFUPM Box 673

King Fahd University of Petroleum &
Minerals

Dhahran-31261, Saudi Arabia
sadiq@kfupm.edu.sa

1 ABSTRACT
This paper presents design of an adder generator, for the production
of area-time-optimal adders. A unique feature of the proposed
generator is its integrated synthesis and layout environment achieved
by providing relative placement information to the synthesis tool.
Adders produced by this generator are dynamically configured for a
given technology library, wire-load model, delay, and area goal. The
adder architecture used in this generator is a hybrid of Brent & Kung,
carry select, and ripple carry adders. When compared with standard
cell fast adders, a 20%-50% reduction in area with comparable delays
is achieved. The reduction comes from a judicious selection of ripple
carry or carry select adders based on computation of delays. When
performance is being met, the carry select adders are replaced with
ripple carry adders. The proposed generator has been integrated into a
commercially available high-performance datapath design tool.

2 INTRODUCTION
Addition is an important operation affecting the speed and
performance of several digital systems, High-speed adders can be
realized with the widely used carry look-ahead [1], carry select [2], or
binary carry look-ahead [3, 4] techniques. Due to the high design
cost of full custom adders, standard-cell based designs are widely
used [5][6][7][8] but their performance is also limited by a specific
cell library and design constraints.
There is another class of adders that are obtained using software
programs called generators [9][10][11][12]. Using these, adders can
be generated for a variety of design goals, bit-widths, and process
technologies. First attempt to produce area-time optimal adders using
software programs was reported by B. Wei et al., in [9]. The
proposed adder architecture was based on Ladner and Fischer’s
parallel prefix computation model [13], which is essentially a look-
ahead addition. The design was formulated as a dynamic
programming problem and optimized for area and delay. In [10],
Chan et al., proposed a multi-dimensional programming paradigm to
control the block sizes of carry skip adders and carry look-ahead
adders (CLA) for minimizing the delay. In the generator proposed by
Becker et al. [11] automatic generation of conditional sum adders,
with included testability features, is presented. All the above
generators have a major drawback; they do not consider the wiring
effects, which impacts the performance of the final product. With
shrinking VLSI dimensions, especially in today’s deep sub-micron
technologies, interconnect delays play a dominant role in overall
performance of the circuit [14. The delay due to interconnects in some
cases exceeds the switching delays of gates/circuits. Moreover the
digital design paradigm has moved from logic domain to physical
domain, but none of the above mentioned generators provide any
information for the placement or tiling of adder cells.

In this paper, we present an efficient generator to generate area-time
optimal adders, with relative placement (RP) information. Relative
placement (RP) is the placement of cells/gates with reference to each
other. RP information is used by the placement tool for fast, efficient
and structured placement of instances in layout. RP aligns cells
horizontally in rows and vertically in columns. Each row corresponds
to a single bit of a data-bus. The cells making up a function span
multiple bits (rows) and are arranged vertically in a column. A
function can be composed of one or more such columns.
The proposed generator takes into consideration the wire-load models
and other parameters such as delay, area, and operating conditions
(temperature and voltage). The adders generated are targeted for low
area, with speeds comparable to Brent & Kung [7][9] and Koggie
Stone adders [15]. The generator has been integrated with a
commercially available datapath synthesis tool, which allows further
enhancement such as, pipelining, retiming, GUI interface, and adder
instantiation in a Verilog like language called MCL (Module
compiler language).
The adder architecture used in this generator is a hybrid of Brent &
Kung [4], carry select [2], and ripple carry adders. An integral feature
of the generator is the intelligent use of both ripple carry and carry
select adders. In order to achieve low area with high-speed, area
optimized ripple carry adders [16] are used along with carry select
adders (CSA) and carry generation logic. The whole adder is
composed of 4-bit ripple carry and CSA blocks. The 4-bit ripple
carry adder blocks are used for fast arriving carry signals (in the
beginning of the adder) and CSA are used for late arriving signals.
The carry generation logic (carry chain) has been implemented using
the ‘o’ operator as described by Brent in [3,4] with a modification
that four-bit groups are used, instead of two. By using four-bit
groups, the number of wires and hardware is reduced by half while
keeping the adder delay proportional to O(log n) [16], where ‘n’ is
the number of bits of the adder. In the proposed generator, timing
analysis is used to equalize the computation of the entire sum thereby
employing a maximum number of ripple carry adders, resulting in
further reduction of hardware and thereby the layout area. The adders
produced by the generator are similar in topology to the one proposed
earlier [16]. However better quality adders are generated due to
timing analysis incorporated using different technology wire load
models. The paper is organized as follows: In Section 3 the
architecture of the adder produced by the generator is described. In
Section 4 the generator algorithm is described in detail. In Section 5
experimental results are reported to demonstrate the effectiveness of
the proposed generator. Finally, Section 6 concludes this paper.

3 ADDER ARCHITECTURE
Let, A = an-1, an-2 a1, a0, and B = bn-1, bn-2,...... b1, b0 be the two
input operands, with an-1 and bn-1 be the most significant bits. The

mailto:aamirf@synopsys.com
mailto:vojin@ece.ucdavis.edu

generate and propagate signal at bit position “i” are given by; gi = ai•
bi, and pi = ai + bi, (where: • = AND operation and + = OR
operation). The Carry out from bit position “i” is given by; Ci = gi +
gi-1• pi provided C0 = 0. The “o” operator as defined by [3] is given
as follows:
(g, p) o (g’, p’)=(g + (p • g’), p • p’) (1)
The group Generate (G) and Propagate (P) are given by:
(Gi,Pi)=(g0,p0) if i=0 & (gi,pi) o (gi-1,pi-1) if 0<i<n (2)
In [7, 9, 3], using (1), the generate and propagate signals for each
level (k) of the adder are generated using the following combination:
(Gi+2k,Pi+2k)=(gi+2k,pi+2k) o (gi,pi) for 0 < k < log n (3)
Fig. 1 shows two carry generation schemes using (3). The carry tree
is made up of 3-input AND-OR and 2-input AND gates,
implementing gi.i-1 = gi + gi-1•pi and pi.i-1 = pi-1• pi (small circles)
respectively, at each level of the tree. It can be observed from Fig. 1
that the number of wires and area of Kogge-Stone (KS) or Brent’s
adder (BK) [7, 16] increases exponentially with the increase in the
number of bits. In case of Ladner Fischer adder the fan-out of gates
increase with the depth of the tree [13].

g0p0g15p15

a) 16-BIT Koggie-Stone Adder

Level
0

1

2

3

Delay = log n g0p0
g15p15

b) 16-BIT Ladner Fischer Adder

Delay = log n

Fig. 1. Parallel prefix adder architectures.

In the proposed implementation, for ‘n’ bits, at k = 0 (first level) n/2
generate and propagate signals are produced using the following
combination:
(G2i+1, P2i+1) = (g2i+1, p2i+1) o (g2i, p2i) for 0 < i < n/2 (4)
At the second level n/4 signals are produced (by grouping the
signals generated at the first level) using (4) but limiting i to n/4.
These signals are the four-bit group generate and propagate signals.
Their value for 4-bit case is given below, and their grouping is
shown in Fig. 2.
(g10, p10) = (g1, p1) o (g0, p0) and
(g32, p32) = (g3, p3) o (g2, p2) at k = 0 (at first level) (5)
(G30, P30) = (g32, p32) o (g10, p10) (at second level) (6)
In this realization, only four bit group generate and propagate signals
are generated (G3+4i,4i, P3+4i,4i for 0 < i < n/4); the rest are generated
within the conditional sum adders. Once we have the 4-bit group
generate and propagate signals, the carries in multiplies of 4 are
generated using (2). This technique results in minimum wiring and
area. For n bits, approximately n/k signals are generated at each level
of the adder, in contrast to 2(n-2k) signals required in [7] and [9].
Four-bit groups offer lesser wiring and area as compared to binary,
keeping the delay equivalent to Brent’s adder [3].
Fig. 2 shows the block diagram of the proposed 32-bit adder. In this
architecture, the carry tree generates the carry inputs in multiples of
four (C30, C70….) Since inverted logic is faster than non-inverted
logic, therefore the proposed generator alternates the polarities of g
and p at each level to produce fast carry generation logic. The carries

generated by the tree are then used to generate the final sum using
either a ripple carry adder or a CSA. In the following sections we
explain the design of the area-delay-optimized ripple and CSA.

C03
C07C011C015

Ripple
Add.

Ripple
Add.

Ripple
Add.

Ripple
Add.

S03

4444

S711S1215 S48

C023
C027

CSACSA

S2023

444

S2831 S2427

C019

CSA

4

S1619

CSA

g31p31 g0p0

C031

Level
0
1

2

3

Delay = log n

4

Fig. 2. 32-Bit adder block diagram.
Fig. 3 shows the area optimized 4-bit adder. The area of the adder is
optimized by utilizing generate (g) and propagate (p) signals
produced in the carry tree. This adder requires only 9-gates (counting
shaded AND-OR pair as one gate) for 4-bits.

a 0b 0

C in

S u m 0S u m 1

a 1b 1 g 0 p 0

S u m 2

a 2b 2 g 0 1 p 0 1

S u m 3

a 3 b 3 g 0 1 p 0 1p 2p 2g 2

Fig. 3. Four bit area optimized ripple carry adder

Since, the four bit carry select adders are not on the critical path, they
could be designed using two sets of four bit ripple carry adders, with
Cin = 0 for one set, and Cin =1 for the other. However, we have found
that it is possible to reduce the hardware by merging the two adders
together. Fig. 4 shows the schematic diagram of the 4-bit merged
carry select adder (CSA). The hardware of this merged CSA is
approximately 40% smaller than the hardware required by two
separate four-bit ripple carry adders. In VLSI implementation, the 4-
bit CSA is combined with the 4-bit carry generate circuit. In the
following sections, we explain the Generator architecture.

0 10 10 1

a0b0p0g0 a1b1p1g1a2b2g01p2g2a3b3

Cin

Sum0Sum1Sum2Sum3

CinCinCin

11 XORs

3 MUXs

3 AOI

2 INV

New_add

Fig. 4. Four bits carry select adder.

4 GENERATOR
In this section we present the generator design. The generator is
described in C++ and contains the following modules:

a) Logic generator, and b) Adder optimizer.

Functions, for obtaining technology related information, delay
computation, parsing of input for the determination of adder
characteristics (bitwidth, delay, area goals), and GUI interface are
carried out by the datapath synthesis engine.

4.1 Logic generator
The main function of the logic generator is to instantiate, place, and
interconnect logic cells and generate relative placement (RP)
information. RP assigns an instance/gate to a row and column
position. Each row corresponds to a single bit of a bus, and each
column corresponds to a function or an operation. The instances
making up a function span multiple bits (rows) and are arranged
vertically in a column. A function can be composed of one or more
columns. Relative placement does not specify absolute (X, Y)
locations for instances, as would full ASIC place and route. The
benefits of working with relative placement rather than absolute
placement are efficiency and speed. By working at a higher level of
abstraction, one can quickly explore the design space. The generator
provides the RP information along with gate level netlist in a file
that provides an efficient starting point for placement tools.
The datapath synthesis engine parses the input and then passes a data
structure (add_db) to the logic generator. This data structure contains
information regarding the adder type, number of bits, and pointers to
input/output operands, desired area and delay. The same data
structure contains the pointer to synthesized adder output data.
The logic generator creates a data structure gp_tree consisting of ‘n’
link lists containing input operand bits and their associated delay in
ascending order. Following this, it first synthesizes the carry tree, as
explained below.
Carry Tree Generation
Generate the g and p terms for each bit starting from 0 to n
During this operation the generator, instantiates one row of NOR
and NAND gates, to produce g_n (inverted generate), and p_n
(inverted propagate) terms respectively, for each bit.
Generate a binary tree using Equation 6 for log(n-1) levels
This operation instantiates AND-OR and AND gates or each black
node of Fig. 2. Since inverted logic is faster then non-inverted logic
therefore alternate polarities of g and p are produced at each level of
the GP tree (using AND-NOR and NAND gates), in order to get full
advantage of inverting logic cells.
Generate intermediate g and p terms of the GP tree, which is not
power of 2.
Finally, instantiate AND-OR and AND (AND-NOR and NAND
gates) for white nodes of Fig. 2, in a manner similar to step 2.
During each of the operations (steps 1-3), nets corresponding to each
instantiated gate are placed in the link list gp_tree, and sorted for
delays. After each cell instantiation, RP data structure is updated with
the bit/column number and GP tree level. Following step-3, carries in
multiples of 4n-1 are generated. These carries are then applied to the
four bit adders as shown in the following steps.
Adder Generation
The adder generator only instantiates the ripple carry and CSA as
shown below:
Generate the first ripple carry adder (Fig.2) for the first four bits.
This operation instantiates a ripple carry adder. Each instantiation
requires one AND, four AND-OR and four XOR gates as shown in
Fig. 3. No further optimization for this part of the adder is possible.

Therefore, the add_db and RP data structures are updated for the
first four sum bits.
Generate CSAs (Fig. 3) for rest of the bits starting from 4 to n-bits.
This operation instantiates n/4-1 CSAs. Each instantiation of a CSA
requires the instantiation of 2 inverters, 3 AND-OR (INVERT)
gates, 11 XOR gates and 3 MUXs as shown in Fig. 4. Since, it is
possible to replace fast arriving carry CSAs with ripple carry
adders, therefore do not update the add_db and RP data structures.
Once all the instantiations are completed, the final step is the adder
optimization using timing analysis. Following section explains this
procedure and the algorithm involved.

4.2 Adder optimizer
The first step in adder optimization is to calculate the maximum
adder delay (maxDelay) in pico second (ps) at the output of the CSAs
(instantiated above).
The procedure below illustrates the adder optimization.
Calculate maximum adder delay:

int numBits = n;
int MaxLevel = log(n-1);
int maxDelay = 0;
for (i=4; i < numBits; i++)
{
 delay[i]=gp_tree[MaxLevel][i].delay;
 if (delay[i] > maxDelay)
 maxDelay = delay[i];
}

In this procedure maxDelay is obtained, by probing the total path
delay at each output bit of the CSA and comparing it with maxDelay.
If the delay at any bit is greater than maxDelay then update the
maxDelay with the delay at that bit position. Final step in adder
optimization is to replace each fast carry path CSA, with an area
optimized ripple carry adder. This is performed by first replacing a 4-
bit CSA with a ripple carry adder and calculating the 4-bit group
delay (maxGroupDelay). If the delay does not increase
(maxGroupDelay < maxDelay) then commit the move and synthesize
ripple carry adder, else synthesize CSA as shown below.
Area optimization

int maxGroupDelay = 0;
for (i=4; i<numBits; i = (i + 4))
{
 Instantiate_Ripple_Carry();
 for (j=i; j < i+4; j++)
 {
 delay[j] = gp_tree[MaxLevel][j].delay;
 if (delay[j] > maxGroupDelay)
 maxGroupDelay = delay[j];
 }
 if(maxGroupDelay > maxDelay)
 Synthesize_Ripple_Carry();
 else
 Synthesize_CSA();
}

In the above procedure the Instantiate_Ripple_Carry only instantiates
a ripple carry adder without updating the add_db and RP data
structures. Synthesize_Ripple_Carry and Synthesize_CSA routines not
only instantiate the adders but also update the add_db and RP data
structures and produce the output sum.

5 PERFORMANCE COMPARISON
The performance of the adders synthesized by the generator is
compared with the BK adders [7] [9], and KS [15]. The BK and KS
adders are synthesized using Synopsys Design Compiler (DC). While
the new adders are first synthesized using the proposed generator and
the generated netlist is post processed by the DC. Each adder is
synthesized using ten different technology libraries under worst case
operating conditions and different wire-load models.
Fig. 5 and Fig. 6 show the delay and area comparison between
different adders using a 0.18u standard cell library under worst-case
conditions and library18_conservative wire-load model. It is clear
from the area-delay reports generated by DC, that the adders
generated by the proposed generator are comparable in terms of delay
(good in some cases and slightly slow in others) to BK, and KS. In
terms of area, adders generated by this proposed generator are always
20%-50% better. Fig. 7 shows the RP layout of a 64-bit adder using
0.18u technology. The adder bits increase from right (LSB) to left
(MSB), inputs are at the top, while the sum is at the bottom. In this
figure, one can easily observe the placement of cells in rows and
columns positions to get a rectangular layout.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

4 8 12 16 20 24 28 32 64
Bits

D
el

ay

BK_Delay KS_Delay New_Delay

Fig. 5. Delay comparison of BK, KS, and NEW adder in 0.18u Tech.

0

500

1000

1500

2000

2500

3000

4 8 12 16 20 24 28 32 64
Bits

C
el

l A
re

a

BK_Area KS_Area New_Area
Fig. 6. Area comparison of BK, KS, and NEW adder in 0.18u Tech.

Fig. 7. Graphical view of the relatively placed gates of a 64-bit adder.

6 CONCLUSIONS
In this paper we presented a generator for the design of area-time
optimal adders with layout information. Adders of up to 1024 bits are
generated and are compared with those generated by commercially
available synthesis tools. The proposed adders are found to be 20% to
50% smaller and with comparable delays. The reduction comes from
a judicious selection of ripple carry or carry select adders based on
the computation of delays. When performance is being met the faster
carry select adders are replaced with slower ripple carry adders.
Accurate computation of delays using the specific technology library,
wire-load models and delay/area goals are employed in making the
above decision. Further, information from the generator is used to
determine the relative location of cells in the generated netlists. This
generator has been integrated into a commercially available high-
performance datapath design tool.

7 ACKNOWLEDGEMENTS
The authors acknowledge the support of Synopsys Corporation and
the King Fahd University of Petroleum & Minerals for this work.

8 REFERENCE:

1. Se-Joong Lee et al., “480ps 64-bit race logic adder”, Digest of Technical

Papers Symposium on VLSI Circuits, 2001 Page(s): 27 –28.
2. Sklansky, J., “Conditional-Sum Addition Logic”, IRE Trans. EC-9, No. 2,

June 1960, pp. 226-231.
3. Mathew, S.K. et al.; “Sub-500-ps 64-b ALUs in 0.18u SOI/bulk CMOS:

design and scaling trends”, Solid-State Circuits, IEEE Journal of , Volume:
36 Issue: 11 , Nov. 2001 Page(s): 1636 -1646

4. Brent, R.P.; Kung, H.T., “A regular layout for parallel adders”, IEEE
Transactions on Computers, vol.C-31, (no.3), March 1982. p.260-4.

5. R. Zimmermann, “Efficient VLSI implementation of modulo(2n+1)
addition and multiplication”, Proc. 14th IEEE Symposium on Computer
Arithmetic, Apr. 1999pp. 158-167.

6. Beaumont-Smith, A.; Lim, C.-C., “Parallel prefix adder design”, Proc. 15th
IEEE Symposium on Computer Arithmetic, 2001, Page(s): 218 –225.

7. Dozza, D.; Gaddoni, M.; Baccarani, G. "A 3.5 ns, 64 bit, carry-lookahead
adder", Proc. 1996 IEEE International Symposium on Circuits and Systems.
Circuits and Systems, vol.2, p.297-300.

8. V. G. Oklobdzija and E. R. Barnes, "Some Optimal Schemes For ALU
Implementation In VLSI Technology," Proceedings of the 7th Symposium
on Computer Arithmetic, pp. 2-8.

9. Wei, B.W.Y.; Thompson, C.D., “Area-time optimal adder design”, IEEE
Trans. on Computers, Volume: 39 Issue: 5 , May 1990 Page(s): 666 –675.

10. Chan, P.K.; Schlag, M.D.F.; Thomborson, C.D.; Oklobdzija, V.G., “Delay
optimization of carry-skip adders and block carry-lookahead adders“, Proc.
10th IEEE Symposium on Computer Arithmetic, 1991 Page(s): 154 –164.

11. Becker, B.; Drechsler, R.; Molitor, P. , “On the generation of area-time
optimal testable adders”, Computer-Aided Design of Integrated Circuits and
Systems, IEEE Trans. on , Vol: 14: 9 , Sept. 1995 Page(s): 1049 –1066.

12. Hsu, J.; Bair, O., “A Compiler For Optimal Adder Design”, Proc. IEEE
Custom Integrated Circuits Conference,1992 Page(s): 25.6.1 -25.6.4

13. R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation”. Journal of
the ACM, vol. 27, no. 4, October 1980, 831-838

14. V. G. Oklobdzija, "High-Performance System Design: Circuits and
Logic",Book, IEEE Press, July, 1999.

15. Knowles S.,” A Family of Adders”, Proc. of the 14th Symposium on
Computer Arithmetic, 1999 pp. 30-34

16. A. A Farooqui, V. G. Oklobdzija, F. Chehrazi, "Multiplexer based adder
for media signal processing", Proc. 1999 International Symposium on VLSI
Technology, Systems, and Applications, Taipei, Taiwan, R.O.C., Page(s):
100 -103, 8-10 June 1999.

	ABSTRACT
	INTRODUCTION
	ADDER ARCHITECTURE
	GENERATOR
	Logic generator
	Carry Tree Generation
	Generate the g and p terms for each bit starting from 0 to n
	Generate a binary tree using Equation 6 for log(n-1) levels

	Adder Generation

	Adder optimizer

	PERFORMANCE COMPARISON
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCE:

