Fuzzy Biasless Simulated Evolution for
Multiobjective VLSI Placement

Junaid A Khan !

Sadiq M. Sait 2

Mahmood R. Minhas 2

! Department of Electrical and Computer Engineering,
University of British Columbia, Canada
E-mail: junaidk@ece.ubc.ca

2 Department of Computer Engineering,
King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
E-mail: {sadiq, minhas}@ccse.kfupm.edu.sa

Abstract - In each iteration of Simulated Evolution
(SE) algorithm for placement poorly placed cells are se-
lected probabilistically based on a measure known as
‘goodness’. To compensate for the errors in goodness
calculation (and to maintain the number of selected cells
within some limit), a parameter known as Bias is used
which has major impact on the algorithm run-time and
on the quality of solution subspace searched. However, it
is difficult to select the appropriate value of this selection
bias because, it varies for each problem instance. In this
work, a biasless selection scheme for simulated evolution
algorithm is proposed. This scheme eliminates the hu-
man interaction needed in the selection of bias value for
each problem instance. Due to the imprecise nature of
design information at placement stage, fuzzy logic is used
in all stages of SE algorithm. The proposed scheme was
compared with an adaptive bias scheme and was always
able to achieve better solutions.

I. Introduction

The placement problem can be stated as follows: Given
a set of modules (cells}y M = {m,,my,---,m,}, and a set
of signals V = {vj,vq,---, v}, each module m; € M is
associated with a set of signals V,,,,, where V;;,, C V. Also
each signal v; € V is associated with a set of modules
M,,, where M,, = {m;lv; € Vi, }. M,, is called a signal
net. Placement consists of assigning each module m; €
M to a unique location such that a given cost function
is optimized and constraints are satisfied [1]. Simulated
Evolution (SE) is used in this work to traverse the search
space to find an optimal solution [2].

SE is a general, iterative meta-heuristic to solve combi-
natorial optimization problems [2], [3], [4]. The general
SE algorithm is illustrated in Figure 1 and comprises
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three main steps namely Evaluation, Selection, and
Allocation. In Evaluation step the goodness of each
cell, in the range [0, 1], is measured at its current location.
The goodness is an approximate indicator of how near a
cell is to its optimum location. In Selection step unfit
cells are selected probabilistically for relocation and this
is based on their goodness value. Higher the goodness
value, lower is the chance of it being selected. The se-
lected cells are removed from the current solution and re-
assigned one at a time to new locations in a constructive
Allocation step, thereby increasing the overall good-
ness.

In SE, it is not possible to find accurate goodness value
for a cell, because accurate optimum location of a cell is
unknown. Further, goodness only gives the local view of
cell, and in order to compensate the error in goodness
calculation and to limit the size of selection set, authors
in [2] proposed a bias parameter where a cell ; is selected
if goodness; + B < Random, where Random is a uni-
formly distributed random number in the range (0,1], B
is the selection bias with its typical values in the range
[—0.2,0.2], and goodness; is the goodness value of cell 1.
However, it is not easy to select the value of B, because
it varies for each problem instance and requires the un-
desireable human interaction. Addressing this problem
an adaptive bias scheme was proposed in [5], where in
kt* iteration bias By is computed as follows

B =1-Gi (1)
where G_; is the average goodness of all cells at the end

of k — 1" iteration. This has the following advantages.

e No trial runs are required to find the fixed bias
value and bias is adjusted automatically according
to problem state.
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ALGORITHM Simulated.-Evolution(B, ®inisiat, StoppingCondition) In the last section the results of proposed scheme are

NOTATION
B= Bias Value. &= Complete solution.
mi= Module i. g;= Goodness of m;.
ALLOCATE(m;, ®;)=Function to allocate m; in partial solution ®;
Begin
Repeat
EVALUATION:
ForEach m; € ® evaluate g;;

/* Only elements that were affected by moves of previous */

/* iteration get their goodnesses recalculated*/

SELECTION:
ForEach m; € ® DO
begin
IF Random > Min(g; + B, 1)
THEN
begin
S$=8 U m;; Remove m; from &
end
end
Sort the elements of S
ALLOCATION:
ForEach m; € S DO
begin
ALLOCATE(m;, ®;)
end
Until Stopping Condition is satisfied
Return Best solution.
End (Simulated_Evolution)

Fig. 1. Structure of the simulated evolution algorithm.

o For poor quality solutions Gy is low, resulting in
high bias value and low cardinality of selection set,
avoiding large unnecessary perturbations.

e In any iteration only cells having goodness < Gx_1
have non-zero probability of selection, thus search is
always focused on relocating poorly placed cells.

However, along with these benefits the adaptive bias
scheme has following drawbacks,

o All the cells with goodness; > Gi—1 have zero prob-
ability of selection. This fact may lead the search
to some local optimal solution, because statistically
half of the cells have zero probability of selection.

o If Gi_1 is low then size of selection set is small and
when Gg_1 is high then size of selection set is large,
which contradicts the basic idea of Simulated Evo-
lution algorithm, where size of the selection set has
to be decreased with increase in average goodness.
Also it is against the behavior of any other iterative
search algorithm where big perturbations are made
when the solution is bad and smaller perturbations
are made with improvement in the quality of solu-
tion.

To solve the above problems a Biasless Selection
scheme is proposed in this paper. In the next section
the Biasless Selection scheme is explained, followed by
the explanation that how the proposed scheme is applied
to multiobjective placement problem using fuzzy logic.
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compared with adaptive bias scheme.

I1I. Biasless Selection

In this scheme the selection bias B is totally eliminated
and a cell is selected if Random > goodness;. This can
be done as follows.

When number of cells in the problem is large, as in
the case of VLSI placement, the goodness distribution
among the cells is Gaussian, with mean G,, and stan-
dard deviation G,. In the proposed selection scheme,
instead of using uniformly distributed random number,
a Gaussian random number is used. By using Gaussian
random number the problem of having cells with zero se-
lection probability can be avoided. The mean R,, and
standard deviation R, of the random number are calcu-
lated as follows

Rm = Gm—Ga (2)
R, = G, 3)

If we use G,,, as the mean of random number then it is
most likely that around 50% cells will be selected which
is not desirable in case of large number of cells. To avoid
larger selection set we change the mean of random num-
ber to Gy, — G4, so that only 12 ~ 13% cells will be
selected in the initial iterations. These values are deter-
mined only in the first iteration. However, with increased
number of iterations average goodness will increase and
this may cause very small number of cells to be selected.
To avoid this, the mean of random number is updated
when the number of selected cells goes down to 5% of
total number of cells in the problem, as follows

Ry = R +0.1 x R, (4)

By using this scheme, (1) there is no cell in the design
having zero selection probability, hence avoiding local op-
tima, (2) size of selection set reduces with increase in the
average goodness value, and (3) update procedure avoids
the extremely small selection set.

III. Fuzzy Cost function

In every optimization problem it is necessary to define
a cost function. Based on this cost function a solution is
said to be superior or inferior to other solutions. In case
of VLSI cell placement, three objectives are considered in
this work i.e., (1) wirelength minimization, (2) power dis-
sipation minimization, and (3) circuit delay minimization
with satisfying the layout width constraint. It is shown
in [3], [6], [7] that cost due to these objectives can be
computed as follows,
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Fig. 2. Membership functions within acceptable range.

COStwirc = Zl] (5)
JEM

Costpower = Y Sili (6)
iEM

COStdelay = Tﬂ'c (7)

where M is the total number of nets in the circuit, /;
is the wirelength estimation of net i, S; is the switching
activity on net ¢ and T _ is the delay in the current most
critical path in the circuit.

In order to combine these three objectives and one con-
straint, the following fuzzy rule is suggested.

Rule R1: IF a solution is within acceptable wire-length
AND acceptable power AND acceptable delay AND
within acceptable layout width THEN it is an ac-
ceptable solution.

Using ordered weighted averaging operator (OWA) [8],
the above fuzzy rule translates to the following:

bpaw(T) = B°x min(ug(z), pg(z), py(z)) +
1-p)x5 3w ®)
Jj=p,d,w
pé(z) = min(ppg, (%), Keigm(T)) )

where p°(x) is the membership of solution z in fuzzy
set of acceptable solutions, 4, () is the membership
in fuzzy set of “acceptable power AND acceptable de-
lay AND acceptable wire-length”, whereas u$(z) for j =
p,d, w,width, are the individual membership values in
the fuzzy sets within acceptable power, delay, wire-length,
and layout width, respectively. In our case we chose
B¢ = 0.7, the superscript ¢ represents “cost”. The solu-
tion that results in maximum value of u¢(z) is reported
as the best solution found by the search heuristic. Notice
that the third AND operator in the above fuzzy rule is
implemented as a pure min because the width constraint
has to be always satisfied.

The shape of membership functions for fuzzy sets
within acceptable power, delay and wire-length are as
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shown in Figure 2(a), whereas the constraint within ac-
ceptable layout width is given as a crisp set as shown in
Figure 2(b). Since layout width is a constraint, its mem-
bership value is either 1 or 0 depending on goalyign (in
our case goalyiqth, = 1.25). However, for other objec-
tives, by increasing or decreasing the value of goal; one
can vary its preference in the overall membership func-
tion. O;s for i € {w,p,d, width} represent the lower
bounds for wire-length, power, delay and layout width
respectively.

IV. Biasless Fuzzy Simulated Evolution for
VLSI Placement(BLFSE)

In order to apply simulated. evolution, one has to de-
sign a suitable goodness measure, a cost function, and
an appropriate allocation operator. These three together
have the most impact on the behavior of the SE algo-
rithm. Due to the multi-objective nature of the place-
ment problem, the goodness measure, cost function, and
the allocation operator should take into consideration all
objectives.

Fuzzy Goodness Evaluation: A designated location
of a cell is considered good if it results in short wire-
length for its nets, reduced delay, and reduced power.
These conflicting requirements can be expressed by the
following fuzzy logic rule.

Rule R2: IF cell i is near its optimal wire-length AND
near its optimal power AND (near its optimal net de-
lay OR Tax(2) is much smaller than Tphax) THEN
it has a high goodness.

where T,,ax is the delay of the most critical path in the
current iteration and Tpax(?) is the delay of the longest
path traversing cell ¢ in the current iteration.

With the AND and OR fuzzy operators implemented
as OWA operators, rule R2 evaluates to the expression
below:

goodness; = p;(z) = B° x min(us, (), ug,(x), uiz(x))
1
+(1-8°) x 3 > ()

j=w,p,d

(10)

where

,ufd(x) = 165 X max(“?net(z)’#fpath(x))
(=89 % 5 (W@ + Hpaun(@) (1)

B¢ and (5 are constants between 0 and 1 to control
OWA operators, puf,(z) represents the membership in
fuzzy set of good timing performance.

The base values for fuzzy sets near optimal wire-length,
power, net delay, and for the fuzzy set “Tax(i) much
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Fig. 3. Membership functions used in fuzzy evaluation.

smaller than Ty,.x”, for each cell, are represented by
Xiw(z), Xip(), Xinet(z) and Xipaen(x), respectively.
Membership functions of these base values are shown in
Figure 3.

Selection: In this stage of the algorithm, some cells
are selected probabilistically depending on their goodness
values. For this purpose we have used Biasless selection
scheme proposed in Section II.

Allocation: In the allocation stage, the selected cells
are to be placed in the best available locations. We have
considered selected cells as movable modules and remain-
ing cells as fixed modules. Selected cells are sorted in de-
scending order of their goodnesses with respect to their
partial connectivity with unselected cells. One cell from
the sorted list is selected at a time and its location is
swapped with other movable cells in the current solution.
The swap that results in the maximum gain is accepted
and the cell is removed from the selection set.

The goodness of the new location is characterized by
the following fuzzy rule:

Rule R3: IF a swap results in reduced overall wire-
length AND reduced overall power AND reduced de-
lay AND within acceptable layout width THEN it
gives good location.

The above rule is interpreted as follows:

1 wpa(t) = B* x min(ug, (1), pip (1), wia(l))

A A
Reduced wire-length Reduced power
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a a
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a 10 X a, 10 X,
Y A i
Within tabl
W Reduced delay ' w?;:;pa ©
1.0 1.
a a
Ha M width
:a > a
as 1.0 X4 1+ @uian X width

Fig. 4. Membership functions used in allocation.

the superscript a is used here to represent allocation.
pd(l) is the membership of cell ¢ at location ! in the
fuzzy set of good location. pf , 4(!) is the membership in
the fuzzy set of “reduced wire-length and reduced power
and reduced delay”. pg, (1), u% (1), udy(1), and pdy,;q0m (1)
are the membership in the fuzzy sets of reduced wire-
length, reduced power, reduced delay and within accept-
able width, respectively.

The base values of membership functions in allocation
are represented as X3, (1), X% (1) X3 (1), and X2 ;405 (1)-
Membership functions for these base values are shown in
Figure 4. The values of ay, @y, ag and ay;qep depend
upon priority on the optimization level of the respective
objective. In our case, we have set a,, = 0.75, a, = 0.75,
aqg = 0.85 and ayign = 0.25. The algorithm terminates
when no further improvement is observed in the best so-
lution found.

V. Experiments and Results

Biasless Fuzzy Simulated Evolution (BLFSE) and
Adaptive Bias Fuzzy Simulated Evolution (ABFSE) is
applied on eleven different ISCAS benchmark circuits.
In both cases execution is aborted when no improvement
is observed in the last 500 iterations.

Table I compares the quality of final solution generated
by BLFSE, and ABFSE. The circuits are listed in order
of their size (136- 2993 modules). From the results, it
is clear that BLFSE has outperformed ABFSE for all
circuits in terms of final quality of solution. In most
of the cases ABFSE has taken smaller execution time,
it is because of premature convergence of the search to

+(1 - 5%) x E Z pii (1) (12) some local optimal solution. It is due to the fact, that
3 j=p,w,d in every iteration half of the cells have zero probability
o N of selection. For larger circuits S3330 and S5378, where
/‘?(l) = mln( /‘i_width(l)f /“‘i_wpd(l) ) (13)
0-7803-7282-4/02/$10.00 ©2002 IEEE 1645



TABLE 1
LAyouT FOUND By BLFSE, aAND ABFSE. “L”, “P” AND “D” REPRESENT THE WIRE-LENGTH, POWER, AND DELAY COSTS
AND “T” REPRESENTS EXECUTION TIME IN SECONDS.

Circuit BLFSE ABFSE
L (wm) [P (um) [ D (ps) [ T () | L (um) | P (um) [ D (ps) | T(s)
S298 4548 915 139 46 7130 1395 152 21
S386 8357 2036 203 117 11167 2544 221 33
S832 23140 5251 416 192 28537 6577 485 114
S641 12811 3072 687 175 13773 3107 687 264
S953 29576 5025 223 351 33484 5523 250 130
51238 41318 12303 363 699 45140 13870 397 295
S1196 35810 11276 360 613 41861 12918 357 433
51494 54523 12986 768 762 67944 16091 809 279
S1488 57730 13810 700 374 73696 17511 891 216
S3330 183288 24797 459 5351 | 193731 25373 558 5610
S5378 | 326840 48360 435 11823 | 365204 56001 441 11369
0.7 0.7 ]
-g 0.6, g 06
3 3
@ — BLFSE @
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a 04 a 04
® i
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: 5
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[ [3
3 0.1 3 041
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(d)

Fig. 5. (a), and (b) show Membership values versus execution time for BLFSE, and ABFSE respectively. (c), and (d) show
cumulative number of solutions visited in a specific membership range versus execution time for BLFSE, and ABFSE.
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execution time is approximately comparable, it can be
seen that BLFSE has outperformed ABFSE. In general,
BLFSE performs better than ABFSE in terms of quality
of final solution.

In order to compare improvement in the quality of solu-
tion versus time, we plot the current membership values
of the solution obtained by BLFSE and ABFSE (Fig-
ure 5-(a) and (b)). These plots are for test case S3330.
It can be observed that the quality of solution improves
rapidly in BLFSE based search as compared to ABFSE.
This behavior was observed for all test cases

Figures 5(c), and (d) track with time the total number
of solutions found by BLFSE and ABFSE, for various
membership ranges. Note however that BLFSE exhib-
-ited much faster evolutionary rate than ABFSE. For ex-
ample, after about 300 seconds, almost all new solutions
discovered by BLFSE have a membership more than 0.6
in the fuzzy subset of good solutions with respect to all
objectives, and almost none were found with lower mem-
bership values. In contrast, for ABFSE, it is only after
1,100 seconds that the first solution with membership
greater than 0.6 was found (see Figure 5). This behavior
was observed for all test cases.

VI. Conclusion

In this paper, we have proposed Biasless Fuzzy Simu-
lated Evolution Algorithm for multiobjective VLSI stan-
dard cell placement. The use of Bias, which is difficult
to find is eliminated from the SE algorithm.

Fuzzy logic is used to overcome the multi-objective na-
ture of the problem. Fuzzy logic is employed at evalua-
tion and allocation stages and in choice of the best solu-
tion from the set of generated solutions. The proposed
scheme is compared with adaptive bias scheme.

It is observed that BLFSE perform much better than
ABFSE in terms of quality of final solution. Fur-
thermore, quality of solution improved more rapidly in
BLFSE based search as compared to ABFSE. Unlike
ABFSE, non of the cell in BLFSE has zero probability
of selection and hence avoid local optimal solutions.
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