High Level Synthesis of Controllers for Communication Protocols

Asjad M. T. Khan Sadiq M. Sait Gerhard F. Beckhoff

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

Abstract

Petri nets are popular in the communication proto-
col community for modelling and analysis purposes.
This paper gives a procedure for implementation of
controllers in hardware from a high level Peiri net
model. With this the entire design-analysis- imple-
mentation cycle for protocols can be Petri net based.
It is especially suited for data link, network, transport
layer Protocols.

1 Introduction

In high level synthesis approach to design [1] the
designer views the system from a high level of ab-
straction. This specification is then input to a design
automation (DA) system which translates it to lower
levels of representation (physical). Silicon compilers,
for example, translate high level input specifications
to layout specifications suitable for fabrication. In this
paper a design automation system that accepts Petri
net models of digital systems and produces VLSI lay-
outs is proposed.

Petri nets can model concurrent/distributed, asyn-
chronous systems. They can also handle interprocess
communication explicitly and model at a high level of
abstraction, the system level. They are backed by es-
tablished theory and recently a number of tools have
also come up. With the increasing quest for speed and
availability of VLSI the trend towards concurrent sys-
tems is bound to grow. Petri nets are a good candidate
for modelling these complex systems at a high level of
abstraction. In high level synthesis acceptable solu-
tions can be obtained by restricting the scope of the
problem to a certain class. Controllers for communi-
cation protocols (datalink protocols for example), are
considered as an instance of complex distributed and
concurrent systems. The choice of protocols is sup-
ported by the fact that Petri nets have been used by
the communication protocol specification and verifica-
tion community for design and analysis purposes and
direct implementation from the model in hardware is
desirable. The usual approach has been to implement
the protocol in software after it’s Petri net model has
been found to be correct. Work on implementation in
software from the Petri net model exists. However, the
increasing communication link speeds make hardware
implementation desirable. The terms and notations
used for Petri nets are taken from the survey-cum-
tutorial by Murata [2].

2 Previous Work

A survey on the existing and proposed hardware im-
plementations of protocols appeared in the literature
[3]. Several implementations of the Data Link layer
protocols and network layer exist. Attempts have also
been made to implement the Transport layer proto-
cols. However, most of the work is restricted to Data
Link, Network and Transport layer protocols.

Petri nets provide a formal method for modelling asyn-
chronous systems. Initial approaches to Hardware
synthesis from Petri nets models were directed to-
wards asynchronous implementation and one of the
areas of application was design of fast control circuits
for computers. However, no efficient method of im-
plementation was found. Recently an automated high
level synthesis system has been proposed [4]. How-
ever, they impose restrictions on the modelling which
does not agree with the way protocols are being cur-
rently modelled. Synchronous implementations have
also been attempted. Kwan et al. [5] and Auguin et
al. [6] proposed methods for decomposition and imple-
mentation of a class of Petri nets by PLAs but their
decomposition was heuristic. In this work synchronous
implementation is considered. In an earlier work [71
preliminary results on the implementation of protoco
controllers was considered. This work reports further
progress.

3 Petri Net Model

Petri nets evolved as mechanisms for interprocess
communication. They can model interaction between
different components. It is this which makes Petri nets
useful in protocol modelling. The Petri net model of
protocols is derived in two steps [8], at first each entity
and the channel is modelled as a state machine or a
net and then the components are connected together
by explicit interconnection mechanism corresponding
to the actual implementation to give the global system
model. A number of interconnection mechanisms have
been proposed [8]. For simple models of communica-
tion medium the basic mechanisms are given below.

Shared Place: A place shared between the sender
and the receiver processes represents the medium. It
represents the fact that the message has been sent by
the sender and not yet reached by the receiver. This is
really the actual behavior denoting the fact that the
message is in transit in the medium. It is the basic

1741

0-7803-0593-0/92 $3.00 1992 IEEE

interconnection mechanism for processes belonging to
distinct entities and has been most widely used [8].
A shared place representation implies potentially un-
bounded buffering, the sender is released after sending
the message.

Merged Transition: In this technique the sender
and the receiver processes share a transition to ex-
change a message. This implies no buffering, direct
transfer and a synchronized send/receive.

4 VLSI Synthesis of Protocol Con-

troller

The implementation is in the form of a PLA which
is suitable for VLSI. This method can be automated
to realize a Petri net based DA system. The previous
work [7] assumed that the input to the DA system is
a composite protocol model with the entities demar-
cated. Here, the general case, when only the compos-
ite model is known, is treated. The implementation
method can be logically divided into two phases, the
Frontend, it takes the Petri net model of the protocol
and produces a FSM for each of the controller entities
and the Backend which generates a PLA implementa-
tion of the FSM.

4.1 Frontend

This phase consists of two basic steps, decomposi-
tion of the protocol model into two entities represent-
ing the N** layer and for each entity, obtaining the
FSM for it’s implementation.

4.1.1 Decomposition of Protocol

The decomposition of communication protocol com-
posite model is a special case of the general decompo-
sition of a Petri net into concurrent components I[>9]
The protocol is a distributed implementation of the
service specification. Although each entity is a FSM
gsequential), it will contain some events(local) which
o not require any interaction with the peer processes
and can occur concurrently with some events in the
peer processes. The proposed method can be applied
only if there are concurrent events in the composite
model. The outline of the algorithm is stated next:

1. Given a Petri net, PN. It is assumed that it is
live and bounded as the correctness of protocol
demands these properties [10].

. Find the reachability graph for the Petri net.

. The existence of concurrent transitions can be de-
tected by searching for n-cube patterns. An n-
cube has the n transitions as its sides. It repre-
sents all the n! possible firing sequences of length
n that can occur as paths between the endpoints
of the internal diagonal and 2" states lie on the
vertices of the cube. If such a pattern occurs in
the reachability graph then these n transitions are
concurrent.

1742

4. For the concurrent transitions build a simple,
undirected graph, called concurrency graph, CoG,

as:

CoG=(V,E) where,

VCT, is the set of nodes of the graph
with each node representing a
transition which is concurrent
to some other transitions

ECV xV isthe set of edges, with e; ; € E

iff node(transition) ¢ is concurrent
with node(transition) j

. Find if the graph is bipartite. If yes, then find
partite components too. Else this procedure can-
not be used. Each partite component belongs to
an entity.

. The transitions that do not occur in parallel with
any other transition and were not featured in the
concurrency graph, CoG are necessarily sequen-
tial and are related to the concurrent transitions
by precedence relation. These can be assigned
to the partite components which contains the re-
lated transitions. This resolves the partitioning
problem.

. The places that are common between the enti-
ties are the shared places and represent channels.
Transitions of each subnet which were connected
to the channel places are annotated with an in-
put condition, an output, or both. The transi-
tions can fire only when their input places have
token and their input condition is true (the sig-
nal arrives from the sender or receiver). When a
transition fires the output signal is produced (it
is assumed to travel to the other process).

The above stated algorithm can be explained by the
following points:

Theorem 1 A Petri net has n transitions in paral-
lel iff for all reachable markings the transition firings
manifest themselves as an n-cube with the n transi-
tions as its sides.

Proof 1 Regarding Petri nets, with the condi-
tion/event model of system, places represent condi-
tions and transitions denote events. The firing rule of
Petri net allows only one transition to fire at a time.
If two transitions, t; and ¢4, are enabled at the same
time, only one of them will fire. However there is no
deterministic way to choose which one of these will
fire. This restriction on firing will lead to both pos-
sible sequences, ¢, firing first and then ¢, firing or ¢,
firing first and ¢; following, occurring in the reacha-
bility graph. This appears as a 2-cube pattern in the
graph. This happens because with two transitions en-
abled and no deterministic choice on firing there is no
ordering of the two events. Any of them may fire This
is illustrated by a simple example shown in Figure
1. If in a Petri net, n transitions are simultaneously

(@)

Figure 1: (a) A Petri net with concurrency (b) the
reachability graph for the Petri net (¢) A 3-cube struc-
ture for three concurrent transitions

enabled in a marking then as there is no ordering on
their occurrence and all the possible permutations will
occur in the reachability graph. For a set with n ele-
ments, all possible permutations are n!, each of length
n without any repetition. In an n-cube, between the
two endpoints of the internal diagonal there are 2"
points and n! paths each of length n.

Once the concurrent transitions are detected, the con-
currency graph, CoG, can be built. In general, the
concurrent components can be found using the follow-
ing two results:

Theorem 2 The x(G)-coloring of a graph gives the
minimum color classes which are independent sets.

The coloring problem is NP-Complete. However, for
the special case of 2-party communication protocols,
the number of components to be detected is two and
the following result can be used.

Theorem 3 If G is a 2 chromatic graph then neces-
sarily G is bipartite and the color classes obtained by
any 2-coloring of G are partite sets of the bipartite
graphs.

Hence, the problem of finding the two entities reduces
to finding the partite components of the CoG graph.
Some of the transitions that do not occur in the CoG
graph are necessarily sequential. The transitions with
which they are sequential can be found from the reach-
ability graph (or the incidence matrix) and they can

be assigned to those partite sets which contain the:

transitions to which they are strongly linked sequen-
tially. The two subsets then define a partition on the

set of transition of the Petri net.

Once the transitions belonging to each entity are
known, the two entities can be separated from the
composite model by cutting the arcs connecting
the transitions to shared places and assigning in-
put/output to the transition to model communication
with the other entity. This gives the annotated Petri
net of each entity.

Complexity of the Procedure: The procedure pre-
sented has high computational complexity. The first
step involves finding the reachability graph. For a
Petri net, the reachability graph is an exhaustive pro-
cedure and requires space and time exponential in the
number of places |P|.

The task of detection of n-cubes from the reachabil-
ity graph can be done in polynomial time (a modified
shortest path detection algorithm based on breadth
first technique can be used) but the graph is exponen-
tial in |P|.

The detection of bipartite components can be done us-
ing a depth first search technique in polynomial time
O(V + E) where, V is a subset of T"and E is T3 X T3,
T, and T} being the transitions belonging to each en-
tity.

4.1.2 FSM Extraction

The process of obtaining the FSM from the annotated
Petri net has two steps: first, refinement of the entity
and next generating a FSM for the underlying unan-
notated Petri net.

Refinement: As discussed in the section on mod-
elling, each modelled entity contains some local ac-
tions which occur within the entity itself. These do
not involve any communication with the peer but are
related to the correct operation of the protocol (e. g.
timer in a data link protocol). One way of handling
refinement for local actions is to associate labels to
transitions signifying local actions. In the protocol
analysis stage these labels are ignored and no inter-
pretation is associated, however, in the implementa-
tion stage these are interpreted as input conditions
and outputs. Alternatively, this can be done at this
stage (after entities have been separated).

FSM from annotated Petri net: The reachabil-
ity graph of the underlying unannotated Petri net is
isomorphic to an FSA which accepts the language of
firing sequences if the graph is bounded [11]. The con-
ditions and the output are then used to replace the
transitions labelling the arcs of the transition. This
then defines a FSM. The procedure of obtaining FSM
from the annotated Petri net is summarized below:
Procedure 1 1. for each entity
2. find the reachability graph of underlying unanno-
tated Petri net,RG=(V,E), where, nodes of the

1743

graph, V=R(M)) and the set of labelled, directed
arcs, E has an arc from V' to V* labelled by ¢

if for the corresponding markings, M’ and M",
Mt > M"

3. do for the reachability graph
4. for every arc

5. substitute the transition labelling the transition,
t by the input conditions, z,y,... and out-
puts, a,b,... associated with the transition as,
<z,Y,...> ((a,b, ...), where, all the conditions
z,y;... should be satisfied for the transition to
occur and the change produces outputs a,b,....
This is finite and isomorphous to a FSM.

4.1.3 Frontend Implementation

The basic tool for implementation of frontend was P-
NUT (Petri Net UTilities) developed at the University
of California at Irvine.

4.2 Backend

The backend is basically a silicon compiler for FSM.
It takes a description of the state machine to be imple-
mented and gives the layout of the PLA implement-
ing it. It is based on a subset of tools made at the
University of California, Berkeley, called 1986 VLSI
Tool Kit and VLSI Design Tools. The entire pro-
cess is automated. The first of the tools meg (Mealy
Equation Generator) takes a high level input of the
FSM and outputs the equations of the output and
next_state variables in terms of present_state and in-
put variables. This is then fed to eqntott which out-
puts the truth table for implementation by a two level
circuit(PLA personality). This format is compatible
with the espresso input which is used to minimize
the function. The output can then be fed to a PLA
generator, mpla which outputs the layout in the de-
sired technology and style. What remains after that
is to place the PLA in a pad frame, connect the input
of FSM and the next state outputs, route the inputs
and outputs to I/O ports and the chip would be ready
to be sent for fabrication. These tasks can also be
done using available tools. Finally, the FSM can be
extracted from the PLA using circuit extractor mex-
tra and simulated using rnl to verify correctness of
operation.

5 Summary and Conclusions

A method for implementing communication pro-
tocols in hardware was presented. It was assumed
that the composite Petri net model of the protocol
is available. A procedure for automatically detecting
the entities of the communication protocol was given.
This procedure has exponential complexity (in num-
ber of places of Petri net) as it uses reachability graph.
No restrictions have been put on the Petri net model.
However, if certain restrictions are made on the model
then the task is easier. The option of using a subclass
has been investigated in [9]. The task of building an
automation system requires that P- NUT, decompo-
sition algorithms and VLSI DESIGN Tools be inte-
grated.

Acknowledgments

Thanks are due to Dr. T. Morgan for providing
P-NUT, the University of Washington for the VLSI
Design Tools, Dr. M. S. T. Benten for his help with
the softwares and King Fahd University of Petroleum
and Minerals, Dhahran for support.

References
[1] M. C. Farland, A. C. Parker, and R. Composano,
“The high level synthesis of digital systems,” Pro-
ceedings of the IEEE, vol. 78, Feb. 1990.

[2] T. Murata, “Petri nets: properties, analysis and
application,” Proceedings of the IEEE, vol. T7,
pp- 541-580, Apr. 1989.

[3] A.S. Krishnakumar and K. Sabnani, “VLSI im-
plementations of communication protocols — a
survey,” IEEE Journal on Selected Areas in Com-
manication, vol. 7, pp. 1082 —1090, Sep. 1989.

[4] T. H. . Y. Meng, R. W. Brodersen, and
D. G. Messerschmitt, “Automatic synthesis of
asynchronous circuits from high level specifica-
tion,” IEEE Transactions on Computer Aided
Design, vol. 8, Nov. 1989.

[6] C. L. Kwan, P. L. Beux, and C. Michel, “The
design of structured digital systems controlled by
PLA,” in Microcomputer Architecture, Euromicro
1977, (J. D. Nicoud, J.Wilmink, and R. Zaks,
eds.), North Holland Publishing Company, 1977.

[6] M. Auguin, F. Boeri, and C. Andre, “Systematic
method of realization of interpreted Petri nets,”
Digital Processes, vol. 6, no. 1, pp. 55-68, 1980.

[71 A. M. T. Khan, S. M. Sait, and G. F. Beckhoff,
“VLSI implementation of controllers for commu-
nication protocols from their Petri net models,”
in Second Great Lakes Symposium on VLSI, 1992.
Accepted for presentation.

[8] M. Diaz, “Modelling and analysis of commu-
nication and cooperation protocols using Petri
net based models,” Computer Networks, no. 6,
pp. 419-441, 1982,

[9] A. M. T. Khan, VLSI Implementation of a Class
of Digital Systems from their Petri Net Mod-
els. Master’s thesis, King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia,
1992. Expected January 1992.

[10] D. P. Sidhu, “Protocol design rules,” in Protocol
Specification, Testing and Verification I, (C. Sun-
shine, ed.), pp. 283-300, Elsevier Science Publish-
ers B. V., North Holland, 1982.

[11] R. Valk, “Petri nets and regular languages,”
Journal of Computer and System Sciences,
vol. 23, pp. 299 -325, 1981.

1744

