Timing Driven Genetic Algorithm for Standard-cell Placement *

Sadiq M. Sait Habib Youssef Khaled Nassar

Muhammad S. T. Benten

Department of Computer Engineering
King Fahd University of Petroleum and Minerals
Dhahran-31261, Saudi Arabia

e-mail: facy009@saupm00.bitnet

Abstract

In this paper we present a timing-driven placer for
standard-cell IC design. The placement algorithm fol-
lows the genetic paradigm. At early generations, the
search is biased toward solutions with superior tim-
ing charactersstics. As the algorithm starts converyg-
ing toward generations with acceptable delay proper-
ties, the objective is dynamically adjusted toward op-
timizing area and routability. Ezperiments with test
circuits demonstrate delay performance improvement
by up to 20%. Without any noticeable loss in solution
quality, sizable reduction in runtime is obtained when
population size is allowed to decrease in a controlled
manner whenever the search hits a plateau.

1 Introduction

Placement consists of assigning cells of a given
circuit to physical locations on a 2-dimensional lay-
out surface. The cells may be standard-cells, macro
blocks, etc. In this work we consider standard-cell
placement. Until recently, the total wirelength was
a widely used measure of the quality of placement.
However, due to advances in VLSI technology, sizes of
transistors have been decreasing and their switching
speeds increasing. In the last two decades the scaling
has been so drastic, that there has been a tremendous
increase in the importance of interconnect delays with
respect to the overall speed performance of the circuit.

The speed of a circuit is determined by the time
it takes for a signal to travel on its longest path. A
signal traveling on any path = is constrained to reach
the path end point no later than its latest required
arrival time (LRAT, ). A design is free from long path
timing problems if, for every path T,

T, < LRAT, (1)

where Ty is the overall delay on path w. The problem
of performance driven placement consists of finding
suitable locations of cells so as to minimize the total
wirelength and area, while satisfying Equation 1 for

each path =.
In this work a linear cell delay model is used. The
delay T'D of a cell is computed as follows,
TD=BD+ LD+ 1D 2)

KFUPM Project #

*This research is supported by
COE/VLSIDESIGN/162

0-7803-2492-7/95 $4.00 © 1995 IEEE

403

where, LD is the load delay due to loading pins of
the net driven by the cell, and ID is the interconnect
delay on the net. Expressions for these quantities are

given below.
LD = LF x C;, (3)
ID = LF X Cpet + Ruet X (Cnet + Cin)  (4)

where, LF is the load factor, C;, is the total input
capacitance of the loading cells, R,.; is the total in-
terconnect resistance of the net, and Cy.; is the total
interconnect capacitance of the net (fringe plus sur-
face).

Iv%ost contemporary VLSI placement tools incor-
porate timing performance aspects in their objective
functions!. Methods for generating constraints on
sizes of nets to guarantee performance are reported in
[10, 15]. These methods consist of distributing slacks
on the nets. The final layout that satisfied these net
bounds was guaranteed to satisfy path timing con-
straints for desired performance. In ﬁ4], factors which
are highly correlated with the path delays are com-
bined into a score function. Path criticality is decided
on the basis of path scores. The predicted critical
paths are used by the placement procedure.

In [4, 12] performance driven placement is solved
using mathematical programming. In [7], a placement
solution that satisfies multiple objectives, which are,
area, routability, and timing, is produced using fuzzy
logic rules. In [13], the application of a constructive
successive augmentation methodology to VLSI place-
ment under constraints on routability, area, and tim-
ing is presented.

Iterative and non-deterministic techniques have
also been employed. In [2], the authors employ sim-
ulated annealing to improve both the wirelength and
performance. Other iterative nondeterministic tech-
niques that have been applied to the placement are
genetic algorithm (GA) {1, 11] and simulated evolu-
tion [6]. But for both, the placement objective was
the minimization of wirelength, timing performance
was not an issue.

In this work we describe a timing driven genetic
algorithm for placement. Initially, a number of

1The number of various approaches reported on the aspect
of timing driven placement is too large to enumerate in a con-
ference paper. The review is limited to a small subset of the
works the authors are most familiar with.




placement configurations are constructively produced.
Then, the genetic algorithm is used to iteratively
search for a new solution that combines the good char-
acteristics of the initial configurations. The overall ob-
Jective is two-fold; (1) satisfy path timing constraints
and (2) minimize overall wiring length (area).

The principle reason for selecting the genetic al-
gorithm is that it allows several placement configura-
tions to be maintained. This makes the technique easy
to adapt to the multi-objective nature of the place-
ment problem in general and timing-driven placement
in particular. Further, the genetic algorithm has hill
climbing capability, making it suitable for the place-
ment problem which is characterized by several noisy
(a large number of local optima) and conflicting ob-
Jectives.

1.1 Timing Prediction

Long path timing problems are caused by large in-
terconnect delays. Obviously, the critical paths are
those that are most inclined to exhibit a long path
problem. The timing data passed by the timing anal-
ysis program to the placement procedure consist of a
set of the most critical paths. This set is predicted
using the notion of a-criticality. Our prediction ap-
proach proceeds as follows. From past layouts with
similar complexity, the average and standard devia-
tion of net lengths are estimated for each type of net
(2 pin-, 3 pin-,..., k pin-nets). These are converted
to capacitances for the particular technology of the
design at hand. Let T, and S, be the overall delay
(including the net delay estimations) and standard de-
viation along path 7. Let T .x be the estimated delay
of the longest path in the design, that is,

Tinax = m:xx{T,,} (5)

A path 7 is called a-critical if and only if,
Tr + a X Sx > Tmax (6)

The parameter « acts as a confidence level. The
larger « is, the larger is the number of predicted criti-
cal paths, and the higher is the probability of including
all potentially critical paths. Typical values of a are:
a X Sy < bns. This prediction approach was effective
in predicting all of the critical paths in the designs we
experimented with.

2 TDGAP: Timing Driven Genetic Al-

gorithm for Placement

Genetic algorithm (GA) is a search technique which
emulates the natural process of evolution as a means
of progressing toward the optimum [3]. GA has been
applied in solving various optimization problems in-
cluding those in VLSI physical design [1, 11].

The structure of the genetic algorithm for timing-
driven placement referred to as TDGAP is given in
Figure 1. In this work the cost function used includes
both the timing performance of the circuit and the
total wirelength.

Given an initial solution, TDGAP conducts a
search in the solution space using its operators and

ALGORITHM (TDGAP)
Np= Population Size.
Ng= Number of Generations.
No= Number of Offsprings.
P.= Crossover Probability.
P,= Mutation Probability.
Begin
Initial_Population(Ny)
For j=1to Np
Evaluate Fitness(Population[j])
EndFor
For i =1to N,
For j =1to N,
(s,t) «— Choose_parents (*CHOICE*)
With probability P. Perform Crossovers
Offspring[j] — Crossover(z,y)
EndFor
(*SELECTION of next generation¥)
Population — Select(Population, offspring, Np)
For k=1to N,
With probability P, Perform Mutation

Population[k] «— Mutation(Population[k])

EndFor
For m =1to Ny
Evaluate Fitness(Population[m])
EndFor
EndFor
Return highest scoring individual in Population.
End

Figure 1: General algorithm of TDGAP.

functions to repetitively modify the population of
placement configurations. The search continues until
all the timing constraints are satisfied or the popula-
tion has reached maturity. Timing constraints consist
of delay bounds on the critical paths of the circuit.

2.1 Solution Representation

Each individual (solution) in the population is en-
coded (represented) as a set of rows. Each row con-
tains modules (genes) that are represented as a set
of three integers indicating the cell serial number, the
row number, and the displacement from the left edge
of the layout.

2.2 Initial Population Constructors

Initial solution construction is very critical to GA.
Five initial population constructors were investigated.
They are: (1) Constructor IPC) selects modules at
random and places them in rows; (2) Constructor
IPC, attempts to clusters cells affecting the same
path; (3) Constructor IPCj is similar to 1PC3 ex-
cept that IPCs places cells left to right, starting
from row 0, while I PCj3 places cells starting from the
middle row and proceeding outward; (4) Constructor
IPCj4 combines individuals from I PC; and I PCs; and



(5) Constructor IPCs is similar to constructor IPCy
with the difference that it includes in its initial pop-
ulation a placement configuration obtained using the
mincut partitioning algorithm of the OASIS system
(8]. Therefore, the initial population constructed with
I PCj consists of three classes of individuals: (1) place-
ments obtained randomly, (2) placements construc-
tively built to exhibit good timing characteristics, and
(3) placements constructively obtained with mincut
partitioning to exhibit good wirelength characteristics.

2.3 Choice Function

The choice function adopted is based on the
stochastic remainder without replacement scheme.
This selection scheme has been proven to be superior
over the expected value scheme [3] and works as fol-
lows. Let exp_count(P(i)) be the value of the expected
count of an individual P(7).

cos@i))

ezp-count(P(i)) = —

()
where,

costP(i) = cost value of individual P(7)

®)

and,
N T
cost = — X Zcost(?(i)) 9)
NP i=1

For each individual P(7), [le:z:p_count(P(i) | in-
stances of P(i) are included in a list L. The fractional
part f; = exp_count(P(i) — Lexp_countgpg) 11 is inter-
preted as a probability, that 1s, with probability f; one
more instance of P(¢) is included in the list L. This op-
eration is repeated until all individuals are processed.
Following this step, two parents at a time are ran-
domly selected from the list L and, with a probability
P, they are crossed to produce an offspring. In each
generation, at most N, offsprings are bred.

2.4 Crossover X

Crossover is the most important genetic operator
and has the most effect on the convergence rate and
the quality of solution. Two types of crossover oper-
ators X7 and X are considered in TDGAP. Both use
information passing from one parent to the other, but
they differ in the way they pass information. Both
operators are aimed at improving the timing aspects
of the reported a-critical paths. They try to make
the offspring inherit some of the satisfied paths (paths
with no timing problems) from its parents. Operator
A1 achieves this by maintaining the same locations of
the cells affecting these satisfied paths. Operator X5,
however, keeps the cells affecting the satisfied paths
within a certain window.

Let P(s) and ’Pét;be the passing and target parents
respectively, and be the set of the a-critical paths
of the circuit. Operator X; operates in the following
way. An identical copy (’Pgo ) of P(t) is made. A
critical path cp is selected from CP according to a
criterion that will be explained later. Then, the set
B of cells affecting cp is i1dentified. The goal of X; is

405

to reconfigure offspring P(o0) such that the cells in 8
occupy the same locations as in the passing parent.
Collisions are resolved by interchanging the locations
of the two modules. The steps of X; operation are
illustrated in Figure 2. In this figure, the set g =
{c1,c2,¢3,ca}. Then, the cells of 3 in P(0) are moved
to the same locations as they were in P(s). As shown
in Figure 2(c), cells ¢; and d; interchange locations.

o o o %
L] 4
%
%4 3 o d d
(a) ®)
| /\dz L] c
4 &
3 47 a3
w?l 4 Gy % o ]
© @

Figure 2: Crossover operator X;. 8 = {¢1,¢2,¢3,¢a}.
(a) Parent 1 (passing parent), (b) Parent 2 (target
parent), (¢) Information passing, (d) Offspring.

Crossover operator X, operates in the following
manner. It starts like X; by making a copy P(? from
P(t), selecting a critical path c¢p from CP, and iden-
tifying the set B of cells affecting cp. The size and
location of the smallest bounding window w, that en-
closes the cells of # in P(s) is determined. A window
w; is also determined in parent P(t) with the same di-
mensions and location as w, in P(s). Comparing the
contents of these two windows, three sets are defined:

o = cells € f§ — w;, (cells in B but not in w);

p = cells € w, — (w: + B), (cells € w, but are neither
In w¢ nor in B); and

n = cells € (w; Nwy).

Then operator X, reconfigures P(o) as follows. It first
defines a window w, in P(0) of the same size and lo-
cation as chat of w,. After that, it scans the contents
of w, cell by cell and one row at a time. Then, for
each scanned cell e;, operator X3 works according to
the algorithm shown in Figure 3. The operation of X
is depicted in Figure 4.

Selection of critical path cp

For each placement configuration P(i) in current
generation, the critical paths are maintained in two
lists: (1) CP; is the list of the critical paths with
positive slack, and (2) CP;” is the list of the critical
paths with negative slack. Let P(s) and P(t) be the
source (passing) and target parents respectively. The
process of selecting a cp is aimed at generating an off-




ALGORITHM ((Reconfigure)
Stop=0
Repeat
If e; € 7 Then
skip this cell and go to the next one,
Elself ¢ ¢ 8 Then
Begin
pick a module ¢; from o and swap e; and ¢;,
remove module e; from o
End
Elself p ¢  Then
Begin
pick a module ¢; from p and swap e; and e;,
remove module e; from p
End
Else
Begin
skip this cell (all other cells will stay in their locations)
Stop=1
End
Until(all cells € w, are scanned or Stop=1)

Figure 3: An algorithm used by X5 to reconfigure an
offspring &,.

spring with better timing characteristics. The critical
path selection algorithm proceeds as follows:

1. If target parent has no timing problems, that is
CP[ =0, then select at random a cp from CP;;

else, if there is a critical path cp with long path
timing problem in target parent, but is problem
free in passing parent, that is cp € CPF NCP;,
then select this path;

. else, if there is a cp with a long path timing
problem in both the target and passing parents
(ecp € CP-NCP,”), but with better timing (larger
slack) in the passing parent, then select this path;

4. else, select a cp at random.

2.5 Selection (§) of the Next Generation

The crossover applications have the effect of aug-
menting the current generation with its offsprings.
The selector function is used to maintain the popu-
lation size fixed, that is to decide which individuals to
use as part of the next generation. We experimented
with four selector functions. Let P be the current pop-
ulation and J = P U Of fsprings; then the selector
functions proceed as follows:

e Selector §; selects from J the best scoring indi-
vidual and N, — 1 other individuals at random,
where N, =| P |.

406

@

)

©

Figure 4: Crossover operator X;. f={ahmmn}, o=
h,mn}, p={d,ej}, n={ab,c,fk,g}. (a) Parent 1
passing parent), (b) Parent 2 (target parent), (c) In-
formation passing, (d) Offspring.

e Selector §, selects the best 10% of N, and the rest
are selected at random.

Selector §5 selects all N, individuals from J at
random.

Selector §, selects individuals on a competitive
basis with each individual P(j) having a proba-
bility Prob(j) to be selected, where

score(P(j))
1_, score(P(1))

i=1

Prob(j) = (10)

where, ¢ =| J |, and score(P(7)) is the fitness of
individual P(7). With this selector, the algorithm
has a higher probability than with other selectors
to be trapped into local minima. This might hap-
pen because individuals with low fitness values
are quickly discarded at the early generations.

2.6 Mutation p

Two mutation operators p; and pz were investi-
gated. Operator u; is targeted toward improving the
timing of the placement, while operator u; is targeted
at improving the wirelength of the placement. Both
operators use the notion of center-of-mass in order to
improve the path timing and length of selected nets.
In TDGAP, except for the best individual, any in-
dividual in the newly selected generation may be a
candidate for mutation.

Mutation operator p; works as follows. For each
individual P(i) that is selected for mutation, first a
critical path cp is randomly selected from the set CP;~
(those paths with long path problems in P(7)). Next,
a module e, which is affecting the performance of cp
is randomly selected. The module e, is pairwise in-
terchanged with the module at the center of mass of



Connaects calts aftacting path =

--- -
hodule al the cemter of

mass of Nel | but not on

_@ -  Selacied col for
awapping

(a)y

Not |
T——

[ 1
it

Path x

.........

®)

Figure 5. The operation of mutation operator pu;.
(a) Before mutation, (b) after mutation.

the selected critical net. This mutation operation is
illustrated in Figure 5.

Mutation operator u, operates in a manner similar
to that of operator u;. It starts by selecting at random
a two-pin net, where neither of the two pins is an I/O
pad. Then, one of the two modules is chosen to be
swapped with a module at the location of the center
of the selected net.

The requirement that the selected net be a two-pin
net is motivated by experimental observations. Analy-
sis of several layouts revealed that most of the two-pin
nets that are on critical paths have their modules sep-
arated by large distances. This wide separation has
two undesirable effects: (1) it increases the number of
feedthroughs and (2) it increases the total wirelength.

2.7 Score Function

The score function is a combination of three terms.
The three terms are directed toward the improvement
of the circuit performance and total wirelength. Let
P(%) and P(j) be two individuals in current population
P; if Score(P(i)) > Score(P(j)) then individual P(3)
is fitter than individual P(j). The score of a given
individual P(7) is computed as follows:

Score(P(i)) = w1 X S; + wa x W; + wsx R; (11)

where wi,wy, and ws are different weights assigned
for each term. S; and W; are measures of the timing
and wirelength aspects of individual P(7), while R; is
a relaxation factor. It is a measure of the amount by
which satisfied paths can be made longer and remain
problem free. This is to give the wirelength metric a
chance to improve.

2.8 Experiments and Results

The genetic algorithm is a very elaborate and rela-
tively hard to tune algorithm. It is harder than other
iterative heuristics such as simulated annealing [5] and
simulated evolution [6]. The tuning of the genetic al-
gorithm parameters to a particular problem (such as

407

placement) requlres extensive experimentation. Such
an extensive experimentation has been conducted on
TDGAP. The operators that performed best with re-
spect to wirelength and timing are indicated? in Table
1. These operators showed a superior performance as
well as faster convergence.

Constructor function IPCs
Crossover operator X
Mutation operator u1 U po
Selector function 1
Population size 24
Crossover probability | 0.5 - 0.7
Mutation probability 0.1

Table 1: A summary of the genetic parameters

that were found to perform better than others with
TDGAP.

We noticed that the population fitness improves
very rapidly during the early generations. The change
in the population fitness is less rapid as the number
of generations increases, until it becomes insignificant.
The reason is that, the improvements in the popula-
tion are caused by crossovers and mutations involving
high scoring individuals. Therefore, toward the middle
and later generations, the role of low scoring individ-
uals becomes insignificant as a source of new fit indi-
viduals for the next generations. Hence, it seems rea-
sonable to allow the population size to progressively
decrease (in a controlled manner) with the number of
generations. Such a decrease will cause a sizable re-
duction in run time without any noticeable change in
solution quality.

We experimented with this idea using CRC16 (see
Table 3) as a test case. In a first strategy the pop-
ulation size was fixed to 30 individuals. In a sec-
ond strategy, the population was allowed to progres-
sively decrease. A reduction procedure determines
when to reduce the population size and by how much.
The performance of the best solution is checked pe-
riodically every Reduction_Period. If no timing im-
provement by at least 3% is achieved during the last
Reduction_Period, the population size is reduced by
20%. This reduction is allowed as long as the pop-
ulation size does not become less than half of the
initial population size. The Reduction_Period pa-
rameter is also dynamically decreasing. Initially it is
assigned a large value. Then each time the popula-
tion size is checked, the Reduction_Period is reduced
by a Period_Factor. This is performed because the
convergence rate of TDGAP in the early generations
is higher than in the later ones. Thus, the reduc-
tion procedure monitors the performance after shorter
periods in those generations where the improvement
i1s too slow. For the CRC16 test case, we set the
Reduction_Period equal to 5000 generations and the
Period_Factor equal to 5%.

2discussions and graphs are omitted due to lack of space.



5.5

"“‘{ﬁ gx}:::ﬁ e Best Dynamic Population | Fixed Population
s Solution Slack Area Slack Area
Initial -2.47 87786.3 -2.47 | 87786.3
s Final +0.61 69959.1 +0.78 | 70580.8
Al [ Run Time % | 54% | 100 % |

- (Worst Slack)

—
g

N

"
150000
Generations

1 n 2 N
0 50000 100000 200000 250000

300000

105000

T T
Varying pepulation size ——
Fixed population size -——
100000 y

95000
90000
85000 |

80000 |

Total Wirelength

75000

70000 |

65000
4

L 1 n
150000 200000 250000

Generations

X i
50000 100000 300000

Figure 6: Timing and wirelength performance of the
best solution with dynamic and fixed population size.
The clock period taken is smaller by 3ns than for re-
sults reported in Table 2.

Figure 6 shows the timing and area performance of
the best solution with dynamic and fixed population
size. Both cases were run for 300,000 generations. A
summary of the initial and final values of the best solu-
tion with dynamic and fixed population sizes is given
in Table 2. From this table we note that the quality of
the results in both cases were of comparable quality,
but the total run time for the case of dynamic popula-
tion size has decreased by 46%. However more exper-
imentation is required to tune the reduction schedule
(that is, Reduction_Period and Period_Factor{).

We run TDGAP on the following circuits (Table 3).

1. Ck1: A sample AHPL model that performs part
of the stop and wait protocol.

2. CRC16: A 16-bit Cyclic Redundancy Checker.

3. Highway: A traffic light controller (test case
from the OASIS system).

4. Fract: A fractional multiplier. The description
of this circuit is given in [9].

A summary of the initial and final values of the
best solution for all test cases with respect to timing

408

Table 2: A summary of the initial and final values of
the best solution with dynamic and fixed population
size for wirelength and timing performance. Slack val-
ues are given in ns.

Circutt [[ # of # of # of rows
Name cells | critical paths | in final layout
Ckl 209 200 8
CRC16 209 330 9
Highway 56 14 4
Fract 149 368 6

Table 3: Characteristics of the circuits used.

and area metrics is given in Table 4. The slack values
given are obtained after the placement phase, but be-
fore routing. The placements obtained by OASIS and
TDGAP were evaluated with respect to timing as well
as overall wirelength. Timing performance improve-
ments of up to 20% were obtained. The area values
given are obtained after completing the routing phase
and generating the layout. The Magic layout system
has been used to view the layouts of the circuits and
get their actual height and width. The improvement
achieved by TDGAP with respect to timing aspects
has resulted in a slight increase in the overall area
(between 1% and 9%).

One observation that is in order concerns the ge-
netic control parameters. From experiments we iden-
tified two parameters that, if allowed to adapt, would
lead to shorter run time and superior results: (1) the
crossover probability; and (2) the mutation proba-
bility. From experimentation, starting with a high
crossover probability of 90% then gradually reducing
it to 70% seems to be a better choice then keeping it
constant. A similar strategy can be also applied for
the mutation probability, that is, starting with rela-
tively large value of 20% and then gradually reducing
it until it reaches 10%. These observations require
further investigations.

TDGAP is implemented in the C language. Exper-
iments were performed on a 64-bit DEC Alpha work-
station that is running OSF/1 operating system at
the speed of 100 MIPS. Although run-time reported
ranged from 5 to 14 hours, as can be seen from Figure
6, solutions improves by 80% within the first 10-15%
of the time. That is, a solution close to the best re-
ported is obtained within the first one or one and a
half hours of run-time.



Circuit Clock Run time Area Slack

Name period in Hrs TDGAP Increase OASIS TDGAP | Impr | OASIS
Ck1 21 ns 10.1 928 x1016 9.1% 923 x 936 +0.52 8.1% -1.14
CRC16 18 ns 14.4 1131 x 968 5.5% 1072 x 968 +0.61 17.7% -2.47
Highway 20 ns 5.4 478 x 496 6.2% 465 x 480 +0.51 11.4% -1.72
Fract 38 ns 9.0 798 x 824 5.9% 768 x 808 +0.31 6.5% -2.14

Table 4: Area and Slack performance comparison between TDGAP and OASIS.

3 Conclusions

In this paper we presented a timing-driven place-
ment program. The placement procedure follows the
genetic algorithm. The program uses path timing data
from a timing analyzer. The timing analyzer uses a
new technique and a new criterion (a-criticality) to
predict the critical paths prior to placement.

Extensive experiments were conducted to tune the
parameters of the program and evaluate the extent of
timing improvement. Experimental results show that
timing improvement of upto 20% can be achieved by
our placement system without any change to the logic
of the circuit. The sizable timing improvement is ac-
companied with a very slight increase in the area of the
circuit. We also experimented with the idea of gradu-
ally decreasing the population size as the population
matures. This idea resulted in considerable reduction
in run-time (by about 50%) without any noticeable
loss in solution quality. We believe, that with a bet-
ter tuned reduction schedule run-time can be further
reduced (again with no loss in solution quality).

Acknowledgments

Authors acknowledge King Fahd University of
Petroleum and Minerals for all support. This
research is supported by KFUPM Project #
COE/VLSIDESIGN/162

References

[1] J. P. Cohoon and W. D. Paris. Genetic place-
ment. IEEE Transactions on Computer Aided
Design, CAD-6:956-964, November 1987.

[2] W. Donath et al. Timing-driven placement using

complete path delays. Proceedings of 27th Design

Automation Conference, pages 84-89, June 1990.

[3] D. E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-

Wesley Publishing Company, INC., 1989.

M. A. B. Jackson and E. S. Kuh. Performance-
driven placement of cell-based IC’s. Proceedings
of 26th Design Automation Conference, pages
370-375, June 1989.

[4)

S. Kirkpatrick, Jr. C. Gelatt, and M. Vecchi.
Optimization by simulated annealing. Science,

220(4598):498-516, May 1983.

409

[6] R. M. Kling and P. Banerjee. Empirical and theo-
retical studies of the simulated evolution method
applied to standard cell placement. IEEE Trans-
actions on Computer Aided Design, CAD-10:1303
— 1315, October 1991.

Rung-Bin Lin and E. Shragowitz. Fuzzy logic
approach to placement problem. Proceedings of
29th Design Automation Conference, pages 153—
158, 1992.

MCNC Group.
1990.

(8] OASIS 2.0 Reference Manual,

[9] H. Troy Nagle et al. Intro to Computer Logic.
Prentice Hall, 1975. page 461.

[10] R. Nair et al. Generation of performance con-
straints for layout. IEEE Transactions on Com-
puter Aided Design, CAD-8(8):860-874, August
1989.

[11] K. Shahookar and P. Mazumder. A genetic ap-

proach to standard cell placement using meta-

genetic parameter optimization. JEEE Transac-
tions on Computer Aided Design, 9(5):500-511,

May 1990.

[12] Arvind Srinivasan, Kamal Chaudhary, and

Ernest S. Kuh. Ritual: a performance-driven

placement algorithm. IEEE Transactions on Cir-

cutts and Systems, pages 825-840, November

1992.

S. Suthanthavibul, E. Shragowitz, and Rung-Bin
Lin. An adaptive timing-driven placement for
high performance VLSI’s. I[EEE Transactions on
Computer Aided Design, 12(10):1488-1498, Oc-
tober 1993.

H. Youssef et al. Critical path issue in VLSI de-
sign. Proceedings of International Conference on
Computer-Aided Design, pages 520-523, 1989.

[13]

[14]

[15] H. Youssef and E. Shragowitz. Timing constraints
on signal propagation in VLSI. Proceedings of In-
ternational Conference on Computer-Aided De-

sign, pages 24-27, 1990.



