A Novel Technique for Fast Multiplication

Sadiq M. Sait

Aamir. A. Farooqui

Gerhard. F. Beckhoff

King Fahd University of Petroleum and Minerals
Dhahran-31261, Saudi Arabia
e-mail: facy009@saupm00.bitnet

Abstract

In this paper we present the design of a new high
speed multiplication unit. The design is based on non-
overlapped scanning of 3-bit fields of the multiplier. In
this algorithm the partial products of the multiplicand
and three bits of the multiplier are pre-calculated using
only hardwired shifts. These partial products are then
added using a tree of carry-save-adders, and finally the
sum and carry vectors are added using a carry-look-
ahead adder. In case of 2's complement multiplication
the tree of carry-save-adders also receives a correction
output produced in parallel with the partial products.
The algorithms is modeled in a hardware description
language and its VLSI chip implemented. The perfor-
mance of the new design is compared with other recent
ones proposed in literature.

1 Introduction

Multipliers find use in high speed real time ap-
plications where a large amount of data is to be
processed. One such application is digital signal
processing (DSP). Several multiplication algorithms
for high speed implementation have been proposed
(7,5, 8,4, 3], and most of them are based on the Booth
algorithm [2] and its modifications. In this work we
present a new technique for high speed 2’s comple-
ment multiplication which can be easily implemented
in hardware. The high speed features of this algorithm
are due to:

1. Pre-calculation of partial products of non-
overlapped 3-bit fields by hardwired shifting.

2. Addition of partial products using a carry-save-
adder (CSA) tree.

3. A single addition of the carry and sum vectors
using a carry-lookahead adder (CLA).

4. A new technique to accommodate multiplication
of negative operands.

The design of unsigned multiplier is presented for 9-
bits and can be extended to 12-bits with no additional
time delay at the cost of increased hardware. The
design of signed 2’s complement multiplier is presented

0-7803-2492-7/95 $4.00 © 1995 IEEE

for 8-bits. It is also extendable to 10-bits (using non-
overlapped 4-bit fields) with no additional time delay.
The methodology can be very easily extended to words
of larger sizes. The paper is divided into 5 sections. In
the following section (Section 2) we present the basic
design for unsigned numbers. In Section 3 the design
to accommodate 2’s complement numbers is discussed.
A mathematical proof to validate the correction circuit
output is also presented. Implementation details are
presented in Section 4 and conclusions in Section 5.

2 Basic Design

The basic idea behind the algorithm consists of first
finding partial products which are the products of the
multiplicand (B) with 3-bit fields of the multiplier (4).
The product of the multiplicand and a three bit num-
ber (0 to 7) is obtained by means of shift and add
operations. As shown in Table 1, multiplication by a

A AXB
multiplier-field | Expressed as shift/add
0+0
0+ 2°(B)
0+ 2'(B)
22(B)+0
2}(B) +2°(B)
2%(B) + 2°(B)
2%(B) +2'(B)
23(B) — 2°(B)

—_—— e O = OO O
e (O O = OO
— O e = OO O

Table 1: Multiplication by 0 through 7 expressed in
terms of addition/subtraction of powers of 2.

three bit number can be expressed as a single addi-
tion of two multiplicands shifted by a fixed amount.
For example, multiplication by six is expressed as the
addition of multiplication by 4 and multiplication by
2 (multiplication by powers of 2 is accomplished by
shifts only). The multiplication by 7 (111) requires
three addition. Therefore, this operation is replaced
by subtracting multiplicand from multiplicand times
8. In order to avoid the delay produced to obtain the
2's complement of multiplicand, the LSB of the three
times shifted multiplicand is pre-set to one. Then,

only the inverse of the multiplicand is added to
That is,

it.
Ax111 = Ax 1000+ A+1 = A000+ 4 + 1
A001 + A

where AO0O represents three zeros catenated to A,
A multiplied by 23 = 8.

or

The two partial products to be added in Table 1 can be
considered as two operands of an adder, designated as
the left-operand and the right-operand. Note that the
left-operand is multiplied by either 2, 4, or 8, whereas
the right-operand needs to be multiplied by 1, 2, or 1,
the last representing complementation. Therefore, as
shown in Figure 1 the two columns consists of hard-
wired shifters which are enabled by a simple encoder
logic. Details of the encoder logic are given in Figure 2.
The logic design of the encoder block that enables one
of the three shifters in each block of the pp-cell of
Figure 1 is given in Figure 2.

1's complement of the
multiplicand

Three Bits Of
Multiptier

il

Imooozxzm
FEFFFE

Figure 1: Block diagram of a pp-cell.

abe
887
1
H 4
2L
& 2R

Figure 2: Logic diagram of the encoder cell shown in
Figure 1.

110

For a 9-bit wide multiplier-operand, three such pp-
cells are required. Each pp-cell takes the entire multi-
plicand operand, and 3 bits of the multiplier operand.
This is illustrated in Figure 3. In general, the number
of pp-cells is equal to p = [%], where n is equal to the
number of bits of the multiplier operand A.

| Muttiptier | Muttiplicand |

I
s T

PP-Cell 3 PP-Cell 2 PP-Cell 1
]

' YYVY f
3-level CSA tree

Carry Lookahead
Adder

Figure 3: Block diagram of the 9-bit unsigned multi-
plier.

The outputs produced by these pp-cells are added
using a three-level tree of CSAs to produce the sum
and carry vectors. Note that by using the above pp-
cells, the number of additions is considerably reduced.
In this case the reduction is from 9 additions to 6. In
general the decrease in the number of additions is from
n to [£].

In the final stage, the outputs of these CSAs are
added using a carry-lookahead-adder circuit. The out-
put of this adder is the product of the 9-bit multiplier
with the m-bit multiplicand. Note that the number
of levels of circuitry remains the same for larger bits
of the multiplicand, (except for the small increase in
delay of the CLA). In case of increase in the number of
bits of the multiplier, the only delay causing circuitry
is due to increase in the number of levels in the CSA
tree, and the increase in delay of the CLA.

3 Design of 2's Complement Multiplier

For multiplication of signed 2’s complement num-
bers, the design is similar, except that additional cir-
cuitry is included to accommodate correction. The
multiplier (A) is again divided into fields of at most
3-bits. The division of the multiplier into fields is
slightly different from the case of the unsigned mul-
tiplication and is depicted below.

[(An—24n-3An—4a | - [AcAsAs [A3A 4 [Ao4, |

Observe that the sign bit (A, = A,_1) is grouped
with the LSB of the multiplier. Bits A; to A3 form
one field, similarly bits A4 to As form the other, and
so-on. The pp-cell required is identical to that in the
previous multiplier for unsigned operands.

Correction Circuit

Generally, the 2’s complement of an integer is ob-
tained by complementing individual bits and then
adding 1 to the number. One feature of the correction
circuitry is that it avoids the delay due to rippling of
carry produced by the addition of 1 in 2’s complemen-
tation both before and after multiplication.

l Muhliplier] LMunipIicand I

l1’s Complement
|

@ 1’s Complement]

MSB & LSB of Multplier A / OXA
the Multiplier
As Ao

2

o

Figure 4: Correction circuitry for 2’s complement mul-
tiplication.

Two’s complement numbers are accommodated by
Jjust inverting the negative operands (1’s complement),
and postcomplementation (1’s complement) of the
negative results. Two’s complementation is avoided
since it causes a delay due to addition of one. The er-
ror is adjusted using a correction factor as explained
below. An additional circuit is used that generates in
parallel a correction factor to be added to the result
of 1's complement multiplication.

The technique that avoids the ripple delay due to
adding a 1 is based on two observations (1) the dis-
tributive property of multiplication, that is, A x (B +
1) = Ax(B)+A,; therefore the addition of 1 is replaced
by the addition of operand A to the result of 1’s com-
plement multiplication; and (2) the fact that the 2's
complement of R is the same as the 1’s complement

of (R—1).

Based on the above two observations, an algorithm
has been developed for generating a correction fac-
tor. The various values produced by the correction
circuitry (Corr or Corr’ if post complementation is
required) are given in Figure 5, they have to be added
to the output of the unsigned multiplier.

As [Ao [CSA-3
0 0 0
0 1 B
1 0 2B
1 1 B

Table 2: Table illustrating the third input of the CSA

of correction circuit.

Below we explain one segment of the code when the

111

multiplier (4) is negative (A,=1) and the multiplicand
(B) is positive (B;=0).

When A, B,=10, the negative operand (A) is com-
plemented and applied at the input of the encoder.
The two operands are then multiplied using the
method explained for unsigned numbers. The LSB
(Ao) may be a zero or a 1. If Ap is 1, then the com-
plemented Ay will produce a zero, and the correction
factor due to adding a 1 (for 2’s complement) will be
the same as adding B later.

However, if Ay was a zero, then the complemented
Ap would have produced a one, and the correction fac-
tor due to the addition of 1 (for 2's complement) will
be the same as the addition of 2B later. In addition,
since one of the operand is negative, it is required to
find the 2’s complement of the result later. This again
is replaced by a simple inversion of the final result (1's
complement) but subtracting a 1 in the correction cir-
cuit. Therefore, the correction circuitry output which
must be added to the result is either B—1 (for 49 = 1)
or 2B — 1 (for Ag = 0) (see Figure 5).

This correction factor (Corr) is added to the out-
put produced by the other partial product cells using
the carry-save adder tree. If one of the operands is
negative, then the final output of the CLA is comple-
mented.

The complete mathematical proof for the output
produced by the correction circuitry is given in Fig-
ure 5 and summarized in Table 3. The mapping of
this algorithm into hardware is shown in Figure 4 and
yeilds in an extremely simple and fast correction cir-
cuitry. The correction circuitry output is produced in
parallel with the output of the pp-cells, and is added
to the sum of partial products using the carry-save
adder tree.

Design of Correction circuit

The correction circuitry consists of a carry-save
adder with inputs arriving from three sources. The
three inputs of the CSA are labeled CSA-1, CSA-2
and CSA-3. The different values received by these in-
puts depend on the sign of the multiplier/multiplicand
and the value of bit Ag. These values are summarized
in Tables 2 and 3.

Implementation

The above explained techniques are implemented
by the combinational hardware shown in Figure 6.
Note that when any of the two operands is negative,
in order to 2's complement the result and to avoid the
ripple carry effect produced by the addition of one to
the 1’s complement, a -1 (11111111) is added before
multiplication by the correction circuitry (see Figure
6% and finally the output is inverted to get the 2's com-
plemented result. Note that an EXOR gate is required
to get the -1 when A or B are negative but a NAND
gate is used to reduce the gate delay in the first stage.
To compensate for the addition of -1 when A and B
are positive, a carry is added by the CLA in the final
stage.

Case 0: A, =B, =0
i) A4g =0 = Ais even
P=AB
Corr =10
i) Ag=1= Ais odd
P=(A-1)B+Corr= AB— B+ Corr
P = AB
AB — B+ Corr = AB
Corr = B

Case 1: A, =0,B, =1

i) Ao =0= Aiseven
P=A(B-1)+Corr
P=-AB=(AB-1)

AB— A+ Corr'=AB -1
Corr’ = A — 1 (Postcomplementation is required)

i) Ag=1= Ais odd
P=(A-1)(B—-1)+Corr=AB—-B—-A+1+Corr
P=—-(AB)=AB -1
AB—B—-A+1+Corr'=AB -1
Cor"=B+A-2=(B-1)+A-1
Corr’ = B4+ 1+ A — 1 (Postcomplementation is required)

Case 2: A, =1,B, =0

) Ag=0=>A+1=A—1isodd
P=(A+1-1)B+Corr=(A—-2)B+ Corr = AB—2B + Corr
P=—(AB)=AB -1
AB — 2B+ Corr' = AB -1
Corr' =2B -1 (Postcomplementation is required)

ii) Ag=1=(A+1)=A-1liseven
P=(A+1)B+Corr=(A-1)B+Corr = AB— B+ Corr
P=—(AB)=AB -1
AB — B+ Corr' = AB -1
Corr’ = B — 1 (Postcomplementation is required)

Case 3: A, =B, =1
) Ag=0=>(A+1)=A—1isodd
P=(A+1-1)(B+1)+Corr=(A—2)(B—1)+Corr= AB—2B—~ A+ 2+ Corr
P = AB
AB-2B—-A+2+Corr = AB _ _
Corr=2B-1)+A=2B-1)+(A-1)+1=2B+1)+(A+1)+1
ii)Ao:1:>(/i+l!=A-—liseVen
P=(A+1)(B+1)+Corr=(A-1)(B-1)+Corr= AB—A—B+1+ Corr
P = AB
AB—A—-B+1+Corr=AB))
Corr=A+B-1=(A-1)+(B-1)+1=(A+1)+(B+1)+1

Figure 5: The four cases of 2's complement multiplication. Note: Whenever the (multiplier) operand is in a form
such that its LSB = 1, a 1 is subtracted; the correction circuit corrects this modification.

112

As | Bs | As- Bs A B CSA-1| CSA-2 | Ci,CLA | Invert output.
0 J0 1 No change | No change 0 -1 1 0
0 1 1 No change | Tnverted A -1 0 1
1 0 1 Inverted | No change 0 -1 0 1
1 1 0 Inverted Inverted A 0 1 0

Table 3: Table illustrating the 45 input received by the CSA adder of the correction circuitry. C'SA-7 represents

the ;4 input. For input C'SA-3 see Table 2.

Multiplier (A) Multiplicand (B)
v

L3—Ievel CSA tree]

Cin from

YV As9Bs

| Carry Look Ahead p—
Invert

Figure 6: Block diagram of the 8-bit 2’s complement
multiplier.

Example

Let A = 4=0000 0100 and B = —7=1111 1001.

Since B,=1 complem_ent it. Then,

A=00000100; B=00000110

Now multiplying these numbers using the pp-cell cir-
cuit used for unsigned multiplication of numbers will

produce 0 001 100 0; (that is, multiglying B by
A=00000100 (4) is the same as shifting B left twice).

To this a correction output is added. Since A,=0,
B.=1, and A¢=0, the correction circuit produces an
output A — 1 = 00000011 (see Figure 5). Adding this
to the pp-cell output yields 00011000 + 00000011 =
00011011.

Inverting this output will give 11100100 = —28, the
required result.

4 VLSI Implementation and Perfor-

mance
The hardware described above was modeled using
Logic3, a hardware description language, and simu-

113

lated to verify functional correctness. The Logic3 de-
scription was then input to the OASIS silicon compiler
to produce a standard-cell layout in SCMOS technol-
ogy. [6]. To verify the correctness of the layout, and
determine the operating speed, the circuit is extracted
from the layout and simulated using the switch level
simulator irsim. In order to get the best results in
terms of time and area, three different implementa-
tions of the multiplier were attempted, (1) using tri-
state buffers, (2) using separate And/Or logic gates
for multiplexing and finally using And-Or-Invert cells
available in the library of OASIS. The last imple-
mentation produced best results with a core area of
1.6x1.6mm? in 2 micron technology and with a prop-
agation delay of 9ns. The area can further be reduced
if instead of relying on the silicon compiler, special
handcrafted cells are designed for the various arith-
metic and logical functions [1].

Note that the designs presented here, with only mi-
nor modifications, can be easily made cascadable to
multiply numbers with larger number of bits. The in-
crease in propagation delay is marginal since the num-
ber of additions is reduced, and in addition the sum
and carry vectors are produced using a CSA tree.

5 Conclusions

A new technique has been developed and imple-
mented for the multiplication of two signed numbers.
Advantage of this technique over the others available
in literature include smaller propagation delay [1] and
reduced area [8]. The circuitry required to produce
a correction output and its mathematical proof are
also presented. The technique was implemented in
VLSI using the OASIS silicon compiler by modeling
the hardware at the netlist level using LOGIC3 see
Figure 7. The layout has been submitted to Orbit
Semiconductors, California (foundry for MOSIS) for
fabrication. The estimated speed of the multiplier is
9ns, and further speed can be possible by using full
custom approach and special adders [1]. The predicted
increase in propagation delay with increase in word
sizes of operands is small.

Acknowledgments

The Authors acknowledge King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia, for
technical and financial support.

Figure 7: VLSI layout of the 2’'s complement multiplier.

References

[1]

(4]

H. T. Hung A. Y. Kwentus and A. N. Wilson
Jr. An Architecture for High Performance/Small
Area Multiplier for use in Digital Filtering Ap-
plications. IEEE Journal Of Solid State Circuits,
29(2), February 1994.

A. D. Booth. A Signed Binary Multiplication
Algorithm. Quarterly Journal of Mechanics and
Applied Mathematics, 4:236-240, 1951.

A. R. Cooper. Parallel Architecture Modified
Booth Multiplier. Proceedings of the Institu-

iigosnsof Electrical Engineers, 135(3):125-128, June

J. Fadavi-Ardekani. M x N Booth Encoded Mul-
tiplier Generator Using Optimized Wallace Trees.
IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 1(2):120-125, June 1993.

114

[5]

[6]

7]

Xiaoping Hung, Wen-Jung Liu, and Belle
W.Y.Wei. A High Performance CMOS Redun-
dant Binary Multiplication and Accumulation
(MAC) Unit. JEEE Transactions On Circuits and
Systems, 41(1):33-39, January 1994.

K. Kozminski. OASIS: Open Artchitecture
Silicon Implementation System Users Guide.
MCNC, Research Triangle Park, North Carolina,
October 1992.

P. E. Madrid, B. Millar, and E. E. Swartzlander
Jr. Modified Booth Algorithm for High Radix
Fixed-Point Multiplication. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems,
1(2):164-167, June 1993.

S. Sunder. A Fast Multiplier Based On Modi-
fied Booth Algorithm. International Journal of
Electronics, 75(22):199-208, 1993.

