Digital Circuit Design Through Simulated Evolution (SimE) |

Sadiq M. Sait, Mostafa Abd-El-Barr, Uthman 8. Al-Saiari, Bambang A.B. Sarif
Computer Engineering Department
King Fahd University of Petroleum & Minerals
KFUPM Box 673. Dhahran-31261. Saudi Arabia
{sadiq, mostafa. saiarios, sarif} @ccse kfupm.edu.sa -

Abstract- In this paper, the use of Simulated Evolution
(SimE} Algorithm in the design of digital logic circuits is
proposed. SimE algorithm consists of three steps: eval-
uation, selection and atlocation. Two goodness measures
are designed to guide the selection and allocation opera-
tions of SimE. Area, power and delay are considered in
the optimization of circuits. Resuits obtained by SimE
algorithm are compared to those obtained by Genetic
Algorithm (GA),

1 Introduction

Design is usually considered to be an activity requiring con-
siderable human creativity and knowledge. Even the defini-
tion of the term design itself 1s quite elusive, since it can be
interpreted in several different ways depending on the task
to be performed [10]. '

The definition of design that fulfills the objectives of
this paper is the process of deriving. from a specified in-
put/output behavior, a structure (in our case a certain com-
bination of logic gates) that is functional (produces all the
outputs desired for all the inputs specified) within a certain
set of specified constraints. Furthermore. we want the ob-
tained design to be optimum in terms of certain structural
features (e.g., area, power and delay). The design process
is a very tedious and error prone task that usually requires
considerable human expertise and involves trade-offs.

Advances in jogic design and synthesis is due to
the automation of the design process using sophisticated
computer-aided design tools. These tocls have vastly im-
proved design turn around time to keep pace with the in-
creasing demand and complexity of circuits. However, there
have been many attempts at developing programs for auto-
mated design, and such programs are difficult to build,

Several techniques in evolutionary design of digital cir-
cuits have been studied. Most of the work done in evolution-
ary logic synthesis is random search where the evolutionary
algorithm will blindly evolve the circuit according to a given
set of objectives without using rules and lechmques of the
conventional 1001c synthesis. It is believed that incorporat-
ing logic synthesis rules and gu1delmes combined with the
idea of assemble-and-test could lead to better results.

The objective is Lo develop a computer-based tool that
can make the design process less tedicus for the human de-
signer without sacrificing quality of the design produced. In

0-7803-7804-0 /03/$17.00 © 2003 IEEE

this paper, we limit our focus te combinational logic cir-
cuits, which contains no memory elements and no feedback
paths. The use of Simulated Evolution algorithm as a search
heuristic will be considered [9].

This paper is organized as follows: first, Simulated Evo-
lutien Algorithm is briefly presented. Then, a formulation
of the problem of interest is described. Following this, an
introduction to the approach being used to impiement SimE”
for digital logic design is presented. Finally, SimE algo-
rithm is compared with genetic algorithm (GA) in circuit
design with optimization for area, power and deiay.

2 Simulated Evolution Algorithm (SimE)

Combinatorial optimization problems seek to find a global
optimum of some real valued cost functions cosr: 2 = R
defined over a discrete set 2. The Set 0 is called the state
space and its elements are referred 10 as states. A state space
(1 together with an underlying nelghborhood structure (the
way one state can be reached from another stite) form the
solution space [1]. o .

The Simulated Evolution (SimE) a]éorithnﬂ is & general
search strategy for solving a variety of combinatorial opti- -
mization problems [8, 9]. The SimE algorithm starts from
an initial assignment, and then, following an evolution-
based approach, it seeks (o reach better assignments from *
one generation to the next.” SimE assumes that there exists a -
population P of aset M of k'elements. In addition, there is
acost function Cost that is used to associate with each as-
signment of an element m a cost C,. The cost Oy, is used to
compute the goodness (fitness) g, of element m, for each
m € M. Furthermore. there aré usually additional con-
straints that must be satisfied by the population as a whole
or by particular elements. A creneral outhne of the SlmE

algorithm is given in Figure 1. . -

SimE algorithm proceeds as follows. Tnitially. a popula-~
tion® is created at random froim all populations satisfying the
environmental constraints of the'problem. The algorithm
has-one main loop consisting of three basic steps. Evalua-
tion, Selection, and Allocation. The three steps are executed
in sequence until the population average goodness reaches a

'In SimE terminology, a population refers 10 a single solution. Individ-
uals of the population are components of the solution: they are the movable
elements.

75

ALGORITHM Simulated_Evolution(E, L, Stopping- Cr.clena),
INITIALIZATION:
Repeat
EVALUATION:')
ForEach m € M Do g,, = §= EndForEach:

SELECTION:
ForEach m € M Do
If Random < Min(l— gm + B;1)
Then FP; = P, U {m};
Else P, = P, U{m}:
EndIf:
EndForEach:
Sort the elements of Ps:
ALLOCATION:
ForEach m € P; Do F,(m) EndForEach;
Until Stopping-criteria are mer:
Return (BestSolution):
End Simudated_Evolution.

Figure 1: Simulated Evolution algorithm.

maximum value, or no noticeable improvement to: the pop-
ulation goodness is observed after a number of iterations.
Another possible stopping criterion could be to run the al-
gorithm for a prefixed number of iterations (see Figure 1).

3 Simulated Evolution 'Algorithm (SimE) for
Logic Design.

3.1 Problem Formaulation

The problem of digital logic. circuit design can be formu-
lated using this generic model as follows: given a set M of
all types of logic gates as in Table 1 and a set L of |L| loca-
tions, |L] < n, it is required 10 select some of the elements
from M and allocate them into the L distinct locations 1o
produce a required logic function given by its truth table
and to have this allocation 10 be minimal according to some
cost function (power. area and delay)[Z]

To formulate digital logic design in terms of the ahove

state model, -choose M = {1,2,...,k} and L =
{1,2,...,|L}. A state is defined as the onto function S:
m=1{1,2,...,k'} = {1,2,....|L|} where m C M. Fig-

ure 2 is a representation of the digital logic design problem
addressed in-this context. In this case one additional con-
straint is required, which can be stated as S(¢) # S(7) Vi #
J. 1.e., no two elements are assigned to the same location.
The cost of a state, Cost(S) is a compound cost considering
the correctness of the outputs of the solution circuit match-
ing the required function truth table and other metrics such
as gate count, power, delay and area. A detailed explanation
of the Cust(S) function proposed is given later.

Assxgn n elements selected fram M
to L locations

Set of Logic gates (M)
consist of n elements

Figure 2: Representation of digital logic design problem.

3.2 Circuit Encoding

In order to represent a digital logic circuit, a two-
dimensional matrix is used as depicted in Figure 3. This
representation has been adopted by Coello and Miller [3. 6].
This type of data structure is very much similar to the struc-
ture of digital circuit. Therefore; the Denolype phenotype
mapping becomes an easy 1ask [5].

The size of the matrix is variable and it is relative 10 n
where 1 1s number of inputs of the circuil. An initial value
for the sxze of the matrix is given, which is equal o n [7]
During itérations columns and/or tows can be added or re-
moved.

B

Figure 3: Example of circuit in matrix fepresentation.

Each cellof the matrix is considered to be an individ-
ual. The collection of all individuals of the matrix repre-
sents a solution. Each cell of the circuit matrix is encoded
in a triplet of inputs and gate type, as illustrated in Figure 4.
The first two numbers are for the inputs {inputl, input2) and
the third indicates the gate type. A gate at position (i, j),
where i is the column number and j is the row number, can

only be connected to the one at {{¢ — 1), j') and j' can be
any row of the previous column.

I Input | Llnpul 2 Gate type

Figure 4: Representation of an individual in matrix.

Table 1 lists different types of gates and their functions,
along with their code for the gene encoding.

Code | Type Function(F) |

0 WIRE a

1 NOT a’

2 OR a+b

3 AND a-b

4 XOR a@b

5 NOR {a + b)Y

6 | NAND | (a-b)

7 XNOR (a2 b)Y

Table I: Gate types used.

3.3 Proposed Goodness Measures

One major requirement of SimE js evaluating the goodness
of each individual i of the population P. There are two types
of cost measures or goodness measures associated with this
problem. These two types are:
o functioral cost measure where the correctness of the
obtained logic circuit in maitching the truth table of
the required function is considered.

e optimization cost measure where the extent of the
optimality of the logic circuit synthesized is taken
into consideration. Such measures of optimality are
power, delay and area.

Also, there are two types of functional cost measures and
these are: '

o inprinsic functional cost measure denoted by g;

® exrrinsic functional cost measure denoted by G;
The intrinsic functional cost measure is related to the good-
ness of cell 4 in matching the objective truth table. While,
the extrinsic functional cest measure is telated to the ef-
fect coming from other cells having cell 7 as input for them.
Both Selection Function and Allocation Function will use
these cost measures in order to guide the search to reach o
an optimal circuit. The selection function censiders the ex-
trinsic functional cost measure. On the other hand. the allo-

cation function considers the intrinsic functional cost mea--

sure in evaluating the mutated cells afler allocation in order
o accept a certain move.

The formulation of the goodness measure has a great
impact on the performance of the SimE algorithm and the
quality of the solution obtained. In'this paper, two proposed
Sunctional goodness measures are discussed ini detail. The
first goodness measure s called Mintérm Based Good-
ness while the second one is calied Multilevel Logic Based
Goodness. These are explained below.

The Minterm Based Goodness Measure relies on the
truth table of the required function to be implemented. Each
cell 7 in the solution matrix is evaluated based on the nurn-
ber of correct outputs being generated of the reqiired truth
table. The following is a formulation of the Minterm Based
Goodness Measure.

—0; /, c,
where O; s an estimate of optlmal Cosl {all minterms gener-
ated), C; is the actual cost of cell i. By letting. p; = numbe;
of matching minterms of the " cell and n = number of”
inputs of the required circuit, then the Intrinsic Functional
Minterm Based Goodness Measure is

gi = pif2"

The Extrinsic Functional Minterm Based Goodness is com-
puted using the procedure shown in Figure 5.

/%g;: Intrinsic Functional Goodness of cell i */
F*g;: Intrinsic Functional Goodness of the input cell of cell i */
1*G;: Extrinsic Functional Goodness of cell ¢ %/
/G Extrinsic Functional Goodness of the input cell of cell © %/
/*n number of inputs. n? number of cells in the matrix */

For i = n® downto 1 Do /* scan all cells from last (o first */

For All js celis in the previous columns of ¢ Do
Ifg; > g; or G; > g;Then

If g; < g: Then G; = (g; + 9;)/2
Elself g; < G; Then G; = (G; + g;)/2
FElse If gate type of ¢ is inverter Then
9;i =g and Gj =G;
EndIf
Endif -
EndFor
EndFor

Figure 3: Extrinsic goodness measure calculation.

This goodness measure has'been used-to implement a ver-
sion of the SimE algorithm denoted by SimE-G1.

The Multileve! Logic Based Goodness Measure is based
on the assumption that the higher the level of a gate in a
multilevel logic circuit. the more minterms are covered al
the output of that gate. Therefore, the goodness of a gate
is affected by the number of minterms covered at its output
and the level where the gate is tocated. Figure 6 iliustrates
this assumption. Since the number of inputs of the circuit is

377

4, there are 16 patterns that should be generated at the output
correctly. Initially, these patterns are distributed among the
levels of the circuit evenly and progressively. Also, it is
assumed that the initial number of levels is 4 since there
are 4 columns in the search matrix. Therefore, a logic gate
located at the second level should cover § patterns while a

logic gate located at the first level should cover 4 patierns.

In general, for n inputs (2™ patterns) circuit, to have a
goodness of 1 at a cell in level ¢, there should be [(2%/n)i]
carrect patterns produced at this cell. Thus, the multilevel
logic goodness measure is formulated as follows:

= 14
9= Tanjnl;

where g; is the goodness of cell i. j is the level number or
column number, n is the number of inputs of the required
circuit and p is the number of matching patterns at the out-
put of céll i compared 10 the intended truth table.

—Nymbeér of Minterms coverad increases

a a8 12 16
Minterms | Minterms | Minterms | Minterms

16 Minterms should be covered for a 4
: inputs circuit

Figure 6: Multilevel logic goodness assumption.

Several scenarios result from this assumption. and these
are: :

o if acell i at level j produces more than ((2" /n););

e if none of the cells located at level j can produce
({2™/n)j) nor any cell at level n can produce 2 pat-
lerns; and

e intrinsic and extrinsic complications.

First, if a cell i at level j produces more than ({27 /n)j).
then g; > ({(2"/n)j) = g; > 1. The number of levels that
the SimE algorithm is searching should be decreased by a
factor relative to the number of patterns produced by the
cell 4. The number of levels is now [= [(27/p;)]. Also,
the number of patterns that should be covered at each level
will be changed accordingly. A cell i at level § should cover
p; + 1 patterns. At j + 1 level. there should be

x

e

{

patterns covered. Then, the maximum number of patterns at
level i > jis

e+ [

Eventually, our goodness measure also should be changed
accordingly to become

gi = p/m

where m is the new maximum number of patterns that gate
i should generaie at level j.

The second case indicates that the number of levels is
less than what it should be. Therefore, the number of lev-
els has to be increased. Also. the ranges of the maximum
number of patterns will change if the number of levels in-
creases. The increase in number of levels is done gradually,
i.e.. one by one. If I is the number of levels. then the num-
ber of pattern coverage for each level is |27 /1|. Therefore,
the goodness measure for cell i located at level 5 will be
changed to:

P

e
%=y !
o= 2 ifj=1

The third complication is similar to the one in the first
goodness measure. A cell j with low goodness measure
might feed cell ¢ that has high goodness. Therefore, cell
4 will have high probability of being selected and mutated
which might disturb the goodness of cell . Therefore, the
same approach as in the previous one in computing the in-
trinsic and extrinsic goodnesses is considered. In this case
the intrinsic goodness mieasure is computed by using the
multilevel logic based goodness measure equations for g;.

This goodness measure has been used to implement a
version of the SimE algorithm denoted by SimE-G2.

In order to optimize the circuit for other measures such
as power, delay and area, a working circuit has to be first
obtained. This means that the functional goodness measure
should be equal 1o 1. Also, a global oprimization goodness
cost function is proposed. After allocation, the solution is
evaluated and if there is an improvement in the global cost
function, the solution is made as permanent. The global
optimization goodness cost fuicrion is denoted by Go and
is computed using the procedure in Figure 7. The goodness
of the solution considering the j** objective is computed as
follows:

78

Cireuit Coclio [4] SimE-G1 SimE-G2]
Area Delay | Power Area Delay | Power Area Delay | Power
circuitl | 12393.00 | 3.05 4.38 12393.00 | 5.05 438 12393.00 | 5.05 4.38
circuit2 | 2187000 | 6.18 6.61 1545160 1 526 6.77 1315093 | 521 532
circuitd | 19926.00 | 4.34 515 10843.10 | 3.00 4.35 1074545 | 3,12 396
circuit4 1458.00 | 0.005 | 0.60 1458.00 | 0.005 0.66 1458.00 | 0.005 0.66
circuith | 2794500 | 876 7.89 1341244 | 6.67 29 1172395 | 56! s.14
majority | 21141.00 753 [6.07 1402951 4.88 4.4i 1397751 4.50 512
xorg 32805.00 | 9.53 11.64 | 20880.23 6.02 9.78 20655.00 5.90 9.32
xord 3526600 | 11.34 | 13,79 | 2381400 | 9.57 1068 | 2381400 [9.57 10.65

Table 2: Comparison with Coelle [4] technique in terms of area. delay and power.

f*gi: Intrinsic Functional Goodness of cell 1 #/
*Go: Global Optimization Goodness of P #/

/=P the carrent population (solution) */

%k number of objectives for optimization */

*g;: the goodness of the solution considering the j th
My a weight for functional cost */

Mgz a weight for optimization cost */

abjective */

If g < 1 Then

Go = wig 100w
Elself g; = 1 Then - .
Go = wigi + Z;;] w;g; [wi. 1]
EndIf
Figure 7: Global optimization goodness.,
o
B
and N
6=
Ninaz

N is the current cost of the objective function (power, area
and delay) and Ny, 4. is the maximum acceptable value for
the given constraint. :

Linear aggregation function is used for the evaluation of
all objectives of the solution. It maps all objectives into a
single metric that indicates how good the solution is. SimE
works on two solutions, the current solution and the candi-
date (mutani) solution at each iteration. Therefore, neither -
is better than the other on all objectives. Since SimE works
on two solutions during iteration, Pareto ranking is not ap-
plicable due to the lack of the ranking set. A linear aggrega-
tion function will be an efficient and fast choice compared
to Pareto ranking.

4 Resuits and Cnmparlson

Several circuits of different degrees of complexity have
been used to test the proposed appreach. The two proposed
algorithm, SimE-G) and SimE-G2 are compared 10 Genetic
Algorithm (GA) approach similar to that reported in [3; 4].
Table 2 shows the guality of solutions in terms of area, delay
and'power for GA, SimE-G1 and SimE-G2. In Table 2. cir-
cuitl to circuit5 are randomly generated circuits while the
last three circuits are selected from ESCAS’ 85 benchmark.
Table 3 shows the average execution time for the given test
cases. [t is obvious that Coello’s approach is slower com-
pared to SimE-G1 and SimE-G2 in time.

Circuit | Coello [4)(s) | SimE-G1 () | SimE-G2 (3)
circuitl 91.66 12.52 10.85
circuit2 102.32 15.09 11.01
circuitd 155.78 S, 20014 14.07
circuit4 275.10 20.50 13.10
circuits 266.36 2125 - 1587
majonty | 6200.31 22471 11962

xord 7430.01 221.10 120.34,

xor9 10856.55 320.92 273.63

Table 3: Comparison wnh Coello s [4] techmque in ferms

of execulion time. L

The tables show that there are significant ’improverhénts
in terms of area, delay, power and execution time for most
cases. For the purpose of this paper. two etamples were
chosen to illustrate this approach. .

Since the Genetic Algorithm (GA) reported in [3 4] con-
siders only functional fitness and number of gates as cost
function. modification in cost function has to be made in
order to inciude power. delay and area optimization in the
cost function instead of number of gates used. The popu-
lation size used.in all circuits for-GA is 1000. Two-point
crossover is used.as in [3, 4] with crossover rate 0:95. The
mutation rate is initialized to 0.01.

Each experiment is run 30 times and the average cost
function {fitness) for GA and average goodness for SimE
for the 50 runs is reported. Also, the best solution obtained

379

o = "= simEG1!
g - SimE-G2
£ —GA
b i e et e e — e
1 11 21 kil 41 5 81 7 81 a1 N i
Time in Sec ;
’ Figure 8: Average global cost function for Example 1.
‘Algorithm Resulting Function Gate Types
GA F=({4deB)a AD)+(C +(Ag D)) 1 AND, 2 ORs, 3 XORs. | NOT
SimE-G1 " F=A'B+ A({(BDY +C'D) 4 ANDs, 2 ORs. 3 NOTs
SimE-G2 F=AB+ A((BD) +C'D) 3 ANDs, 2 ORs, 2 NOTs. | NAND

Table 4: Results produced by GA, SimE-G1 and SimE-G2 for Example 1.

in the 50 runs is réported for bomp:;rison in power, delay and
area. The library used forthe evaluation of power, delay and
area is the MOSIS 0.25 CMOS cell library.

Example 1

The first example has 4 inputs and one output where F is
10001 11111100101 (circuit 2). It is noticed that SimE-G1
and SimE-G2 outperformed GA since more cells are as-
signed to higher goodness locations. As a result, the global
average goodness increased resulting in converging into bet-
ter solutions in lesser number of iterations compared to GA.
The results for global cost function is shown on Figure 8.
Also, Table 4 shows the best resulting circuit outcome from
running SimE-G1, SimE-G2 and GA.

Example 2

The second example is a 9 inputs odd parity circuit (xor9).
SimE-G1 and SimE-G2 produced results in almost 300 sec-
onds while GA could not generate a working circuit in the
first 500 seconds. The results for global cost function is
shown on Figure 9. - :

5 Discussion and Conclusions

All circuits experimented with showed that SimE-G1 and
SimE-G2 have better convergence than GA in time and
quality of circuit. The reason is that SimE algorithm uses
less memory and less computation time. SimE works on
one solution only while GA works on a large number of
solutions (population size). The number of crossovers and
mutations that GA will perform in every iteration is large
which will require more CPU time. On the other hand.
SimE requires less CPU time because it uses the goodness
measure to guide the algorithm through the search space.
Goodness measure is used during selection and-allocation,
therefore, SimE algorithm will assign more cells 1o better -
goodness locations in every iteration, The more knowledge
about the problem incorporated into the goodness measure.
the better the performance .of SimE algorithrm in terms of
CPU time and quality of solution. On the other hand, GA
evaluates the solution after crossover and mutation. There-
fore, crossover and mutation is done blindly and most of the
time the solution space is explored randomly.

We have introduced a technigue to design combinational
logic circuit using Simulated Evolution Algorithm (SimE).
Also, two goodness measures have been proposed. The pro-

380

08

2]

7

Fitness

251

Time in Sec

ey

l
|
L

== SimE-Gi |
-~ SimE-G2|
—oa

i

301 AT

3851 451

Figure 9: Average global cost function for Example 2. ,

posed algorithm SimE-G1 and SimE-G2 are compared with
GA. Both SimE-G! and SimE-G2 showed better resulis in
all the cases.

Acknowledgment

The authors would like to acknowledge the support received
from King Fahd University of Petroleum & Minerals under
project entitled “lterative Heuristics for the Design of Com-
binationai Logic Cicuits™.

Blbllography

[1] Sadiq M. Sait and Hablb Youssef. lrerative Compurer
Algorithms with Applications in Engineering:
ing Combinatorial Optimization Problems. Wiley-IEEE
Press, 2000,

23 Sadrq M. Sait and Habib Youssef. VLSI Phvsical De-
sign Aummarl(m Theory and Practice. World Scientific
Press. 1999,

Soiv-.

{3} C. A. Coello, A. D. Christiansen. and A. H. Aguirre.

Use of Evolutionary Techniques to Automate the De-
sign of Combinational Circuits. [International Journal
of Smart Engineering System Destgu Elsevier Science,
2(4):299-314. June 2000.

[4] C. A. Coello, A. D. Christiansen, and A. H. Aguirre,
Towards Automated Evolutionary Design of Combina-
tional Circuits. Compurers and Electrical Engineering,
Pergamon Press, 27(1):1-28, Jan, 2001.

[5] 1. E. Miller. T. Fooarly and P Thomson Design-
ing Electronic Circuits Usmc Evolunonary Algorithms.
Arithmetic Circuits: A Case Study. Genetic Algorithms
and Evolution Strategy in Engineering and Computer
Science, John Wilev and Sons, Chichester, pages 105—
131. 1998. '

[6] J. F. Mitler. D, Job. and Vassilev V. K. Principles in the
Evolutionary Design of Digital Circuits - Part I Jour-
nal of Genetic Prog}amrmng and Ev alvabie Madmies
1(1):8-35,-2000.

{71 L. E. Miller and P. Thomson. Discovering Novel Dig-
ital Circuits Using Evolutionary Techniques. [EE Col-
loguium on Evolvable Svstems, Savoy Place, London,
March 1998.

(8] J. F. Miller and Peter Thbmson: A Developmental
Method for Growing Graphs and Circuits. GECCQO'03,
111):8-35. 2003.

[¢] R.M. Kling and P. Banerjee. ESP: A New Standard Cell
Placement Package using Simulated Evolution. Proceed-
ing of 24th Design Automation Conference. pp- 60-66,
1987.

{10] Y. Saab and V. Rao. Stochastic Evolution: A Fast
Effective Heuristic for Some Generic Layout Problems.
27rhACM/]EEE De.ugnAummanon Conference. pp. 76—

. 1990.

381

