
Digital Circuit Design Through Simulated Evolution (SimE)
Sadiq M.'Sait, Mostafa Abd-El-Barr, Uthman S . AI-Saiari, Bambang A.B. Sarif

ComputerEngineering Department
King Fahd University of Petroleum & Minerals

KFUPM Box 673. Dhahran-3 1261. Saudi Arabia
{sddiq, mostafa. saiarios, sarif} @ccse.kfupm.edu.sa

Abstract- In this paper, the use of Simulated Evolution
(SimE) Algorithm in the design of digital logic circuits is
proposed. SimE algorithm consists of three steps: eval-
uation, selection and allocation. Two goodness measures
are designed to guide the selection and allocation opera-
tions of SimE. Area, power and delay are considered in
the optimization of circuits. Results obtained by SimE
algorithm are compared to those obtained by Genetic
Algorithm (CA).

1 Introduction

Design is usually considered to he an activity requiring con-
siderable human creativity and knowledge. Even the defini-
tion of the term d e s i p itself is quite elusive. since it can be
interpreted in several different ways depending on the task
to be performed [IO].

The definition of design that fulfills the, ohjectives of
this paper is the process of derjving, from a specified in-
puffoutput behavior. a structure (in our case a certain com-
bination of logic gates) that is functional (produces all the
outputs desired for all the inputs specified) within a certain
set of specitird constraints. Furthepore. we want the oh-
tained design to he optimum in terms of certain structural
features (e.g.. area. power and delay). The design process
is a very tedious and error prone task that usually requires
considerable human expertise and involves trade-offs.

Advances in logic design and synthesis is due to
the automation of the design process using sophisticated
computer-aided design tools. Thcse tools have vastly im-
proved design turn around time to keep pace with the in-
creasing demand and complexity of circuits. However. there
have heen many attempts at developing programs for auto-
mated design. and such programs are difficult to build.

Several techniques in evolutionary design of digital cir-
cuits have been studied. Most of the work done in evolution-
ary logic synthesis is random search where the evolutionary
algorithm will blindly evolve the circuitaccording to a given
set of objectives,without using rules and techniques of the
conventional logic synthesis. .It is believed that incorporat-
ing logic synthesis rules and guidelines combined with the
idea of assemb1e;and-test could lead to better results.

The objective is to develop a computer-based tool that
can make the design process less tedious for the human de-
signer wiihout sacrificing quality of the design produced. In

this paper, we limit our focus to combinational logic cir-
cuits, which contains no memory elements and no feedback
paths. The use of Simulated Evolution algorithm as a search
heuristic will he considered [9].

This paper is organized as follows: first, Simulated Evo-
lution Algorithm is briefly presented. Then. a formulation
of the problem of interest is described. Following this. an
introduction to the approach being used to implemen! SimE'
for digital logic design is presented. Finally, SimE algo-
rithm is compared with genetic alggrithm (CA) in circuit
design with optimization for area, power and delay.

2 Simulated Evolution Algorithm (SimE)

Combinatorial optimization problems seek to find a global
optimum of some real valued cost.functions COSI : R + R
defined over a discrete set R. The Set R is called the state
space and its elements are referred to as s!ates. A state space
R together with an underlying neighborhood structure (the
way one state can he reached from another stiie) form the

The Simulated Evolution (SimEj aleorithm is a general
search strategy for solving a variety of combinatorial opti-
mization problems 18, 91. The SimE algorithm Starts from
an initial assignment, and then: following an evolution-
based approach, it seeks to reach better assignments from :
one generation to the next.'SimE assumes that there exists a '
population P of a set M of k elements: In addition. there is
a cost function Cost that is used to associate with each as-
signment of an element m a cost C,. The cost C, is used to
compute the goodness'(fitness) gm of element m, for each
m E M . Furthermore. there are usually additional con-
straints that must he satisfied by the population as a w t h e
or by particular elements. A general outline of the SimE
algorithm is given in Figure 1.

SimE algorithm proceeds as follows.'Initially. a popula-
tion' is created at random from all populations satisfying the
environmental constraints of the'prohlrm. The algorithm
has'one main loop consisting of three basic steps. Evaha-
tion. Selecrion. and Allocarioir. The three steps are executed
in sequence until the population average h;oodness reaches a

solution space [I] . , .

.

. .
'In SimE terminology. a population refers 10 a single solution. Individ-

unlsofthe papulation arecomponentsofthe solution: thcyarethe movable
elements.

ALGORITHM Si,nulnred.Ei~oluriori(E. ,L, SruppiiIg-Criie~iu);,
INITIALIZATION:
Repeat

EI'ALD-ATION:
ForEach m E A I Do gm = 2 EndForEach

S E L E C T I O N
ForEach m E A l Do

If Random 5 hfin(1- gm + B; 1)

Else P? = P? U {m]:
Endlf:

EndForEach:
son rhe elrilzenrs Qf Pa:

Then P, = P, U {m];

ALLOCATION:
ForEach m E Ps Do F,(m) EndForEach:

Until Stopping-criicrin are iiwi:
Return (BestSolution):
End Si,nrrlured.R,olurio,~.

Figure I : Simulated Evolution algorithm.

maximum value. or no noticeable improvement to.the pop-
ulation goodness is ohserved after a numher of iterations.
Another possible stopping criterion could he to run the al-
gorithm for a prefixed numher of iterations (see Figure 1).

. .

3 Simulated Evolution 'Algorithm (SimE) for
Logic Design.

3.1 Problem Formulation

The problem of digital logic. circuit design can he formu-
lated using this eeneric model as follows: given a set kf of
all typespf logic gates as in Tahle I and a set L of ILI loca-
tions, JLJ 5 n, it is required to select some of the elements
from A f and allocate them into the L distinct locations to
produce a required logic function given hy its truth tahje
and to have this allocation to he minimal according to some
cost function (power. area and delay)[2].

To formulate digital logic design in terms of the ahove
state model, 'choose &I = {1 ,2 , , . . .,k} and L =
{ l , Z , ILI}. A state is defined as the onto function S:
m = { l , Z , ~ . . , k ' } + { l , Z , . _ . : (L I } w h e r e r n C M . F i g -
ure 2 is a representation of the digital logic design problem
addressed in this context. In this case one additional con-
straint is required. which can he stated as S(i) # S (j) V i #
j , i.e., no two elements are assigned to the same location.
The cost of a state, CostfS) is a compound cost considering
the correctness of the outputs of the solution circuit match-
ing the required function truth tahle and other metrics such
as gate count, power, delay and area. A detailed explanation
of the CosrfSJ function proposed is given later.

00
no

. .
.........

.........

L lmalions
v . . ,

D D
.

.......... El 1 oDi> ,., z3 p 1. ,;gpJ'.... :

.........

Set 01 Logic gales (M)
cmsislol n elemenl~

Figure 2: Representation of digital logic design problem.
. .

3.2 Circuit Encoding

In order to represent a digital logic circuit, a two-
dimensional matrix is used as depicted in Figure 3. This
representation has heen adopted by Coello and Miller [3.6].
This type of data structure is very much similar to the struc-
ture of digital circuit. Therefore; the genotype-phenotype
mapping becomes an easy task 151.

The size of the'matrix is variable and i t is relative to n
where n is numher of inputs of the circuit. An initial value
for the size of the matrix is given. which is equal to n [7].
During'iterations columns andlor rows can he added or re-
moved.

,

_ .

Figure 3: Example of circuit in matrix representation
I ,

Each cell.of the matrix is'considered t? he an individ-
ual. The collection of all individuals of the matrix repre-
sents a solution. Each cell of the circuit matrix is encoded
in a triplet of inputs and gatetype. as illustrated in Figure 4.
The first two numbers are for the inputs (inputl, input2) and
the third indicates the gate type. A gate at position (i,j),
where i is the column'numher and j is the row numher. can

276

Inpuc I

Table I : Gate types used.

Input 2 Gate type

3.3 Proposed Goodness Measures

One major requirement of SimE is evaluating the goodness
of each individual i of the population P. There are t ~ o types
of cost measures or goodness measures associated with this
problem. These two types are:

functional cost measure where the correctness of the
obtained logic circuit in matching the truth table of
the required function is considered.
optimization cost measure where the extent of the
optimalily of the logic circuit synthesized is taken
into consideration. Such measures of optimalily are
power, delay and area.

Also, there are two types of functional cost measures and
these are:

i~~trirrsicfii~rcrioi~al cost nieasure denoted by gi
e e.rrririsic fuirctiotial cost measure denoted by Gi

The brtritisic functional cost nieusure is related to the good-
ness of cell i in matching the objective truth table. While.
the exrrinsic funcrio&l cost nieasure is related to the e F
fect coming from other cells having cell i as input for them.
Both Selectiorr Fimctiorr and Allocarion Furrcrinn will use
these cos! nieasures in order to guide the search to reach to
an optimal circuit. The selection function considers the ex-
trinsic functional cost measure. On the other hand. the allo-
cation function considers the intrinsic functional cost mea-.
sure in evaluating the mutated cells after allocation in order
to accept a certain move.

The formulation of the gbodness measure has a g k a t
impact on the performance of the SimE algorithm and the
quality of the solution obtained. In this papei. two proposed
functionalgoodness meusures are discussed in detail. The
first goodness nieasure is called Minterm Based Good-
ness while the second one is called Multilevel Logic Based
Goodness. These are explained below.

The Minterm Based Goodness' Measure relies on the
truth table of the required function to he implemented. Each
cell i in the solution matrix is evaluated based on the num-
ber of correct outputs being generated of the required truth
table. The following is a formulation of the Minterm Based
Goodness Meusure:

g; = q c 2

where 0; is an estimate of optimal cost (all minterms gener-
ated), Ci is the actual cost of cell i. By letting. pi = number
of matching minterms of the i f h cell and n = number of '
inputs of the required circui!, then, the Intrinsic Functional
Minterm Based Goodness Measure is

gi = p i p "

The Extrinsic Functional Minterm Based Goodness is com-
puted using the procedure shown in Figure 5.

Pg;: Intrinsic Functional Goodness of cell i *I
Pg,: Intrinsic Functional Goodness of the input cell of cell i " I
PGi: Extrinsic Functional Goodness of cell i *I
/*Gj: Extrinsic Functional Goodncss of the input cell of cell i */
1% number of inputs. n' number o f cells i n the matrix "1

Fori = n2 downio I Do /*scan all cells trom lasi IO first "/
For All j s cells in the previous columns of i Do

If g; > gj or G; > gjThen

If gj < g, Then Gj = (gi + gj)/2
ElseIf gj < Gi Then G j = (Ci + g,)/2
Else I f gate iype of i is invenrr Then

EndIf
gj = gi and G, = G,

EndIf
EndFor

EndFor

Figure 5: Extrinsic goodness measure calculation.

This goodness measure has'been used.to'implement a ver-
sion of the SimE algorithm denoted by SimE-G I .

The Multilevel h g i e Based Goodness Measure is based
on the assumption that the higher the level of a gate in a
multilevel logic circuit. the more minterms are covered at
the output of that gate. Therefore, the goodness of a gate
is affected by the number of minterms covered at its output
and the level where the gate is located. Figure 6 illustrates
this assumption. Since the numher of inputs of the circuit is

311

4. there are I6 patterns that should he generated at the output
correctly. Initially, these patterns are distrihuted among the
levels of'the circuit evenly and progressively. Also, i t is
assumed thal'the initial number of levels is 4 since there
are 4 columns in the search matrix. Therefore, a logic gate
located at the second level should cover 8 patterns while a
loiic gate located at the first level should cover 4 patterns.

In general, for n inputs (2" patterns) circuit, to have a
goodness of I at a cell in level i, there should be r(Z*/n)il
correct patterhs produced at this cell. Thus, the niirlrilevel
logic goodness nieusrrre is formulated as follows:

where g; is the goodfiess of cell i . j is the level number or
column number. n is the number Of inputs of the required
circuit and p is the number of matching patterns at the out-
put of cell i compared lo the intended truth table.

Minlerrns Mlnlerrns Mlnterms Minterms

-_;-I 16 Mmlerms Should l"P"tJ be ClrCUlt covered lor a 4

Figure 6 Multilevel logic goodness assumption.

Several scenarios result from this assumption. and these

if a cell i at level j produces more than ((2"ln)j):
if none of the cells located at level j can produce
((2"ln)j) nor any cell at level n can produce 2" pat-
terns: and

are:

intrinsic and extrinsic complications.
First, if a cell !,at level j produces more than ((an/n)j).

then pi > ((2"/n)j) 3 gi > 1. The number of levels that
the SimE algorithm is searching should hg decreased by a
factor relative to,the number of patterns produced by the
cell i. The number of levels is now 1 = [(2 " / p i) l . Also.
the number of patterns that should he covered at each level
will be changed accordingly. A cell i at level j should cover
pi + 1 patterns. At j + 1 level. there should he .

1 2n - (pi + 1)
(Pi + 2) + 1 I

patterns covered. Thcn, the maximum numher of patterns at
level i > j is

Eventually. our goodness measure also should he changed
accordingly to hecome

si = p / m

where m is the new maximum numher of patterns that gate
i should generate at level j .

The second case indicates that the numher of levels is
less than what it should he. Therefore. the number of lev-
els has to he incrgased. Also. the ranges of the maximum
number of patterns will change if the number of levels in-
creases. The increase in number of levels is done gradually.
i.e.. one by one. If 1 is the number of levels, then the num-
her of pattern coverage for each level is L2"/1J. Therefore.
the goodness measure for cell i located at level j will be
changed to:

g . - L i f j = 1
1 - 2 n

The third complication is similar to the one in the first
goodness measure. A cell j with low goodness measure
might feed cell i that has high goodness. Therefore. cell
j will have high prohahility of being selected and mutated
which might disturb the goodness of cell i. Therefore, the
same approach as in the previous one i n computing the in-
trinsic and extrinsic goodnesses is considered. In this case
the Oirrirrsic goodness measure is computed by using the
multilevel logic based goodness measure equations for g;.

This goodness measure has heen used to implement a
version of the SimE algorithm denoted hy SimE-G2.

In order to optimize the circuit for other measures such
as power, delay and area, a working circuit has to he first
obtained. This means that thefrirrctioiial goodness nreasure
should he equal to I..Also, a global opriniizotioti goodriess
cost fuiiction is proposed. After allocation, the solution is
evaluated and if there is an improvement in the global cost
function, the solution is made as permanent. The global
optiniization goodness costfrrrrcriori is denoted by Go and
is computed using the procedure in Figure I . The goodness
of the solution considering the j t h ohjective is computed as
follows:

378

Tahle 2: Comparison with Coello [4] technique in terms of area. delay and power.

P g i : Intrinsic Functional Goodness of cell i *I
PGo: Glohal Optimization Goodness of P ti
PP1 thc current population (solution) " I
l*k: number of objectives for optimization " I
Pgj: the goodness ofthe solution considering the j t h objective "I
/*U;;: a weight for functional cost *I
/*u:j: a weight for optimization cost *I

If gi < 1 Then

ElseIf g; = 1 Then

EndIf

Go =wig; IO. w;]

[w;. I] Go = wig; + E:=, wjgj

Figure 7: Glohal optimization goodness.,

' ' 1
9j = 1+6

and
N & = -

Nmaz

A* is the current cost of the objective function (power. area
and delay) and Armoz.is the maximum acceptable value for
the given constraint.

Linear aggregation function is used for the evaluation of
all objectives of the solution. It maps all objectives into a
single metric that indicates how good the solution is. SimE
works on two solutions, the current solution and the candi-
date (mutant) solution at each iteration. Therefore, neither
is better than the other on all objectives. Since SimE works
on two solutions during iteration, Pareto ranking is not ap-
plicable due to the lack of the ranking set. A linear aggrepa-
tion function will be an efficient and fast choice compared
to Pareto ranking.

'. ; .

4 Results and Comparison .,

Several circuits of different degrees of complexity have
been used to test the proposed approach. The two proposed
algorithm, SimE-GI and SimE-G2 are compared 10 Genetic
Algorithm (CA) approach similar to that reported in [3, 41.
Table 2 shows the quality of solutions i n terms of area, delay
and'power for CA, SimErGl and SimE-G2. In Table 2. cir-
cuitl to circuit5 are randomly generated circuits while the
last three circuits are seleched~ from ISCAS,'85 benchmark.
Table 3 shows the average execution time for the given test
cases. It is ohvious that Coellok approach is'slower com-
pared to SimE-GI and SimE-GZ in.time.

. .
Table 3: Comparison with Coel1q:s [p] technique in ,terms
of execution time.

The tahles.show that there are significant imerovements
in terms of area, delay, power and execution time for mis t
cases. For the purpose, of this paper. two examples were
chosen to illustrate this approach. . .,. ,

Since the Genetic Algorithm (GA) reported in [3,4] con-
siders only functional fitness and number of gates as cost
function. modification in cost function has to he made ip
order to include power. delay and area optimization'in the
cost function instead of number of gates used. The popu-
lation size used in all circuits for GA is IOOO. Two-point
crossover is used as in [3 , 41 with crossover rate 0:95. The
mutation rate is initialized to 0.01.

Each experiment is tun 50 times and the average cost
function (fitness) for GA and average goodness for SimE
for the 50 runs is reported. Also, the best solution ohtained

. .

319

Time in Sec ,

'Algorithm
GA

SimE-GI
SimE-G2

. .

Figure 8: Average global cost function for Example I

Resultii Gate Types
F.= ((A fE B) @ .4D) + (C + (A €? D))'

F = A'B + A((BD)' + C'D)
F = A'B + A((BD) ' + C'D)

I AND, 2 ORs, 3 XORs. I NOT
4 ANDs, 2 ORs. 3 NOTs

3 ANDs, 2 ORs- 2 NOTs. I NAND

IP Function I

Table 4: Results produced by CA. SimE-GI and SimE-G2 for Example'l.

in the 50 runs is reported for comparison in power. delay and
area. The library used foithe evaluation of power, delay and
area is the MOSlS 0 . 2 5 ~ CMOS cell library.

Example 1

The first example has 4 inputs and one output where F is
IC031 I 1 I 1 1100101 (circuit 2): It is noticed that SimE-GI
and SimE-G2 outperformed GA since more cells are as-
signed to higher goodness locations. As a result, the global
average goodness increased result$ in converging into bet-
ter solutions in lesser number of iterations compared to CA.
The results for global cost function is shown on Figure 8.
Also, Table 4 shows the hest resulting circuit outcome from
running SimE-GI. SimE-G2 and CA.

Example 2

The second example is a 9 inputs odd parity circuit (xor9).
SimE-GI and SimE-G2 produced results in almost 300 sec-
onds while GA could not generate a working circuit in the
first 500 seconds. The results for global cost function is
shownon Figure 9. . '

.
. .

5 Discussion and Conclusions

All circuits experimented with showed that SimE-GI and
SimE-G2 have hetter convergence than GA in time and
quality of circuit. The reason is that SimE algorithm uses
less memory and less computation time. SimE works on
one solution only while GA works on a large number of
solutions (population size). The number of crossovers and
mutations that GA will perform in every iteration is large
which will require more CPU time. On the other hand.
SimE requires less CPU time because it uses the goodness
measure to guide the algorithm throush the search space.
Goodness measure is used during selection and'allocation.
therefore, SimE algorithm will assign more cells to hetter
goodness locations in every iteration. The more knowledge
about the problem incorporated into the goodness measure.
the better the performance of SimE algorithm in terms of
CPU time and quality of solution. On the other hand, CA
evaluates the solution after crossover and mutation: There-
fore, crossover and mutation is done blindly and most of the
time the solution space is explored randomly.

We have introduced a technique to design combinational
logic circuit using Simulated Evolution Algorithm (SimE).
Also, two goodness measures have been proposed. The pro-

380

I I
I
!

, . .
~

i
1

,... . . _,_
‘i I o s / , ,, ,-‘ 1 o n / ,- !

Figure 9: Average glohal cost function for Example 2. , . , .
, .

posed,algorithrn SimE-GI and SimE-G2 are compared with
CA. Both SimE-GI and SimE-G? showed better results in
all the cases.

Acknowledgment

[5] J. E Miller. T. Fogany. and P Thornson. Design,
ing Electronic Circuits’Using Evo!utionary Algorithms.~
Arithmetic Circuits: A Case Study. ‘Gerieric Algorithms
aiid Evol~rtion StrateRi irr Eflgirieeririg slid Conipitter
Science. Johii Wile! a d Sons, Chichester. pagcs 105-
131. 1998.

The authors would like to acknowledge the support received
from Fahd of Petroleum a Minerals under
project entitled “Iterative Heuristics for the Design of Com-

161 J. E Miller, D. Job. and Vassilev V. K. Principles in the
Evolutionary Design of Digital Circuits - Part 1. Joiir-
tral of Generic Prugruno~~ing arid EidwrDle Mucl~iries.
I(lj:8-35, 2000.

hinational Logic Cicuits”. . ..

Bibliography 171 1. E Miller and P. Thomson. Discovering Novel Dig-

iiig Cornbinarorial Optii~~izariuri Prohlems. Wiley-IEEE
Press, 2000. [SI 1. F. Miller and Peter Thomson. A Developmental

Method for Growing Graphs and Circuits. GECCO’W.
1(1):8-35,2003, [21 Sadiq M. Sail and Habib Youssef. VLSI P/i!sical De-

sigil Autoniarion: Tilent? arid Practice. World Scienrific
Press. 1999. [9] R. M. Kling and P. Banerjee. ESP: A New Standard Cell

Placement Package usinESimulated Evolution. Procerd-
irlR of23th ~ e ~ i ~ ~ ~ Airronlntiorz Col$erC,lce. pp. 6 M 6 ,
1987,

[3J C. A. Coello, A. D. Christiansen. and A. H. Aguirre. ’
Use of Evolutionary Techniques to Automate the De-
s i p of Combinational Circuits. Iiirerrrational Journal
of Smart Engineering Swteni Desigil. Elsevier Scierlce.
2(4):299-3 14. June 2000.

[IO/ Y. Saah and V. Rao. Stochastic Evolution: A Fast
Effective Heuristic for Some Generic Layout Problems.
27th ACMIIEEE Des@ Auronwtion Coiference. pp. 2 6

. . I41 C. A. Coello, A. D. Christiansen, and A. H. Aguirre. 71 19911 , , -.
Towards Automated Evolutionary Design of Combina-
tional Circuits. Coniputers and Electrical Eiigineering.
Pergamon Press, 27(I j: 1-28, Ian. 2001.

38 I_

