
Enhanced Simulated Evolution Algorithm For
Digital Circuit Design Yielding Faster Execution in

a Larger Solution Space
Sadiq M. Sait Muhammad AI-Ismail

College of Computer Sciences & Engineering
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: {sadiq, st941659}@ccse.kfupm.edu.sa

Abstrncl- Evolutionary algorithms have been studied by sev-
eral researchers for the design of digital circuits. Simulated
Evolution (SimE) is used in this paper due to it simplicity and
customizability to combinatorial problems. A tree data structure
based circuits are evolved. Thus, a larger solution space is
investigated. In addition, a new pattern based goodness measure
is presented.

I. INTRODUCTION
Evolutionay algorithms present a new methodology in

hardware design and synthesis. It is expected, to some extent,
that evolutionary algorithms will lead to the discovery of
novel digital circuits in terms of design style, area, power
and delay [I] The process of implementing a digital circuit
involves transforming the logical specifications using conven-
tional logic rules into a logic functional representation of
digital cells. Using evolutionary algorithms to assemble digital
circuits out of n variables and then iteratively testing the
functional fitness of the assembled circuit will eventually lead
to a logically correct representation that a human engineer may
have not reached. Figure 1 depicts the principles of evolution-
aty design solution space as compared to conventional design
techniques.

Fig. 1. Evolutionary Design Solution Space

This process was pioneered by de Garis [2] back in 1993

and since then this field of research has received increasing
attention [3]. The work presented here is driven by the fact that
evolutionary algorithms can he used to explore a much richer
design space. In addition, it is also anticipated that the evolved
circuits would be better according to an objective function.

11. SIME BACKGROUND
Simulated evolution -SimE- is conceptually simple and

elegant [4]. It is general in the sense that it can be tailored
to solve most known combinatorial optimization problem$;.
SimE was proposed by Kling and Banerjee in 1987 which
is based on an analogy with the principles of natural selection
thought to be followed by various species in their biological
environment [SI. During the process of evolution, biological
organisms tend to develop features that allow them to adapt tO
the peculiarities of their environment. Therefore, by adapting.
an organism optimizes its chances of survival [4].

Allocation

Fig. 2. Simulated Evolution Algorithm

SimE is stochastic because the selection of which compo-
nentS of the solution to change is done according to a stochas-
tic rule. Well located components have a high probability to

0-7803-8515-2/04/%20.00 02004 IEEE 1794

remain where they are. This probabilistic feature gives SimE
a hill-climbing property.

It is not the intention of this paper to give a detailed
description of SimE. It is only used to briefly outline the
required knowledge to understand the terminology used in
the context to this work. Simulated Evolution is very well
described in [4]. Figure 2 pictures the basic steps of SimE. The
creators of SimE have originally used it to solve the standard
cell placement problem [5] , hence, the terms selection and
allocation. Various operators of SimE are introduced below.

A. Evaluation
The evaluation step proceeds by evaluating the goodness of

each individual of the population. The goodness measure is a
single number in the range [0, 11. The Goodness is defined as
follows: , .

Si = 2
Where 0; is an estimate of the optimal cost of the individ-

ual, and C, is the actual cost of the individual in its current
location. 0, and C, are problem specific that are customized
according to the problem objective.

E . Selection
Secondly, the selection step is the decision-maker of SimE.

It takes the population as its' input and partitions it into two
disjoint sets P, and P,. The components selected for re-
allocation are assigned to set p,. Components are either sorted
or not based on a correlation with the problem objective. In
other words, the sorting process is problem specific. Figure
3 outlines the basics of the selection procedure. Sorting is
thought of as arranging the components in P, for the allocation
operator to act upon them in a meaningful way with respect
to the problem objective.

Function Selection(m, B);
I* m : is a particular movable element; *I
I* B : Selection bias; *I

If Random 5 min(1- gm + B, 1) Then Return True

EndIf
End Selection;

Else Return False

Fig. 3. SimE Selection Pmedure

The selection procedure makes use of a selection bias which
is a fraction in the range of [-0.2,0.2]. Basically, a negative
bias means that the goodness measure is loose and more
components are needed to be selected every time for re-
allocation. A well designed goodness measure can normally
use a selection bias of zero.

C. Allocation
Finally, the allocation procedure which has the most impact

on the solution quality obtained by SimE. Members of P,
are mutated according to a function suitable for the problem
objective. A number of trial mutations are performed. The

mutations that constitute a better solution are made permanent.
The post processor is a handy tool that is used to tune
the population for the next iteration of the SimE algorithm.
For example, it could be used to get rid of the redundant
components.

111. BRIEF LITERATURE REVIEW :

There are two existing techniques for logic design. These
techniques are divided into conventional logic synthesis and
evolutionary logic synthesis. These techniques' are briefly
described. References to-these techniques are provided.

A. Conventional Logic Synthesis

Conventional logic synthesis is mainly classified as two-
level logic and multi-level logic. The former deals with PLAs
and their minimization. A number of heuristics exist for
such problems; The Quine-McClusky algorithm [6], [71. An
effective technique used is ESPRESSO [8]. The later makes
use of factoring and decomposition into sub-functions. SIS is
a sophisticated tool developed at University of Berkeley for
multi-level minimization [9]. .

RM-Muller XOR logic is a work done for representing
functions using only XOR gates and un-complemented vari-
ables [IO]. XOR based functions are not easily visulized by
human designers that is why the XOR gate is of interest to
the evolutionary design of logic. It is believed that utilizing
XOR gates can lead to new more efficient designs [I].

B. Evolutionary Logic Design

A number of researchers have worked on evolutionary logic
design. To name a few, Miller [I l l , Colleo [12], [13], Sarif
[14] and Uthman [15]. They have used different existing
heuristic such as: Genetic Algorithm, Ant Colony and Simu-
lated Evolution. In this subsection, several logic design specific
terminology is explained.

I) Input Redundancy: Inputs which are not used in the
operation of the circuit.

2) Functional Redundancy: occurs when number of cells
of an evolved circuit is higher then optimal number needed to
implement the circuit.

3) Cell Redundancy: when outputs are not connected to
any other cells in an evolving circuit.

4) Logic Equivalency: when a sub circuit can be substituted
by another equivalent.

5) Phenotype Equivalency: Possibility of having different
encoding for a given suh-circuit.

IV. SIME FOR CIRCUIT DESIGN

The proposed modifications to the current implementation
of SimE are discussed in this section. The data structure used
and the programming implications are also discussed. SimE
operators are explained in details.

1795

A . Problem Formulation
The combinatorial optimization problem is mapped to an

assignment problem where given a finite set M of k distinct
movable elements and a finite set L of ILI locations. A state
is defined as an assignment function S : A4 + L

M is said to be the possible gate types of different input
configurations. The objective is to start with ILI locations and
then iteratively select modules from M to produce a logically
correct circuit.The evolutionary algorithm is guided through
the search space using a goodness function that is custom
made. Table I lists all possible gate types allowed in this
experiment. The table should be rich in gate types but yet
limited to be able to obtain different structures [141.

TABLE I
CELL OPTIONS

Left

x Gate F""Cti0"
1 AND A - B
2 OK A + B
3 NAND NOT(A.8)
4 NOR NOT(A+B)
5 XOR AEBB
6 XNOR A a B
7 Buffer1 Input 1
8 Buffer2 Input 2
9 NOTI NOT(Inpu1 1)
IO N m NOT(1nput 2)

Right Gate Type

B. Circuit Encoding
Most of current implementations of the evolutionary design

of digital circuit adopt a 2-D matrix representation which
has been suggested by Coello [12]. This structure has been
proven to be capable of evolving functionally correct circuits
in number of research papers so far [12], [13], [14], [15].

In this experiment a tree data structure is used as it is our
belief that a logical circuit is relatively similar to a tree in its
structure. Most researchers start with a matrix of size (n x n)
where n is the number of inputs of the required circuit.

Now, having a digital circuit mapped onto a tree introduces
several differences as opposed to a 2-D matrix. Rows and
columns are used in a matrix while a tree has a parent-child
relationship and a node level. Each node has left and right
children.

Inspired from the 2-D matrix used by other researchers, the
root level of the tree is set to n where n is the number of inputs.
None the less, in order to facilitate the search in the design
space a number of redundant cells are also needed. Therefore,
(n x n) is the initial number of cells, the evolutionary algorithm
starts with. Figure 4 pictures an example of a circuit of 4
inputs.

In this experiment, a node is allowed to have any other node
as one of its children provided that it is at a lower level. Hence,
a root node for example might have one or both of its children
as an input pad.

~

1796

I u u u u
Fig. 4. Tree Data Structure of 4 Inpuu Circuit

The proposed tree data structure allows the search in by far
a larger design space. The beauty of the tree data structure
is the ability to evaluate the circuit according to an in-order-
traversal mechanism, i.e., recursively evaluating the goodness
of each component. Therefore, reducing the execution time b y
a great deal as it is going to be shown later. Figure 5 shows
how in-order-traversal has been used to speed up the evaluation
of each node.

Begin InOrderTraversal(node n)
If (Left.Type(n) != Input) Then

InOrderTraversal(Left(n)) ;
EndIf
If (Right.Type(n) != Input) Then

InOrderTraversal(Right(n));
EndIf
Evaluate(n)

End InOrderTraversal;

Fig. 5. In Order Traversal Procedure

C. Cell Encoding

Cells constitute the tiuilding blocks of the circuit. The
encoding of each cell is crucial as cells (genotypes) are useid
to form the circuit (phenotype). Due to the use of a tree data
structure the triplet suggested by Coello in [I21 is modified to
Figure 6. In other words, instead of using input1 and input2
as part of the triplet, references to the left and right children
are used in order to form the tree.

Fig. 6. Cell Encoding

Not to violate the proposed tree data structure, gate types
7-10 as shown in Table I have been suggested. Buffer 1, for
example, will have the cost of a WIRE from the MOSIS [161
library while it has two inputs. Hence, a post-processor that
understands such peculiarities of the problem is used.

D. Firness Calculation

In this section the,pattern based goodness measures used in
1141, [I51 are presented. A modified goodness measure used
in this experiment is also discussed.

In this experiment only single output circuits have been
studied. Area, power and delay optimization has not been
considered yet. Two functional goodness measures have been
proposed. Each goodness measure is between 0 and I .

A cell whose goodness is 1 produces all possible minterms.
A cell relays on other cells in order to produce more minterms.
Therefore, the functional goodness measure is divided into
interior and exterior.

I) Interior Goodness Measure: The interior goodness mea-
sure poses the question: how good is this cell? The interior
goodness measure is a function of the truth table length and
the number of minterms generated by the cell. The truth table
length equals to 2" where n is the number of inputs. The
number of matching minterms -output patterns- i s denoted by
P.

9. - E
I - pn

Table I1 shows possible interior goodness measure values
for a 3 inputs circuit. At most, a 3 inputs circuit will have 8
minterms at its output. Consider the case where it produces
0 minterms, it means that by inverting the output signal the
cell's goodness will jump to 1.

TABLE I1
DIFFERENT INTERIOR GOODNESS MEASURES

Mintems 0 1 2 3 4 5 6 7 X
I Goodness 0 1/8 2/8 3/8 4/8 3 8 6/8 7/8 I
2 [14], 1151 I 716 6/6 5/X 4/6 5/8 6/8 7/6 I
3 MI SimE I 616 4/6 2/8 0 2/8 4/8 6/X I

When the functional goodness is less than 0.5, the cell
is inverted [141, [IS]. It is denoted by the term normalized
functional fitness as in [14], [15]. Row 2 enumerates possible
goodness values using the normalized functional fitness.

FF,, = M a x { F F , 1 ~ F F }

Note that the normalized function fitness proposed by [14],
[IS] has 0.5 as its worst goodness. Due to this scaling of the
fitness function, it is more difficult to evolve large circuits as
cells would have less variation in their goodness making if
harder for the SimE algorithm.

In this experiment, an improvement was made to the good-
ness measure. Cells that generate half of the truth table are
given a goodness of zero. Row 3 in Table I1 demonstrates
this principle. Below is a formulation of the new proposed
goodness measure. The newly proposed goodness measure is
more sensitive to changes in the circuit utilizing a larger scale.
This feature allows the evolution of larger circuits.

FF,, = [(M a z { F F , 1 - F F }) - 0.51 x 2

The interior goodness measure is used by the allocation
operator to favor cells with respect to others when performing
mutations.

2) Exterior Goodness Measure: The exterior goodness
measure poses the question: how good is a cell to other cells in
its current location? The exterior goodness measure is denoted
by G. Figure 7 shows the process of calculating G for a cell
i whose input is cell j . The exterior goodness is divided into
two instances: when a cell depends on its inputs or when other
cells depend on it to generate more functional patterns.

Exterior goodness calculation is done breadth-first. The
exterior goodness measure is used by the selection operator to
favor cells with respect to others when partitioning. In other
terms, when a cell has low exterior goodness, it means that
this particular cell is not desired by other neighboring cells in
the current solution.

rD-1 1-1

.e, + R, G, =- G, =-

Fig. 7. Exterior Goodness Calculation

E. Allocarion and Mutations

The allocation procedure is the most vital process of the
evolutionary algorithm. Allocations are split into local and
global allocations mutations-. A number of trial mutations
are carried on the cells selected by the selection operator;
this number is denoted by W . Moreover, W is relative to
the number of gate types m and circuit size. In addition, the
gates used in this experiment make use of 2 inputs. Therefore,
W is determined using the following formula

W = m x &

E Eflect of Trial Mutations

Since the allocation operator performs W trial mutations per
cell every time the allocation operator is invoked, a study of
W is needed. Table 111 lists the W values for different circuits
based on the number of inputs.

Throughout this experiment m was set to 6 as this will cover
all of the possible gate types, i.e., AND, OR, NAND, NOR,
XOR and XNOR, refer to Table I. More gate types increases
the complexity of the problem.

The total number of trials per mutation call grows almost
exponentionally. In Figure 8, the number of possible gates is

1797

TABLE III
W TRIALMUTATIONS vs. CIRCUITSIZE

n m w Cells Total
2 6 6 4 24
3 6 18 9 162
4 6 36 16 576
5 6 60 25 1500
6 6 90 36 3240
7 6 126 49 6174
8 6 168 64 10752
9 2 1 2 81 17496
10 6 270 100 27Mx)

J 0 0

a 110
k
?im

/

V. RESULTS AND COMPARISON

A number of techniques have been proposed in the liter-
ature. Genetic Algorithm has been used in [121. Ant colony
system has been used in [I31 and later modified in [14]. Sait
has proposed two SimE algorithms where his SimE-G2 has
shown the best results so far [15]. 14 Single output circuits
have been evolved and compared to the current results obtained
by others. Area has been calculated for the output circuit yet it
has not been optimized for. None the less, results in Table IV
are very comparable to the current results by other researchers
while some circuits have been shown to have less area. The
gates library used in this experiment is CMOS 0 . 2 5 ~ obtained
from MOSIS [16].

Run time has been shown to outperform the current imple-
mentations. It is owed to the sophisticated tree data structure
used. The in-order-traversal procedure recognizes the redun-
dant cells and only spends time evaluating the required portion
of the tree. For run time comparison see Table V.

TABLE IV
AREA COMPARISON (MICRON)

Circuit n CA ACO MAC0 SimE-2 SimE
[I21 [I31 [I41 1151 MI

circuit1 4 18954 16767 14094 12879 15066
circuit2 4 21870 16767 14823 13122 15066
circuit3 4 19926 14823 10692 10752 11907
circuit4 2 1458 1458 1458 1458 1458
circuit5 4 27945 29889 11664 13870 12879
circuit6 4 40338 13365 10935 10935 12393
circuit7 4 83835 18954 12636 12393 8019
circuit8 4 75087 7116 7290 7776 7290

reduced to 2 for circuits of 9 inputs. The effect is a great
reduction in the complexity of the problem.

To sum up, the number of cells allowed in this experiment - .I, " nl-" "."" ""-, ---, JmrD 3 Y 4 1 , 7411 , 1 1 0 , , i o
sarin 4 17496 19197 12393 - 15309
Sar in 4 15552 18468 14337 14337 15066

has been setto a fixed number 6 while it is better to adaptively
change that number during execution. In order to be able to
intelligently change the number of allowed cells, the algorithm majority 21,41 . 13851 13851 19440

xor8 8 32805 - 20655 20655 20655 has to have a prior knowledge of the required circuit. This

xor9 9 35266 - 23328 23814 24300 suggests the use of a constructive algorithm prior to the use
of the evolutionary algorithm for SimE to be structure-aware.
Another problem is which gates to allow and not to allow. It is
believed that Tabu search could he utilized for this matter [4].
l a b u search makes use of short, intermediate and long-term
memories which if properly tailored to the problem; a great
reduction in complexity is possible.

VI. FUTURE DIRECTIONS

There is more work to be done in order to improve the
performance of the evolutionary algorithm. The future work
involves the further investigation of

1) Incorporating area, power and delay Multi-objective
optimization along with the functional constraint.

2) New goodness measures that are structure-aware rather
than pattem-based.

3) Evolving multiple output functions.
4) Use of a constructive algorithms for initialization.

6) Adaptive number of levels.
*"I OR6 5) Adaptive cell choices.

Pig. 9. Evolved Circuit Example (majority)

1798

TABLE V
TIME COMPARISON (TIME)

Circuit n GA ACO MAC0 SimE-2 SimE
[I?] 1131 [I41 [I51 MI

circuill 4 91.66 61.4 15.27 3.12 3.062
circuit2 4 102.3 61.4 15.17 3.77 3.062
circuit3 4 155.7 49.7 14.67 4.57 11.51
circuit4 2 275.1 0.4 3.5 0.48 0
circuit5 4 266.3 76 16.97 6.51 5.016
circuit6 4 - 50.7 14.83 6.02 0.125
circuit7 4 - 75.6 16.1 7.44 0.14
circuit8 4 - 50.4 12.7 5.02 0.109
Sarif6 3 - - 0.125
Sariff 4 - - 7.93
sarifa 4 91 11 1.75

majority 5 6290 - 15.32 318.2
xor8 8 7430 - - 220.43 10.85

9 10x57 - 231 6.546

Aren Comparison
*%%I

Fig. IO. Area Comparison (micron)

VII. CONCLUSION

The modified simulated evolution algorithm has the ca-
pability of searching a larger design space yet in a shorter
execution time. Circuits having a more complex structure have
been evolved. The tree data structure implementation mimics
the interconnections used in a digital circuit. Recursively
programming the evaluation procedure using in-order-traversal
has successfully reduced the execution time. More work is
needed for the algorithm to handle larger multiple output
circuits.

Fig. 11. Run Time Comparison (sec)

REFERENCES
[I] 1. E Miller. D. Job, and Vassilev V. K., "Principles in the Evolutionary

Design of Digital Circuits - P m I," J o u m l of Generic Programming
ond Evolvable Machines. vol. 1, no. 1. pp. 8-35, 2oM).

[2] Hugo de Garis. "Evolvable Hardware: Genetic Programming of a
Darwin Machine:' Proceedings of the Inrernorional Conference in
Innsbruck, Ausrrin. vol. 2, no. 4, pp. 4 4 1 4 9 , Springer-Verlag, 1993.

[3] J. E Miller and P. Thomson, "Discovering Novel Digital Circuits Using
Evolutionary Techniques:' IEE Colloquium on Evolvable Sysrems. Sovoy
Place, London, March 1998.

[4] Sadiq'M. Sait and H. Youssef. Irerorive Compurer Algorirhm with Appli-
cotions in Engineering: Solving Combinororid Oplimirnrio,z Problems,
IEEE Computer Society Press, 1999.

[5] R. M. Kling and P. Banerjee, "ESP: A New Standard Cell Placement
Package using Simulated Evolution:' Proceeding of 24rh Design
Auromntion Conference. pp. 60-66. 1987.

[6] W. Quine, "The Problem of Simplifying Truth Functions," American
Marhematicnl Monthly, vol. 59, pp. 521531. 1952.

[7] E. McCluskey. "Minimisation of Boolean Function:' Bell Sysrem
Technical Joumol, vol. 38. pp. 1417-1444, 1956.

[8] R. Brayton. G. D. Hachlel. C. T, McMullen, and A.L. Sangiovanni-
Vincentelli, Logic Minimisation Algorirhmfor V U / Synthesis. Kluwer
Academic Publisher, 1984.

191 E. M. Sentovic. K. 1. Singh. L. Lavagno. C. Moon, R. Murgai. A. Sal-
danha. H. Savoj, P. R. Stephan, R. K. Braytan. and A. L. Sangiovanni-
Vincentelli, "SIS: A System for Sequential Circuit Synthesis," Technical
Repon UCBERL M9U41, University of California, Berkeley, May
1992.

[IO] D. Green, Modem Logic Design. Addison-Wesley. Reading, MA, 1986.
[I I] J . F, Miller, T. Foga~ly, and P Thamson, "Designing Electronic

Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case
Study," Genetic Algorithms and Evolution Srrntegy in Engineering ond
Compurer Science, John Wiley ond Sons, Chichester. pp. 105-131. 1998.

[I21 C. A. Coello, A. D. Christiansen. and A. A. Aguirre, "Use of
Evolutionary Techniques to Automale the Design of Combinational
Circuits," Inrernotional Journal of S m r r Engineering S y m m Design,
Elsevier Science, vol. 2, no. 4, pp. 299-314, June 2wO.

[I31 C. A. Coello, A. D. Christiansen, and A. H. Aguirre, "Ant Colony
System for the Design of Combinational Logic Circuits." Evolvable
Sysrems: From Biology IO Hardware. Edinburgh, Scorlnnd. pp. 21-30,
April Springer Verlag, 2wO.

[I41 Sadiq M. Sail, Mostafa Abd-El-Ban. Uthman AI-Saiari, and Bambang
A. B. Sarif. "A Modified An1 Colonv Alrarithm for Evolutionarv Desien

ACKNOWLEDGMENT

. - . I
of Digital Circuits,"
Canberra. nn. 70&715. Iulv 2003.

IEEE Congress on Euolurionon, Comourotion.
~ . r r ~ ~~.

[I51 Sadiq M. Sait, Mostafa Abk-Barr . Uthman Al-Saiaii, and Bambang
A. B. Sarif. "Digital Circuit Design through Simulated Evolution
(SimE):' IEEE Congress on Evoluriona~ Compuration. Canberra pp.
375-381. July 2003.

[I61 "Standard Cell Library for MOSlS CMOS,

The authors would like to acknowledge the support received
from King Fahd University of Petroluem and Minerals under
the project entitled "Iterative Heuristics for the Design of
Combinational Logic Circuit". scmos.htm1," .

~ t t p : , , w w w . m a s i s . o ~ ~ ~ ~ h ~ i ~ ~ ~ ~ i g n s u p p ~ ~ ~ t d . ~ e ~ ~ . ~ i ~ ~ a r y .

1799

