ASIC design with AHPL

Sadiq M. Sait, Muhammad S. T. Benten, and Asjad M.T. KKhan
Department of Computer Engineering
King Fahd University of Petroleum and Minerals
Dhahran-31261, Saudi Arabia.
e-mail: facy009@saupm00.bitnet

1 Introduction

One of the greatest challenges facing the electronics
industry today is to reduce the “time to market™ new
products. This time includes design time. manufac-
turing time and testing time. Design time is the sum
total of time taken to desigu the architecture and to
perform layout. Reducing design time in fact is more
important than optimizing the area or performance
of the IC. This is especially true in the case of Ap-
plication Specific Integrated Circuits (ASICs) since.
unlike a microprocesor, they are not programmable,
and have a limited market.

A 'igi degree of automation is required to reduce
the design time. Automation cin be achicved by
standardizing the design process. In this paper we
present a design automation environment developed
at KFUPM which helps in reducing the design time
and effort both at the archtiectural level as well as at
the layout level.

The KFUPM DA system is a blend of tools devel-
oped locally and those developed at the University of
Arizona, University of California at Berkeley, Univer-
sity of Washington and the Microelectronics Center
of North Carolina (MCNC).

This DA system is suitable for design of any syn-
chronous digital systems in VLSI. The systems has
been successfully used to synthesize designs such as
data compression chips, protocol processors, pro-
grammable CRC checkers. digital controllers, com-
puter arithmetic algorithms and small microproces-
sors. In addition to providing workable designs in
short turn-around time the KFUPM DA system is
an excellent educational tool to convey concepts re-
lated to digital system design, synthesis. and VLSI
design automation. The system takes input at the
register transfer level. This specification undergoes
logic synthesis to give a gate level specification in
terms of a netlist of standard gates (NAND, NOR
etc.) and flip flops. Simulation is done both at the
register transfer and the gate level and results are
compared to verify the translation process. This fin-
ishes the synthesis task. The uctlist is given to phys-
ical design subsystem which has placenient. routing

0-7803-1772-6/94/83.00 © 1994 [EEE

1234

and graphic layout manipulation tools along with a
standard library. The layout produced is checked for
design rules and circuit is extracted. The extracted
circuit is again simulated and the results compared
with the results of the functional simulation at the
register transfer level. The desigus can be fabricated
by a number of foundries worldwide. One of the de-
signs was fabricated by Orbit Semiconductor Inc. of
Caliifornia, USA.

This work is an extension of the ongoing AHPL
based design automation work at KFUPM [4, 5, 9].
A detailed schematic diagram of the AHPL DA sys-
tem is shown in Figure 1. The sequence involved is
diser selin the following section.

Figure 1: The AHPL based design automation sys-
tem.

2 AHPL DA System

Universal AHPL, an extension of A Hardware Pro-
gramming Language (AHPL), is used as the register
transfer language for specification of the design [1]. It
has been used at KFUPM for the earlier automation
system design (4, 5, 9]. It is a simple language yet
is sufficient to model highly complex digital systems
such as parallel processors and dataflow machines.
The system is described by sequential automatons
termed as MODULES, which contain the procedural
part, and combinational circuit part called CLUs. A
compiler for converting the system specification into
an intermediate representation in form of tables after
performing syntax and semantic analysis is available
2]

To aid in the construction of an efficient model,
exercise hardware tradeoffs, and verify the logic of
design, the environment is supported by a functional
AHPL simulator {3]. The task of logic synthesis is
done by the stage-2 compiler which takes the internal
representation of the system and produces a gate in-
terconnection list using standard NAND, NOR, AND
etc., gates and flip flops. It extracts the controller
from the system description and realizes it using the
one-hot encoding. It realizes register and memories
using flip flopsin the data part. The output produced
by this stage is a netlist in the form of a linked list
representation giving the gate number and its input
and output gates. These two stages complete the
synthesis task.

The netlist produced by the AHPL hardware com-
piler is technology independent. It may be logically
correct, but may not be suitable for implementa-
tion. An example is of an 8-input AND gate used
in the logic design. In a cell based system such a cir-
cuit/layout may not be available in the cell-library.
The Oasis standard cell library is used in this imple-
mentation [7]. The Stage-2 AHPL compiler generates
a logic netlist using combinational gates (AND, OR,
NOT, NAND, NOR, XOR etc.,) and three types of D
flip-flops, with enable, and asynchronous set and re-
set inputs. In Oasis, corresponding to each layout cell
of the cell library, there exists a logical/switch level
model that can be simulated using the RNL Logic
level simulator [6]. An AHPL logic library using the
Oasis models of the cell library elements has been de-
signed. This library contains the RNL models of all
the combinational gates and the three types of flip
flops required for implementing the Stage-2 compiler
logic netlist. A netlist converter has been designed
to translate the netlist produced to the RNL netlist
using AHPL logic library. This netlist is verified at
the switch level by simulating it using RNL and then
it is mapped to a layout.

One of the important constituents of the physi-
cal design subsystem is the cell library. It contains

the design rule correct layouts of the standard gates
and flip flops. The standard cell library consists of
scalable CMOS cells compatable with 2 MOSIS SC-
MOS technology. It consists of combinational logic
gates (AND, OR, INVERT cells with different fan in)
and sequential logic (D type flip flop with reset and
Tristate buffer). Apart from these a number of use-
ful combinational gates like Xor and And-Or-Invert
(AOI) are also provided. All of these cells are tai-
lored to support scan based testabilty in the design.
The netlist converter program modifies the netlist
generated by the AHPL compiler to gates which are
present in the library.

The logic level netlist is translated into a stan-
dard cell layout using the VPNR, Vanilla Place and
Route subsystem of Oasis. This system also sup-
ports the inclusion of scan path based testing cir-
cuitry and consistency checks during the placement
and routing phases of the design. The VPNR sys-
tem uses quadrisection algorithm for placement [10].
It recursively partitions the input logic netlist into
quadrants until the partition contains one cell row.
This is accompanied by approximate global routing
phase. Once the cells are placed the scan path is
threaded through all the flip flops. Then the process
of detailed global routing is done by constructing a
minimum spanning tree for each net, finding exact
location of nets crossing cell rows, and inserting feed
through channels. The task of routing global signals
(e.g. clock) is done using a fixed routing scheme. The
actual routing uses a greedy/left edge based router
[11, 12]. The final task of layout assembly is done
using the Magic layout editing system.

Once the entire system layout is ready, it is time to
simulate it again to make sure that the design would
work when fabricated. Simulation is necessary as at
higher level of design a number of important specifi-
cations like timing information are left out and this
may cause the system to malfunction. The circuit is
extracted using the Magic’s hierarchical circuit ex-
tractor. This extracted circuit can be converted into
three different formats to feed switch level simula-
tor esim, timing analyzer crystal and circuit level
simulator spice [6] or Magic’s own simulator irsim.
Simulation can be carried out at different levels of
detail according to the system complexity. If the sim-
ulation results agree with the functional simulation
results then there are strong chances that the chip
would work when it is fabricated.

3 Extensions

The work carried out so far has targeted semicus-
tom design, SLAs, Gate Arrays, PPLAs, and stan-
dard cell methodologies. The frontend of the system,
upto the netlist, is independent of technology and

1235

architecture. The output of this stage can be con-
veniently mapped to programmable devices (PLD’s)
and field programmable gate arrays (FPGAs). Cur-
rent research on the extensibility includes the task
of synthesis from algorithmic specification. The ap-
proaches under consideration include the use of high
level programming languages eg. Pascal, C subsets
for input specification. The use of a VHDL subset
is also under investigation. The results from these
studies can be easily integrated into this DA system
to convert it from an RTL level DA system to an
algorithmic level DA system. Other work includes
investigation of formal synthesis option that will do
away with the comparative simulation approach to
verification.

4 Example

In this section we present an example of a pro-
grammable CRC generator circuit that illustrates the
complete translation of an AHPL model to a VLSI
layout. This circuit was fabricated as a tinychip
project. We begin by presenting a verbal description
of the digital system to be implemented. The verbal
description is translated to an algorithmic descrip-
tion, which is then translated to AHPL. This AHPL
model is then synthesized in VLSL. The synthesized
layout is then extracted and simulated to verify if it
represents the function modeled in AHPL.

Refering to the AHPL model, the initialization is
done in the 1% STATE. In the 27¢ STATE, a 64-
bit message is supplied sequentially on line MESIN
and a 16-bit CRC pattern is simultaneously gener-
ated and stored in a register, CREG. When all the
message bits have been processed, the CRC pattern
is ready by that time and it can be serially appended
to the message data stream for transmission. The
CRC pattern is serially appended to the message in
374 STATE. The generator then goes to the initial
state to perform the same task described for another
message, if any.

The 16-bit CRC pattern generated is available in
66" clock pulse. The transmission of 16" bit takes
place in 81° clock pulse. Thus, the number of clock
cycles required to generate and transmit any CRC
in our implementation, is the sum of the size of the
message and the degree of the generator polynomial
used.

MODULE : CRCGENERATOR .
MEMORY : CRCREG{16)} ; COUNT{6}.
EXBUSES: C;Z.
BUSES: X{6};Y;Z0UT;CRCRDY.
EXINPUTS :CLK; RESET; START.
EXINPUTS :MESIN;A.
CLUNITS:INC{6} <: INCR <. 6 .>.
BODY SEQUENCE: CLX.

1 COUNT<=6$0;

CRCREG<=16$0;
=>“(START) /(1) .
ZOUT=MESIN;
Y=MESINQCRCREG{15};
COUNT<=X;
CRCREG<=(Y,CRCREG{0:3},CRCREG{4}€Y,CRCREG{5:10},
CRCREG{11}0Y,CRCREG{12:14}) !
(Y,CRCREG{0}, YOCRCREG{1},CRCREG{2:13},
CRCREG{14}QY)*(A,"A);
=>~(&/COUNT)/(2).
COUNT<=X;CRCRDY=\1\;
CRCREG<=\0\,CRCREG{0:14};
ZOUT=CRCREG{15};
=>("(&/COUNT{2:5}) ,COUNT{1})/(3,1).
ENDSEQUENCE
CONTROLRESET (RESET) /(1) ;
X=INC(COUNT);
2=Z0UT;
C=CRCRDY.
END.
CLU:INCR(X) <. I .>.
“I-BIT INCREMENTER CONSTRUCTED WITH EXCLUSIVE OR GATES"
"AND GATES AND AN INVERTER"
INPUTS: X{I}.
OUTPUTS: Y{I}.
BODY
FOR J=(I-1) TG C STEP -1
CONSTRUCT
IF J=I-1 THEN Y{J}="X{J}
ELSE Y{J}=x{J}e(a/X{J+1:I-1})
FI
ROF.
END. “INCR"

[N

w

=0]

[- ~—rg

Figure 2: Layout of programmable CRC chip.

1236

pu) B Adg T AT44

etatee 100 o010

- [T L

Figure 3: Simulation of the extracted programmable CRC circuit.

5 Conclusions

This paper presented the progress made at KFUPM
in putting together an AHPL based design automa-
tion system using indigenous effort, software tools
developed locally and in US universities into a co-
hesive system. The AHPL language is used as the
frontend specification medium due to its closeness
to hardware implementation issues. The system is
modular and technology independent so that future
extensions and specific implementation issues can be

added/modified.

Acknowledgements

The authors acknowledge support by King Abdul
Aziz City for Science and Technology (KACST) in
the form of research grant AR 11-21 and the King
Fahd University of Petroleum and Minerals.

References

(1] Fredrick. J. Hill and G. R. Peterson, “Digital
System: Hardware Organization and Design”,
Second edition, John Wiley and Sons, New York,
1978.

M. Masud, “Modular Implementation of a Dig-
ital Hardware Design Automation System”,
Ph.D Dissertation, University of Arizona, 1981.

{3] M. M. Al-Sharif, “Functional Level Simulator
for Universal AHPL,” M.S. Thesis, University

of Arizona, 1983.

[4] Sadiq M. Sait, “VLSI Mask Descriptions from
Register Transfer Level Descriptions: An Auto-

&)

(6

(8

(9]

(10]

(11]

(12]

1237

mated Approach”, Ph.D Dissertation, KFUPM
1987.

M. Masud and Sadiq M. Sait, Universal AHPL
— A language for VLSI Design Automation,
IEEE Circuits and Devices Magazine, Septem-
ber 1986.

VLSI Design Tools Reference Manual, Release
3.1, NW Laboratory for Integrated Systems,
FR-35, University of Washington, February
1987.

K. Kozminski, Ed. , “OASIS Users Guide”,
MCNC, Research Triangle Park,North Car-
lolina, October 1992.

Robert N. Mayo et.al, 1990 DECWRL Liver-
more Magic Release, Digital Western Research
Laboratory, September 1990.

Sadiq M. Sait, “Integrating UAHPL-DA sys-
tem with VLSI Design Tools to support VLSI
DA courses”, IEEE Transactions on Education.
, Vol-35, No.4, pp321-330, 1992.

P. R. Suaris and G. Kedem, “A new Approach to
Standard Cell Layout”, 1987 International Con-
ference on Computer Aided Design, pp 474-477,
November 1987.

R. E. Rose, “Greedy Algorithms for wiring in
VLSI”, Masters Thesis, Department of Com-
puter Science, North Carolina State Univer-
sity,1985.

M. J. Lorenzetti, M. S. Nifong and J. E. Rose,
“Channel Routing for Compaction ”, Proceed-
ings of the International Workshop on Place-
ment and Routing, May 1988.

