Design of a Cell Library for Formal High Level Synthesis

Sadiq M. Sait, Masud-ul-Hasan and Khalid Elleithy

Abstract

In this paper we present a complete design and im-
plementation of a CMOS cell library which supports
a formal high level synthesis framework. The library
contains the logic level models and VLSI layouts of
all primitive functions of the Realization Specification
Language (RSL) [1] as well as some commonly used
functions which are also built using these basic func-
tions. Modular design methodology is employed to sup-
port the expandibility of the basic cells. Example of a
formal matrix-matrix multiplier is presented to illus-
trate the application of the cell library.

1 'Introduction

Since the fabrication cost of VLSI chips is very high,
the designer is required to have high degree of confi-
dence in the correctness of a design before committing
it to hardware. Conventional method of verifying cor-
rectness is computer simulation. Simulation may leave
many design errors undetected, since exhaustive sim-
ulation of complex circuits and systems is not feasi-
ble. It is now widely accepted that current simulation
techniques are not by themselves adequate to ensure
the correctness of complex designs. Testing is another
popular method that is used to prove the correctness
of systems for specific sets of inputs. With the current
advances in VLSI circuits, there is no testing procedure
that is capable of accomplishing an exhaustive exami-
nation of complex circuits. To overcome these difficul-
ties, a number of formal high level synthesis techniques
are now being developed, and they are likely to become
practical tools for detection of design errors.

A formal high level synthesis system is a system
which transforms the formal specifications to imple-
mentable hardware. Here, synthesis is performed
within the framework of a suitable formal system, such
as first-order logic, higher-order logic, temporal logic or
ASL (Algorithmic Specification Language), etc [1]. In
formal high level synthesis system the design specifica-
tions (also called formal specifications) can be verified
for correctness by applying mathematical rules.

Any high level synthesis system has two tightly cou-
pled sub-systems, a front-end and a back-end. The
front-end accepts a high level input description and
produces an intermediate form. The back-end takes
this intermediate form and produces corresponding

0-7803-1772-6/94/$3.00 © 1994 IEEE

VLSI layout. The front-end of the system under consid-
eration accepts input in ASL and produces RSL (Re-
alization specificastion Language) as an intermediate
form. The back-end takes RSL as input and produces
corresponding VLSI layout. The block diagram of a
VLSI high level synthesis system is shown in Figure
1. It conmsists of two parts, the synthesis part and the
physical design part. The role of the synthesis part

ASL

High Level
Synthesis

Formal Chips

Figure 1: Block diagram of a VLSI synthesis system.

is to automatically translate an algorithmic specifica-
tion into an architectural specification that is realiz-
able in hardware. The physical design part translates
the hardware specification to VLSI layout. In a gen-
eral synthesis system, the front-end specifications to
the synthesis can be behavioral descriptions of digi-
tal systems in hardware description languages, or even
in programming languages. The synthesis system un-
der consideration uses p-recursive algorithms to model
the behavior to be synthesized. These algorithms can
be mathematically verified for correctness before being
subjected to the task of translation to architecture and
then to corresponding VLSI layouts. Therefore this
synthesis system is termed as formal synthesis sys-
tem. The objective of this work is to make the build-
ing elements (cell library) required by the back-end to
generate VLSI layouts. The cell library is usually the
central part of the back-end of any cell based high level
synthesis system.

In this paper we present a cell library which con-
sists of both logic level and layout level cells used to
support formal high level synthesis of digital sys-
tems modeled as p-recursive algorithms. In the next

1238

section the algorithmic specification language (ASL) is
introduced which is used in the formal synthesis sys-
tem under consideration. In Section 3 the description
of the matriz-matriz multiplier is presented as an ex-
ample of p-recursion modeling. Section 4 introduces
the design of the cell library. The design of a matriz-
matriz multiplier in VLSI is used as an example to il-
lustrate modeling in ASL, RSL (hardware) constructs,
and application of the cell library.

2 Language ASL

A formal behavioral framework for synthesis is intro-
duced in {2]. The given algorithm is represented using
a newly developed language, termed Algorithm Specifi-
cation Language (ASL). ASL consists of a limited num-
ber of constructs and is capable of representing any al-
gorithm using these constructs. It has only three initial
functions i.e., Zero, Projection and Successor functions,
and three operations i.e., Composition, Recursion and
p-Recursion [1].

These three initial functions and three operations of
ASL can be applied in a certain sequence to obtain
any computable function. Although this language of
specification is complete it may be tedious to model
a large digital system. A library of basic functions is
defined starting from the initial functions to be used in
the definition of larger functions [1]. This approach is
useful in building a cell library to support VLSI synthe-
sis. All basic functions that have been designed using
the proposed approach can be used for specifying other
functions. This technique supports a hierarchical de-
sign methodology in the sense that the specification
can be stopped at any level as long as the lower levels
are previously defined.

3 A Design Example: Matrix-
Matrix Multiplier

An example of a formal matriz-matriz multiplier cell is
introduced in this section, as an application of ASL lan-
guage [1]. It is implemented by applying recursion con-
struct on inner-product units. The architecture accepts
two matrices as input, and produces a third matrix as
an output. The multiplication is done in a recursive
way, and can be described by the following high level
subroutine:

Suppose A and B are the two input matrices and C is
the output matrix.

matrix-multiplication (A, B, C)

begin
fori=1ton
forj=1ton
begin

Cijo=0

fork=1ton
Cijk=Cijr-1+ Aix * By j
next k
end
next j
next i
end

3.1 ASL and RSL Representation

The ASL description of matriz-matriz multiplier using
recursion is as follows:

Ci1(A1k, Bij,0) = €()
Cnn(An gk, Baj, 0) = €()

C11(A1k, Bijj, K) = inner — product(A , B ;,
Cia(Avk, Brj, K — 1))

Cnn(Ank, Be s, K) = inner — product(An x, Bk n,

Cn,n(An,k, Blc,na K - 1))

The RSL representation of matriz-matriz multiplier
is as follows:

Initp(0,n;1, A115- ;0% Ap 41, By g - -5 2n%, By n)

SUCcontrol, = E()”ady

$UCcontrot,, = E()*%
I = sue(l)
Ready = eq?(i, m)
Resulty = comp(aryg, I, p?(z)“Result#inner—product)
Result, = comp(ary, I, p?:)“Result#inner—product)
Figure 2 shows the RSL architecture obtained for

matrix multiplication. The architecture consists of n?
inner-product cells.

1239

Unit [No. of Devices | Area ()?) | Other Units Used ||
counter 336 288320 | successor

add 974 739480 | incrementer

pro 1674 1284376 | add, incrementer
inner-product 2720 2244528 | add,pro,incrementer
multiplier 12060 12325000 | inner-product

Table 1: Number of devices and layout area of 8-bit units.

; The matrix-matrix multiplier circuit using
i simultaneous recursion

(include "oasis’lib.def’)
(include "formal'lib.def™)

(macro mull(oll 012 021 022 W11 912921 i22 &11 12
a2l 222 b11 b12 b21 22 phil phi2 load b ready)

(local out count con al a2 a3 a4 bl b2 b3 b4 readyl
rlb ril rbl1 ¢12 rb12 r21 ¢b21 ¢32 rb22)
generate " dff*

(dff con phi2 cut.l)
igenerate "adi8”

(sd1 out inl phil phi2 load count b resdyl)
igenerate "inner-product cells”
(inpro 011 i11 inl in5 phil phi2 load con m1 m2 r1l rb11)
(inpro 012 i12 inl in§ phit phi2 load con m1 m3 r12 rb12)
(inpro 021 i21 in1 in& phil phi2 load con m4 m2 r21 rb21)
(inpro 022 i22 inl in§ phil phi2 load con m4 m3 r22 rb22)

(o4 rbl11 rb12 rb21 rb22 counta)
(02 readyl counta count)

(o4 rbl1 rb12 rb21 rb22 readya)
(0i2 readylb readys ready)

;generate globie node names

(node ol1 012 021 022 i11 i12 i21 i22 all al2
a21 a22 b1l b12 b21 b22 phil phi2 load b ready)
(mul 011 012 021 022 i11 112 i21 i22 all al2

a2l a22 b1l b12 b21 b22 phil phi2 load b ready)

Figure 2: Implementation of matriz-matriz multiplier. Figure 5: Logic level model of matriz-matriz multiplier.

load/conni *in

andout andin
4—{ Successor [¢—

"

Figure 3: Successor function.

Figure 6: VLSI layout of an 8-bit matriz-matriz mul-
tiplier.

Figure 4: VLSI layout of 4-bit Successor.

1240

4 The Cell Library Design

In this section, we present the approach used for de-
signing and implementing the formal cell library which
consists of logic level models of basic units and their
corresponding CMOS VLSI layouts. Corresponding to
each construct in ASL is a construct in RSL that maps
the constructs to hardware equivalent modules.

The RSL specification of basic functions is modeled
as a logic netlist and simulated using a simulator [5).
This simulation verify the correctness of translation.
Layouts of these functions are then synthesized [3]. The
circuit is extracted from the layout and simulated to
verify the functional correctness of layouts.

The layouts of larger functions can be synthesized
by instantiating layouts of primitives and pre-defined
macros. The synthesized logic and its corresponding
lagout are stored in the library for fater use. In the de-
sign of both logic level and layouts of cells, care is taken
to achieve modularity so that basic cells can be easily
expanded to large word lengths and can be connected
to build celis of larger functions. The VLSI layouts of
cells are implemented using 2-phase dynamic CMOS
logic.

4.1

In this section, we show the design of the successor unit
as a case study of the methodology. One of the regis-
ters is for the argument n and the other for the value
1. The operation is done in one clock cycle. An input
signal control is used to determine the starting of the
operation. This unit can also he used as un up-counter
by feeding back the output of the successor function to
one of its two inputs. Lead/Count control inputs are
available to accomplish the necessary function. Two-
phase clocking scheme is used in the design of all the
cells, input is loaded during ¢; and the output is ob-
tained during ¢3. The cascading of successor units can
be done by connecting the andout output of a unit to
the andin input of the adjacent unit. The VLST layout.
of 4-bit successor is shown in Figure 4.

The Successor Unit

4.2 The Matrix-Matrix Multiplier

In this section, we illustrate using the cell library to
design the matriz-matriz multiplier. It consists of one
main building component i.c., inner-product unit which
itself contains the componeuts, add and pro. The add
and the pre units are used with the recursion construct
to build the inner-product unit. The logic model of
matriz-matriz multiplier unit is illustrated in the Fig-
ure 5 {4]. The Figure 7 shows the VLSI layout of a
matrix-matrix multiplier.

5 Conclusions

In this paper, we have presented a complete design of a
cell library that supports the formal high level synthe-
sis framework based on (RSL) realization specification
language. The cell library is the heart of the back-
end unit of a formal methodology for VLSI systems
design. The zero, projection. successer, romposition,
recursion and p-recursion functions in AL have been

_implemented using a SCMOS technology. Componeiits

in the RSL formal cell library are described at the log-
ical level and layout lével. The correctness of the com-
ponents have been exhaustively verified through the
RNL simulator. All the cells are made modular so that
the design is capable of extending to any desired word
length. These modules are also used to made the larger
functions. A formal matrix-matrix multiplier circuit of
three different types has been designed using the sup-
port of the cell library.

i Table 1 shows the number of devices and layout area
of these units for an 8-bit data bus. It can be observed
that the area is high as compared to the that made by
nen-formal methods. It is the price paid for the func-
tionally correct hardware made by formal techniques.

Acknowiedgements

The authors would like to thank the King Fahd Uni-
versity of Petroleumn and Minerals for support.

References

{1} Kbalid M. Ellesthy. A Fermoad Framework For High
Level Synthesis of Digital Designs. PhID thesis, Tiwe
Center for Advanced Computer Studies, University
of South-Western Lousiana, 1990.

[2

—

Khalid M. Elleithy and Magdy A. Bayoumi. Syn-
thesizing DSP architectures from behavioral spec-
ifications: A formal approach. Prorcedings-IEEE
Internationa! Symposivm on Clircuit: and Systims,
2:1131-1134, May 1990.

MCNC'’s Center for Microelectronics. Open Archi-
tecture Silicon Implementation Software, release 2.0
edition, December 1992.

! Masud ul Wasan, Back-End Design of A For-

st

vl Migh Levs it
King Fahd University of Pe

Dhahran, 1993.

Ths VR 523

ol

[5] VLSI Design Tools Reference Manual. NW Labo-
ratory for Integrated Systerns, release 3.1 edition,

February TUSKT

~ IEST COPY AVAILANLE

