SIMULATED EVOLUTION ALGORITHM FOR MULTIOBJECTIVE VLSI NETLIST BI-PARTITIONING

Sadiq M. Sait, Aiman H. El-Maleh, and Raslan H. Al-Abaji

King Fahd University of Petroleum & Minerals Computer Engineering Department
Dhahran 31261, Saudi Arabia
{sadiq,aimane,raslan}@ccse.kfupm.edu.sa

ABSTRACT

In this paper, the Simulated Evolution algorithm (SimE) is engineered to solve the optimization problem of multi-objective VLSI netlist bi-partitioning. The multi-objective version of the problem is addressed in which, power dissipation, timing performance, as well as cut-set are optimized while Balance is taken as a constraint. Fuzzy rules are used in order to design the overall multi-objective cost function that integrates the costs of three objectives in a single overall cost value. Fuzzy goodness functions are designed for delay and power, and proved efficient. A series of experiments are performed to evaluate the efficiency of the algorithm. ISCAS-85/89 benchmark circuits are used and experimental results are reported and compared to earlier algorithms like GA and

1. INTRODUCTION

VLSI circuit design has various objectives. Until the beginning of this decade, two main objectives of VLSI circuit design were: the minimization of interconnect wire length and the improvement of timing performance. A large number of efforts targeting either one (especially cut-set) or both of the above objectives are reported in the literature[1, 2]. The power consumption of the circuit was not of main concern while trying to optimize the above two objectives. As different techniques are applicable and have been reported [3] at different steps of the VLSI design process, few performance-driven partitioning techniques at physical level design exist in literature. Furthermore, to our knowledge, no effort has been reported that targets the optimization of three objectives simultaneously (power, delay, cut-set).

In this work, the above problem is addressed in the partitioning step at the physical level. The Simulated Evolution algorithm is tailored for the multiobjective optimization of Partitioning. This paper is organized as follows.

In the next section, the SimE algorithm is introduced. In Section 3 the problem is presented and the cost functions are formulated. Section 4 presents the goodness functions and the design implementation details of the algorithm, and then experimental results are reported and discussed in section 5.

2. SIME ALGORITHM

In this section, Simulated Evolution is summarized. The pseudocode of SimE is given in [4]. SimE operates on a single solution, termed as *population*. Each population consists of elements. In case of partitioning problem, these elements are cells to be moved. In the *Evaluation* step, *goodness* of each element is measured. Goodness of an element is a single number between ë0í and ë1í, which is a measure of how near is the element from its optimal

location. After that comes Selection which is the process of selecting those individuals which are unÝt (badly placed) in the current solution. For that purpose, goodness of each individual is compared with a random number (in the range [0,1]), if the goodness is less than the random number then it is selected. The whole algorithm is repeated until some stopping criteria is met. Stopping criteria may be the number of iterations for which there is no further improvement in the overall cost, or total number of iterations are completed. At the end of Repeat loop, the algorithm returns the best solution found. Higher value of goodness means that the element is near its optimal location. For SOP, the goodness can be calculated as follows,

$$g_i = \frac{O_i}{C_i} \tag{1}$$

```
ALGORITHM Simulated Evolution (B, \Phi_i, SC)
                                     \Phi = Complete Solution.

SC = Stopping Criterion.
            = Bias Value.
            = Initial Solution.
    \Phi_i
            = Individual link in \Phi.
   e_i
            = Lower bound on cost of i^{th} link.
    O
            = Current cost of i^{th} link in \Phi.
            = Goodness of i^{th} link in \Phi.
            = Queue to store the selected links.
    Allocate(e_i, \Phi_i) allocates e_i in partial solution \Phi_i.
    EVALUATION:
                          For Each e_i \in \Phi DO
                          Begin
```

```
EVALUATION: For Each e_i \in \Phi DO Begin Evaluate g_i End SELECTION: For Each e_i \in \Phi DO Begin If \operatorname{random}(1) > \min(g_i + B, 1) Begin S = S \cup e_i; \Phi = \Phi - e_i; End End \operatorname{sort}(S)

ALLOCATION: For Each e_i \in S DO Begin Allocate(e_i, \Phi_i) End
```

Until SC is satisfied Return (Best solution) End Simulated_Evolution

Figure 1: Structure of the simulated evolution algorithm.

In Selection, an individual having high goodness measure still has a non-zero probability of assignment to set P_s . It is this element of non-determinism that gives **SimE** the capability of escaping local minima. After the selection process, the allocation

operator is used to place cells in P_s to new locations. The choice of allocation function is problem speci $\acute{\mathbf{Y}}$ c.

3. PROBLEM FORMULATION AND COST FUNCTIONS

This work addresses the problem of VLSI netlist partitioning with the objectives of optimizing power consumption, timing performance (delay), and cut-set while considering the Balance constraint (same as area constraint as unit area is assumed for every gate). Formally, the problem can be stated as follows:

Given a set of modules $V = \{v_1, v_2, ..., v_n\}$, the purpose of partitioning is to assign the modules to a specified number of clusters k (two in our case) satisfying prescribed properties. In general, a circuit can have multi-pin connections (nets) apart from two-pin. Our task is to divide V into 2 subsets (blocks) V_0 and V_1 in such a way that the objectives are optimized, subject to some constraints.

Cutsize The cutsize cost function can be also be written as follows:

$$Minimize \quad f = \sum_{e \in \psi} w(e) \tag{2}$$

where $\psi \subset E$ denotes the set of off-chip wires. The weight w(e) on the edge e represents the cost of wiring the corresponding connection as an external wire.

Delay In the general delay model where gate delay d(v) and constant inter-chip wire delay are considered, $d_c\gg d(v)$ where d_c is actually due to the off-chip capacitance denoted as C_{off} . Let the delay of node $v_i\in V$ be $d(v_i)$ and the delay of net $e_k\in E$ which is cut be d_c . Given a partition $\Phi:(V_A;V_B)$, the path delay $d(p_{ij})$ between nodes v_i and v_j is the sum of the node delays $d(v_i)\in V(p_{ij})$ and the delay of nets which are cut, that is:

$$Minimize \quad d(p_{ij}) = \sum_{v_i \in V(p_{ij})} d(v_i) + d_c \times ncut(p_{ij})$$
 (3)

Power The average dynamic power consumed by a CMOS logic gate in a synchronous circuit is given by:

$$P_i^{average} = 0.5 \frac{V_{dd}^2}{T_{cycle}} C_i^{load} N_i \tag{4}$$

where C_i^{load} is the load capacitance, V_{dd} is the supply voltage, T_{cycle} is the global clock period, and N_i is the number of gate output transitions per clock cycle. N_i is calculated using the symbolic simulation technique of [5] under a zero delay model. C_i^{load} in Eq. 4 consists of two components: C_i^{basic} which accounts for the load capacitances driven by a gate before circuit partitioning, and the extra load C_i^{extra} which accounts for the additional load capacitance due to the external connections of the net after circuit partitioning. Then, the total power dissipation of any circuit ζ is:

$$P_{\zeta} = \beta \frac{V_{dd}^2}{T_{cycle}} \sum_{i \in \zeta} (C_i^{basic} + C_i^{extra}) N_i \tag{5}$$

where β is a constant that depends on technology. When a circuit partitioning corresponds to a physical partitioning, C_i^{extra} of a gate that is driving an external net is much larger than C_i^{basic} .

Area or Balance Constraint The balance constraint is given as follows:

$$\frac{|\beta_1 - \beta_2|}{\phi} \le \alpha \tag{6}$$

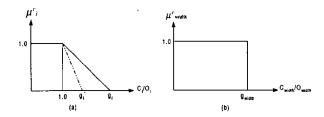


Figure 2: Membership function(s).

where β_i is the number of cells in partition i and ϕ is the total number of cells in the circuit, and the balance factor α (0.5 < α < 1.0).

3.1. Overall Fuzzy Cost Function:

In order to solve the multiobjective partitioning problem, linguistic variables are deÝned as: cut-set, power dissipation, delay and balance. The following fuzzy rule is used to combine the conDicting objectives

IF a solution has

Small cut-set AND

Low power consumption AND

Short delay AND

Good Balance

THEN it is an GOOD solution.

The above rule is translated to and-like OWA fuzzy operator [6] and the membership $\mu(x)$ of a solution x in fuzzy set good solution is given as:

$$\mu_{pdcb}^{c}(x) = \beta^{c} \times min(\mu_{p}^{c}(x), \mu_{d}^{c}(x), \mu_{c}^{c}(x), \mu_{b}^{c}(x)) + (1 - \beta^{c}) \times \frac{1}{4} \sum_{j=p,d,c,b} \mu_{j}^{c}(x)$$
(7)

where $\mu^c(x)$ is the membership of solution x in fuzzy set of acceptable solutions, $\mu^c_{pdcb}(x)$ is the membership value in the fuzzy sets of i within acceptable powerî, iwithin acceptable delayî, iwithin acceptable cut-setî and iwithin acceptable balanceî respectively. β^c is the constant in the range [0,1], the superscript c represents the cost. In this paper, $\mu^c(x)$ is used as the aggregating function. The solution that results in maximum value of $\mu^c(x)$ is reported as the best solution found by the search heuristic.

The membership functions for fuzzy sets Low power consumption, Short delay, Small cut-set, are shown in Fig. 2(a) We can vary the preference of an objective j in the overall membership function by changing the value of g_j which represents the relative acceptable limits for each objective whrere $g_j \geq 1.0$. Fig. 2(b) represents the membership functions for fuzzy set good Balance. O_i is the estimate of lower bound on the cost of an individual i, and C_i is the actual cost of i. O_i 's are independent of iteration, therefore, these are estimated only in the beginning. Whereas, C_i has to be calculated in every iteration for every element.

4. PROPOSED SCHEME AND IMPLEMENTATION DETAILS

In this section, several important implementation details of SimE algorithm are discussed. The description is combined with fuzzy

logic implementation. In the proposed algorithm, interconnect power dissipation, overall circuit delay and Cutset are used as objectives and Balance as a constraint, which makes it a MOP. In order to solve this MOP, fuzzy logic that provides a convenient method to combine possibly conducting objectives is used. It is clear that fuzzy logic can be applied at different stages of the SimE algorithm. These stages are evaluation and allocation. In the proposed algorithm, fuzzy logic is applied to the evaluation stage. In the evaluation stage, a new strategy for evaluating the goodness of a cell is employed.

4.1. Proposed Fuzzy goodness Evaluation Scheme

In this stage of the algorithm, goodness of individual cell is computed. gd, gp and gc are de Yned to be Delay, power and cut goodness of a cell, respectively. A fuzzy membership for each goodness function is then derived in order to get the overall goodness of the cell in its partition.

Cut Goodness Taking into account the hypergraph representation of the circuit, the goodness function gc is deYned and computed as follows:

$$gc_i = \frac{d_i - w_i}{d_i} \tag{8}$$

where gc_i is the goodness of cell i, $V_i = \{v_1, v_2, ..., v_k\}$ is the set of nets connected to cell i, U_i is a subset of V_i containing the connected nets to cell i that are cut; the cardinality of V_i is expressed as d_i . The net e_k is said to be cut if and only if cell $u \in e_k$ and cell $e \in v_k$ and $Block(u) \neq Block(v)$. The number of nets connected to i and having the status as cut is expressed as w_i . The cut goodness is simply the number of uncut nets over the total nets connected. Since gc_i is between 0 and 1, we can take the fuzzy membership μ_c as equal to the goodness $\mu_c = gc_i$. An example of goodness calculation is shown in Fig. 3; the goodness of cell 5 is calculated as follows: $gc_5 = \frac{3-2}{3} = 0.33$.

Power Goodness The power goodness gp_i of a cell is deÝned as a measure of how well placed is the cell in its present block according to power consumption and can be computed as follows:

$$gp_{i} = \frac{\sum_{j=1}^{k} S_{j} (j \in V_{i}) - \sum_{j=1}^{k} S_{j} (j \in U_{i})}{\sum_{j=1}^{k} S_{j} (j \in V_{i})}$$
(9)

 S_j is the switching probability of the cell that drives the net. The goodness is equal to the sum of the switching probabilities of the cells that are driving the uncut nets over the sum of the switching probabilities of the cells that are driving all nets connected. In this way a cell is placed in the partition where the sum of the switching probability of the cut nets is optimized. Results show that this goodness function gives high quality solutions with less power dissipation. Since $0 \le gp_i \le 1$ we can take the fuzzy membership $\mu_p = gp_i$. An example of power goodness calculation is shown in Fig. 3; the goodness of cell 5 is calculated as follows: $gc_5 = \frac{0.7 - 0.4}{0.7} = 0.428$.

The power and cutset objectives are possibly condicting. Hence

The power and cutset objectives are possibly conDicting. Hence it is possible to Ynd alternative solutions for a speciYc circuit. For example, there may exist a solution with high number of cuts and low power consumption (because the nets cut have less switching probability) and another with lower cuts and higher power consumption.

Delay Goodness In our problem, we deal with multi-pin nets, which makes it hard to design a suitable and simple delay goodness function. We propose the following delay goodness.

$$gd_i = \frac{|K_i| - |L_i|}{|K_i|} \tag{10}$$

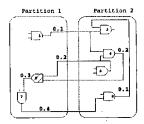


Figure 3: Power and Cut Goodness Calculation.

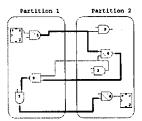


Figure 4: Delay Goodness Calculation.

where gd_i is the delay goodness of cell i. We consider the set of all critical paths passing through i and de Ýne the set K_i as the set of all cells connected to these paths. We also de Ýne L_i as a subset of K_i , containing those cells which are connected to all critical paths passing through i and are not in the same block as i. This goodness function will tend to drive the cells that are connected by the critical path to the same block, thus minimizing the delay along the path. A cell is considered good in its block if the majority of cells connected to all critical paths passing through it are also placed in the block. An example for delay computation is given in Fig. 4. To calculate gd_4 , we Ýrst compute $|K_4| = 5$ for the critical path $\{1,4,5,7,6\}$ which is the only one connected to cell 4. $|L_4| = 3$ which are cells $\{1,5,7\}$. This gives $gd_4 = \frac{5-3}{5} = 0.4$. However, $gd_5 = 0.6$, and hence is better placed according to the delay consideration.

4.2. Proposed Fuzzy Evaluation Scheme and Selection

With the classical goodness of cut only, it is possible that a cell having a high goodness with respect to cut may not be selected even though it is badly placed with respect to circuit delay and power. In order to overcome this problem, it is necessary to include power and delay in the goodness measure along with cut goodness. Also, it is not desirable to select all the cells even if they all have a low goodness value. In this case, it is desirable to select those cells which are far from their lower bounds as compared to other cells in the design. For this purpose, the following fuzzy rule is proposed.

```
Rule R1: (as compared to other cells)

IF cell i is

near its optimal Cut-set goodness

AND

near its optimal power goodness

AND

near its optimal net delay goodness

OR

T_{max}(i) is much smaller than T_{max}

THEN it has a high goodness.
```

	Simulated Evolution SimE					Genetic Algorithm					Tabu Search				
Circuit	D (ps)	Cut	P(sp)	$\mu(x)$	Best(s)	D (ps)	Cut	P(sp)	$\mu(x)$	Best(s)	D (ps)	Cut	P(sp)	$\mu(x)$	Best(s)
S298	197	11	837	0.95	62	233	19	1013	0.79	43	197	24	926	0.81	21
S386	393	28	1696	0.74	152	356	36	1529	0.75	151	386	30	1426	0.76	77
S641	886	16	1738	0.98	966	1043	45	2355	0.83	1540	889	59	2281	0.85	818
S832	400	39	3132	0.691	257	444	45	3034	0.68	276	446	50	2731	0.682	80
S953	476	48	2473	0.93	249	526	96	2916	0.69	182	466	99	2518	0.734	225
S1196	415	78	5488	0.82	398	396	123	5443	0.76	373	301	106	4920	0.801	134
S1238	350	77	5960	0.73	205	475	127	5713	0.72	365	408	79	4597	0.75	160
S1488	612	83	5892	0.7	716	571	104	5648	0.71	1183	528	98	5529	0.72	405
S1494	502	71	6250	0.81	802	614	102	5474	0.70	1040	585	101	5339	0.71	427
S2081	325	13	706	0.94	89	302	26	787	0.73	32	225	17	770	0.79	16
S3330	394	46	8431	0.98	812	571	299	10358	0.75	2074	533	295	10298	0.79	994
S5378	554	161	14094	0.95	465	587	573	18437	0.74	2686	590	430	16527	0.79	1100
S9234	831	196	25672	0.98	3853	1313	1090	38149	0.72	5949	1052	918	34055	0.81	2821
S13207	1014	313	35014	0.98	3129	1399	1683	45611	0.74	8097	843	1332	41114	0.79	3690
S15850	1189	416	40716	0.96	1850	1820	2183	51747	√0.74	10206	1411	1671	47480	0.831	5130

Table 1: Comparison between SimE, GA and TS

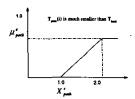


Figure 5: Membership function for $T_{max}(i) \ll T_{max}$.

Where T_{max} is the delay of the most critical path in the current iteration and $T_{max}(i)$ is the delay of the longest path traversing cell i in the current iteration. The membership function is illustrated in Fig. 5. In our implementation, the Biasless Selection scheme proposed by Khan et al in [7] is used. The selection bias B is totally eliminated and a cell is selected if $Random > goodness_i$.

5. EXPERIMENTAL RESULTS

Table 1 present the results obtained from running the SimE, GA, and TS (implementation details in [8]). Results suggest that the quality of solutions obtained by SimE outperformed both GA and TS in terms of quality of solution and time of execution. Fig. 6 shows the performance of SimE versus TS and GA with respect to time, it can be seen clearly that SimE outperforms both algorithm, in quality and runtime.

6. CONCLUSIONS

In this paper, the SimE iterative algorithm for multiobjective VLSI Partitioning is proposed. For that purpose goodness functions for delay and power are designed. Fuzzy logic was used in two levels for the Ýnal cost function as well as the Ýnal goodness funtion. It is used to integrate three objectives namely power, delay, and cutset into a scalar cost value. It is observed that SimE out performs GA and TS in terms of Ýnal solution costs and execution time.

Acknowledgment: The authors thank King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for support, under project #:COE/ITERATE/221

7. REFERENCES

 Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation: Theory and Practice. McGraw-Hill Book Company,

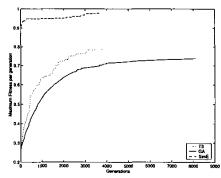


Figure 6: Multi objective SimE, GA and Ts performance for the circuit \$13207 against time.

Europe, 1995.

- [2] K. Shahookar and P. Mazumder. VLSI Cell Placement Techniques. ACM Computing Surveys, 2(23):143ñ220, June 1991.
- [3] M. Pedram. CAD for Low Power: Status and Promising Directions. IEEE International Symposium on VLSI Technology, Systems and Applications, pages 331ñ336, 1995.
- [4] Sadiq M. Sait and Habib Youssef. Iterrative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems. IEEE Computer Society Press, California, December 1999.
- [5] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of Average Switching Activity in Combinational and Sequential Circuits. *Design Automation Conference*, pages 253\(\bar{n}\)259, 1992.
- [6] R. R. Yager. On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decisionmaking. *IEEE Transaction* on Systems, MAN, and Cybernetics, 18(1), January 1988.
- [7] Junaid A. Khan, Sadiq M. Sait, and Mahmood R. Minhas. Fuzzy Biasless Simulated Evolution for Multiobjective VLSI Placement. IEEE CEC 2002, Hawaii USA, 12-17 May 2002.
- [8] R. H. Al-Abaji. Evolutionary Techniques for Multi-objective VLSI Netlist Partitioning. Masteris thesis, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia, May 2002.