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Abstract

This paper describes a unique approach to schedul-
ing and allocation problem in high-level synthesis us-
ing genetic algorithm (GA). This approach is di�er-

ent from a previous attempt using GA [1] in many
respects. Our contributions include: a new chromo-

somal representation for scheduling and two subprob-
lems of allocation; and two novel crossover operators
to generate legal schedules. The approach has been

tested on various benchmarks and results are com-
pared with those obtained by other approaches such

as simulated evolution, tabu search, HAL, SALSA II,
STAR, etc.

1 Introduction

Operation scheduling and hardware allocation are the

two most important phases in the synthesis of circuits
from behavioral descriptions. Scheduling and alloca-

tion are closely interrelated, but are usually dealt sep-
arately because of the complexity involved. Optimiz-
ing them separately gives suboptimal results because

the possibility that the best designs (in terms of over-
all cost) may require suboptimum schedules and/or

allocations is not considered. Several optimization
techniques can be used for this purpose such as sim-

ulated annealing [2] and integer programming [3].

Genetic algorithm (GA) is another promising
global optimization technique [4]. It works by em-

ulating the natural process of evolution as a means
of progressing toward the optimum. The algorithm

starts with a population which consists of several so-
lutions to the optimization problem. A member of

population is called an individual. A �tness value is
associated with each individual. Each solution in the
population or an individual is encoded as a string of

symbols. These symbols are known as genes and the
solution string is called a chromosome. The values

taken by genes are called alleles. Several pair of indi-

viduals (parents) in the population mate to produce
o�springs by applying the genetic operator crossover.

Selection of parents is done by repeated use of a choice
function. A number of individuals and o�springs are

passed to a new generation such that the number of
individuals in the new population is the same as old

population. A selection function determines which
strings form the population in the next generation.
Each surviving string undergoes mutation and inver-

sion with a speci�ed probability.
This paper describes a unique approach to schedul-

ing and allocation using GA for data-oriented con-
trol/data 
ow graphs (CDFGs). The remainder of
this paper is organized as follows: Genetic schedul-

ing and allocation (GSA) is described in Sections 2
to 9. Section 10 presents the results of scheduling

and allocation on various benchmarks and Section 11
concludes the paper and discusses some future work.

2 Cost function

In order to formulate scheduling and allocation as an
optimization problem, a suitable cost function is re-
quired. The optimization technique will then attempt
to optimize the value of this function. Since we want
to optimize scheduling and allocation tasks jointly we
need to incorporate both time related and hardware
related terms in our cost function. The cost function
C that will be optimized by the genetic algorithm is
given and explained below:

C = Wcs �Ncs +Wreg �Nreg +Wbus �Nbus +

Wfu �Nfu +Wic �Nic (1)

where, W is the weight assigned and N is the number.

The subsripts cs, reg, bus, fu, and ic corresponds to con-

trol steps, registers, buses, functional units and intercon-

nections.

The algorithm starts with a speci�ed upper bound

on the number of control steps. During the optimiza-
tion process the operations are assigned to control

steps and functional units. Each functional unit has
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two inputs labeled as 1 and 2. Besides assignment
of operations to control steps and functional units,

variables are assigned to functional unit inputs. Con-
stants are always assigned to same input as it helps

in optimizing the number of interconnections. The
number of registers and buses are optimized. Allo-

cation of variables to registers and data transfers to
buses is not actually made. The number of registers
and buses as given by the �nal solution are optimal

for the given schedule. Only a compromised estima-
tion of the interconnection cost is used.

3 Chromosome

Genetic algorithms work on the coding of the prob-
lem rather than on the actual problem. This cod-
ing is known as chromosomal representation. Devis-

ing a good coding is particularly necessary for bet-
ter design space exploration by the genetic algorithm.

A given high-level speci�cation of the description of
the circuit is compiled using lex and yacc Unix util-
ities. A CDFG is then obtained from the compiled

version. Any schedule should satisfy the precedence
constraints implied by CDFG.

Since we want to combine scheduling and allocation

into one optimization problem, the coding has to re-

ect this. This can be done only to a certain extent as

�nding an encoding for all the parameters is nearly
impossible as there are too many constraints. The
coding that is adopted is shown in Figure 1. Each

gene has three values - control step number, func-
tional unit number, and the number of the functional

unit input to which the left variable of the operation
is assigned. The �rst row in the �gure gives the op-

eration number to which the above three values cor-
respond. This coding will be manipulated by the ge-
netic operators. It is necessary to see why this coding

is good enough to optimize scheduling and allocation
tasks. With this representation the three subprob-

lems are solved completely, namely, control step as-
signment, functional unit assignment, and functional

unit input assignment. Given this information, the
exact number of registers and buses can be found,
whereas only a fair estimation of interconnection cost

can be obtained. The chromosome in [1] has oper-
ation number in depth-�rst order and alleles corre-

sponding to mobility (see below) values that are �lled
constructively. Special genes at the end of chromo-
some give the number of each type of functional unit.

4 Initial population

Good initial population is necessary for proper func-

tioning of genetic algorithm reported in this research.

Operation Number 1 2 3 ... ... 8 9

Control Step 4 2 3 ... ... 2 1

Function Unit 1 3 1 ... ... 2 3

FU input 1 1 2 ... ... 2 1

Figure 1: Chromosome.

Genetic algorithms work by adopting good structures

from the population to generate better individuals.
Therefore, initial population should be as diverse as
possible. In this implementation the members of the

initial population are created by using following four
scheduling schemes: (1) As Soon As Possible (ASAP)

scheduling, (2) As Late As Possible (ALAP) schedul-
ing, (3) Mobility-down variation of ASAP, and (4)
Mobility-up variation of ALAP.

ASAP scheduling assigns the operations in the ear-

liest possible control steps, whereas ALAP schedul-
ing assigns the operations in the latest possible con-
trol steps. For a given limit on control steps, mo-

bility of each operation, which is the di�erence be-
tween ASAP and ALAP control step values, is cal-

culated. The term mobility-down scheduling as used
here means that operations are scheduled in ASAP

manner within their mobility range taking care of
the precedence constraints. Note that in a CDFG,
mobility is used from upper nodes to lower nodes.

If we reverse this sequence, we will get mobility-up
scheduling. Functional units for each control step are

assigned sequentially and randomly perturbed in the
end. Assignment of left variable to functional unit
input is done randomly.

5 Choice function

The �rst step to get new generation is to select par-

ents on which genetic operators are to be applied.
The selection of parents is an important step which

a�ects the population in the new generation. Selec-
tion of �ttest parents leads to premature convergence.
Thus an appropriate choice function is required. This

depends on how the �tness of a member of the pop-
ulation is calculated.

5.1 Fitness calculation

Genetic algorithm works naturally on the maximiza-
tion problem whereas our cost function has to min-
imized. Thus the cost minimization problem is con-
verted to a �tness maximization problem as follows.
The maximum cost Cmax in the entire population is
determined and each cost ci is subtracted from this
value to get the �tness fi of individual i. Fitness



scaling is used to avoid premature convergence. One
method is linear scaling [4]. Linear scaling runs into
problems in later runs of the genetic algorithm when
most of the �tness values are close to each other and
some lethal members have very low �tness values.
This leads to negative �tness values. To avoid this
situation sigma (�) truncation was proposed [4]. All
the �tness values are preprocessed to calculate mod-
i�ed �tness values f 0

i as follows:

f
0

i = fi � (favg �Cmult � �) (2)

where � is the standard deviation of the population
and Cmult is the multiplying constant between 1 and
3. The negative values (f 0

i < 0) are arbitrarily set to

zero. After this truncation, linear scaling can proceed
without the danger of negative results.

5.2 Sample space

Based on the scaled �tness value a probability is cal-
culated for each individual. This is multiplied by the
size of the population n to get expected number of
times an individual should be selected (ei) as parent:

ei = (f 0

i=

nX

i=1

f
0

i)� n (3)

A sample space is de�ned based on ei values. It
consists of an array of records with two �elds - a

member identi�cation number �eld and a probabil-
ity �eld. For example if ej = 2:6, then individual j

will receive three slots (j; 1:0), (j; 1:0), and (j; 0:6) in
the sample space. Assume that there are total of m

slots in the sample space. To select a parent a ran-
dom number is generated between 1 and m and the
individual corresponding to that slot is selected as

parent with the probability of that slot. This process
is repeated until a parent is selected. According to

this scheme �tter individual will get more slots in the
sample space and have high chance of being selected.
Note that the scheme still maintains diversity in the

population because the selection is random over the
sample space.

6 Crossover

The nodes in CDFG have precedence constraints that
should not be violated when the crossover operator is

applied. In [1], a simple two point crossover followed
by a modi�ed ASAP scheduling was proposed. This

technique can produce schedules which are longer
than the speci�ed control step limit and is thus be-

lieved to take longer to �nd good schedules. Note
that scheduling is performed each time the crossover
is applied. We opted to have a crossover that will al-

ways give valid schedule rather than a crossover where
scheduling has to be done separately. Given the cod-

ing as described in a previous section, it is a di�cult

proposition that is to be resolved. If we �x the order
of nodes in the chromosome, a simple one or two point

crossover will result in an invalid o�spring chromo-
some. Following schemes are developed to generate

valid o�spring.

6.1 Alternating crossover

The term alternating crossover as used here means
that given the same order of genes in both parents,

we take genes from the two parents in the alternat-
ing sequence such that whenever there is a violation

of precedence constraint we take the gene from the
other parent but maintain the alternating sequence.

It is found that if we put the genes in the reverse
depth-�rst order such that successors are always on
the left hand side of their predecessors, we can use

the alternating crossover to generate valid o�spring.
It works because whenever we take a node that is to

be scheduled all of its successors are already sched-
uled and thus we can check for any violations.

A working example of the alternating crossover is
shown in Figure 2. Figure 2(a) shows the two se-

lected parents (p1 and p2) for crossover and Figure
2(b) shows the resulting o�spring (os) with genes la-
beled with the parent tag from which it is taken. It

can be seen that there are no scheduling violations
in this example. An example which results in such

a violation is shown in Figure 3. Figure 3(a) shows
two parents. As indicated in 3(b), during crossover

we take alternating genes from each parent. At one
point we can not take gene from parent 1 so this gene
is taken from parent 2 but the alternating sequence

is maintained and the next gene is also taken from
parent 2.

6.2 Order crossover

It is found that alternating crossover is not able to
adopt good structures from the parents. The main
reason for this is that it works bottom up and things

become constrained for upper operations. Thus the
chances of mixing the genes becomes less. For this

reason we started looking for a better crossover oper-
ator. Let us remove the restriction on the order of the

genes in the chromosome. A simple order crossover
works as follows. A cross point is randomly generated
and genes on left side of one parent are copied to o�-

spring in those positions. The other parent is scanned
from left to right and these genes are stored in the re-

maining positions of the o�spring in that order (Fig-
ure 4). This ensures that no genes are duplicated or
missed.

Using this simple order crossover will of course give

invalid schedules. The technique we adopted to avoid
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Figure 2: Alternating crossover example with no

scheduling violations: (a) Parents; (b) O�spring.

invalid schedules is as follows. The cross point is
randomly generated and left genes of one parent are

copied to the o�spring. This determines the schedule
for some operations. Given schedule for some opera-
tions in CDFG, the ASAP schedule for the remaining

operations can be determined. Those genes from the
other parent which do not violate the precedence con-

straints are copied to the o�spring and those which
do violate are taken from the �rst parent. The ASAP

values are used to check any violations. An example
of this is shown in Figure 5. The cross point is be-
tween the third and fourth gene of parent p1. The

left three genes (A, C, F) from parent p1 are copied
to the o�spring and the ASAP schedule for the re-

maining genes as induced by genes (A, C, F) is de-
termined. Since none of the remaining genes from
the other parent violate the precedence constraints

they are copied without any trouble. This crossover
is able to group together good structures in an o�-

spring which is passed from generation to generation.

7 Functional unit violation

Functional unit and functional unit input assignments
are also taken from the same parent. One can eas-
ily notice that sometimes this will result in concur-
rent assignment of the same functional unit to two or
more operations in the same control step. One way
to resolve this situation is to include a violation term
in the cost function of Equation 1. Thus the cost
function will then become:

C = Wcs �Ncs +Wreg �Nreg +Wbus �Nbus +

Wfu �Nfu +Wic �Nic +Wviol �Nviol (4)
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Figure 3: Alternating crossover example with
scheduling violations: (a) Parents; (b) O�spring.

Parent 1:            5 4 1 2 6 3
Parent 2:            1 6 4 3 5 2

Offspring:           5 4 1 6 3 2

Cross point

Figure 4: Simple order crossover.
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where, viol refers to violation. The other way around
is to reassign the functional units for violating oper-

ations only. The advantage that one can think of for
the �rst scheme is that one would expect the func-

tional unit assignment to improve genetically. But if
there are too many violations then it will undermine

any genetic improvement. This is indeed the case as
found by experiments. Thus the second scheme looks
practical and is used in our current implementation.

8 Mutation

Three types of mutation operators are used in the

present implementation. Control step mutation

is the most important type of mutation. An opera-

tion is selected randomly. An attempt is made to ei-
ther move it up or down. The direction is generated

randomly. If it does not result in any violation, its
control step value is changed. Control step mutation
has very far reaching e�ects. It can produce better

schedule and reduce the number of functional units,
buses and registers. The second type of mutation is

functional unit assignment mutation. An oper-
ation is selected randomly and a new functional unit
number is generated. If this one is not used by any

other operation in that control step then the func-
tional unit assignment of the operation is changed

to this one, otherwise another mutation attempt is
made. In both cases mutation attempts are made a

limited number of times. The last type of mutation
is functional unit input mutation. An operation
is selected randomly and if it is a commutative oper-

ation then the assignment of its left variable to the
functional unit input is changed. The last two types

of mutation help in reducing the number of intercon-
nections.

9 Selection

Crossover is applied on the population with a spec-

i�ed rate. After the application of crossover is com-
plete, we get an increased population consisting of
parents and o�springs. We opted to have a �xed pop-

ulation size. Thus the next step is to transfer some of
the individuals among parents and o�springs to the

next generation. This is done by a selection func-
tion based on �tness value. We create another sam-

ple space in the same manner as discussed in Section
2 for the increased population. Thus the selection
function is the same as the choice function. This is

applied as many times as population size to get the
new population. It is found that good results can

be obtained if this scheme is combined with one or

more of the following schemes: (1) Always selecting
the best individual in the population, (2) Selecting

a speci�ed quantity of the best individuals, and (3)
Selecting some speci�ed quantity randomly. These

schemes help in improving the search and maintain-
ing the diversity in the population, which is necessary

for search space exploration, and avoids premature
convergence to the local optimum.

10 Results

Genetic scheduling and allocation (GSA) is tested
on various benchmarks. Table 1 shows the results

for di�erential equation benchmark. Table 2 shows
the results for more complicated �fth order elliptic
wave �lter (EWF) benchmark. STAR system uses

parallel data transfers, so that the bus comparison
with this system is of little signi�cance. The results

shown for 17LU control steps are for Loop Unfolding.
Table 3 shows the results obtained for discrete co-

sine transform (DCT) benchmark. The results are
compared with scheduling and allocation using tabu
search (TSA) [5], simulated evolution (SE) [6], HAL

system [7], SALSA II [8], STAR system [9], EMUCS
system [10] and CATREE system [11]. Compar-

isons are given for number of control steps (CS),
adders (+), multipliers (*), functional units capable
of performing additon and subtraction (+/-), regis-

ters (Reg), and multiplexers or buses (Mx). The p in
(*) column stands for pipelined multiplier. It is as-

sumed that addition takes one whereas multiplication
takes two control steps.

11 Conclusions

Genetic algorithm is a promising optimization tech-
nique. This paper has presented its application to

scheduling and allocation in high-level synthesis. Re-
sults obtained on data-oriented CDFGs are compa-

rable to those obtained by other systems. Two new
crossover operators are presented which can �nd ap-

plication in many other areas. Future work will focus
on designing a complete data path synthesis system

System CS ALU * Reg Mx

GSA 8 1 1p 5 4

TSA 8 1 1p 5 4

HAL 8 1 1p 5 4

SE 8 1 1p 5 5

Table 1: Di�erential Equation Results.



supporting chaining of operations using GA.
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System CS + * Reg Mx

GSA 17 3 3 11 10

TSA 17 3 3 11 10

SE 17 3 3 11 11

HAL 17 3 3 - -

SALSA II 17 3 3 - -

GSA 17 3 2p 11 10

TSA 17 3 2p 11 10

SE 17 3 2p 11 12

HAL 17 3 2p - -

CATREE 17 3 2p 12 -

SALSA II 17 3 2p - -

GSA 17LU 2 1p 10 8

TSA 17LU 2 1p 10 8

STAR 17LU 2 1p 11 5*

GSA 18 2 2 11 8

TSA 18 2 2 10 8

SE 18 2 2 10 9

SALSA II 18 3 2 - -

GSA 19 2 2 10 7

TSA 19 2 2 10 7

SE 19 2 2 10 11

HAL 19 2 2 12 -

EMUCS 19 2 2 12 12

GSA 19 2 1p 11 8

TSA 19 2 1p 10 7

SE 19 2 1p 11 9

HAL 19 2 1p 12 6

STAR 19 2 1p 11 4*

SALSA II 19 2 1p - -

Table 2: EWF Results.
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