

Parallel Tabu Search in a Heterogeneous Environment

Ahmad Al-Yamani1 Sadiq M. Sait1 Hassan Barada2 Habib Youssef 1
1King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

2Etisalat College of Engineering
Emirates Telecommunications Co. (Etisalat)

P.O. Box 980, Sharjah, UAE
hbarada@ece.ac.ae

Abstract
In this paper, we discuss a parallel tabu search

algorithm with implementation in a heterogeneous
environment. Two parallelization strategies are
integrated: functional decomposition and multi-search
threads. In addition, domain decomposition strategy is
implemented probabilistically. The performance of each
strategy is observed and analyzed in terms of speeding up
the search and finding better quality solutions.
Experiments were conducted for the VLSI cell placement.
The objective was to achieve the best possible solution in
terms of interconnection length, timing performance
circuit speed, and area. The multiobjective nature of this
problem is addressed using a fuzzy goal-based cost
computation.

1. Introduction

Tabu Search (TS) belongs to the class of general

iterative heuristics that are used for solving hard
combinatorial optimization problems. It is a
generalization of local search that searches for the best
move in the neighborhood of the current solution.
However, unlike local search, TS does not get trapped in
local optima because it also accepts bad moves if they are
expected to lead to unvisited solutions [1].

Among the iterative stochastic heuristics applied to
combinatorial optimization problems are Simulated
Annealing (SA) [2, 3], Genetic Algorithm (GA) [4] and
Simulated Evolution (SE) [5]. A common feature of these
stochastic iterative heuristics is that they are memoryless.
They do not have memory or use any memory structure to
keep track of previously visited solutions. On the other
hand, Tabu Search (TS) utilizes some memory to make
decisions at various stages of the search process [6].
Memory structures are used to prevent reverses of recent

moves by keeping their attributes in a tabu list (also
known as short-term memory) in order to prevent cycling
back to already visited solutions. Memory structures are
also used to (1) force new solutions to have different
features from previously visited ones (diversification); (2)
force the new solution to have some features that have
been seen in recent good solutions (intensification).

Because of its search strategy, the parallelization of TS
can result in improved solution quality and reduced
execution time. Encouraging results are obtained for
computationally intensive tasks even with a small number
of workstations in a local area network LAN. However,
most LANs today consist of a set of heterogeneous
workstations. Therefore, in order to use LANs efficiently,
parallel algorithms have to be designed such that the
heterogeneity of system is taken into account. In this
paper, we discuss the parallelization of the tabu search
algorithm in a heterogeneous environment. We implement
different parallelization strategies on a cluster of
workstations using the PVM tool [7]. Experiments were
conducted for the VLSI cell placement, an NP-hard
problem.

2. VLSI Cell Placement

Cell placement consists of finding suitable locations

for all cells on the final layout of a VLSI circuit. It is a
hard combinatorial optimization problem with a number
of noisy objective functions. A solution is evaluated with
respect to three main objectives: wire length, critical path
delay, and area, which is a function of cell delays and
interconnection delays. Prior to final layout, these criteria
cannot be accurately measured. Further, it is unlikely that
a placement that optimizes all three objectives exists.
Designers usually have to make tradeoffs. To deal with
such complex and imprecise objectives, a fuzzy goal-
directed search approach is applied [5].

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

3. Tabu Search

TS starts with an initial solution s selected randomly or
using any constructive algorithm. It then defines a subset
V*(s), called candidate list, of its neighborhood ℵ(s). The
algorithm selects the best solution in V*(s) (in terms of an
evaluation function), call it s*, to be considered as the
next solution. If the short-term memory does not define
the move leading to s* as tabu, it is accepted as the new
solution even if it is worse than the current solution.
However, if the move leading to s* is tabu, the solution is
not accepted unless a certain criterion, aspiration criteria,
is satisfied [8]. A move, in our problem, consists of
swapping two cells on the layout of a VLSI circuit. m
pairs of cells are trial swapped and the best swap among
them is taken as the next move. A compound move can be
made d times where each time m pairs are tested, where d
is the desired move depth. The best move is taken each
time. The basic description of TS is shown in Figure 1.

Figure 1. Algorithmic description of TS.

4. Classification of Parallel Tabu Search

According to Crainic et. al taxonomy [9], a possible
parallelization strategy of tabu search is to distribute the
computation that requires the most CPU time on available
machines (functional decomposition). Another strategy is
to perform many independent searches (multi-search
threads). A third strategy is to decompose the search
space among processes (domain decomposition). Using a
different taxonomy, Crainic et. al., classify TS along three
dimensions. The first dimension is control cardinality
where the algorithm is either 1-control or p-control. In a
1-control algorithm, one processor executes the search
and distributes numerically intensive tasks on other
processors. In a p-control algorithm, each processor is
responsible for its own search and the communication
with other processors. The second dimension is control
and communication type where the algorithm can follow a
rigid synchronization (RS), a knowledge synchronization
(KS), a collegial (C), or a knowledge collegial (KC)
strategy. RS and KS correspond to synchronous operation
mode where the process is forced to exchange information
at specific points; C and KC correspond to asynchronous
operation modes where communication occurs at regular
intervals. Collegial approaches exchange more
information than non-collegial ones. The third dimension
is search differentiation where the algorithm can be single
point single strategy (SPSS), single point different
strategies (SPDS), multiple points single strategy (MPSS),
or multiple points different strategies (MPDS).

4.1 Proposed Algorithm for Cell Placement

The proposed parallel Tabu search algorithm (PTS)

consists of three types of processes: (i) a master process,
(ii) Tabu Search Workers (TSWs), and (iii) Candidate list
Workers (CLWs). The algorithm is parallelized on two
levels simultaneously. The upper one is at the TS process
level where a master starts a number of TSWs and
provides each with the same initial solution. The lower
level is the Candidate List construction level (local
neighborhood search) where each TSW starts a number of
CLWs.

The parallel search proceeds as follows. The master
initiates a number of TSWs to perform TS starting from
the given initial solution. A TSW gets all parameters and
the initial solution from the master. It then performs a
diversification step where each TSW diversifies with
respect to a different subset of cells so as to enforce that
TSWs don't search in overlapping areas. Diversification is
performed by moves done within the TSW range to a
specific depth such that a different initial solution is used
at each TSW. Then each TSW starts a number of CLWs
to investigate the neighborhood of the current solution
initial solution after diversification. It sends the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

parameters and the initial solution to each CLW. It also
gives each CLW a range of cells to search the
neighborhood with respect to those cells. For every move
it makes, the CLW has to choose one of the cells from its
range and the other cell from anywhere in the whole cell
space. Therefore, the probability that two CLWs perform

the same move is equal to
2)1(

1
−n

 where n is the number

of cells. The probability that more than 2 CLWs select the
same two cells is 0. This means that the probability that k
CLWs make the same move is eliminated completely if k
> 2.

Each CLW makes a compound move of a
predetermined depth and keeps computing the gain. If the
current cost is improved before reaching the maximum
depth, the move is accepted without further investigation.
After finding the compound move that improves the cost
the most or degrades it the least, the CLW sends its best
solution to its parent TSW. The TSW selects the best
solution from the CLW that achieves the maximum cost
improvement or the least cost degradation. It then checks
if the move is tabu. If it is not, it accepts it. Otherwise, the
cost of the new solution is checked against the aspiration
criterion and the process continues for a number of local
iterations. At the end of the local iteration count, each
TSW sends its best cost to the master process. The master
gets the overall best solution and broadcasts it to all
TSWs and the process continues for a fixed number of
global iterations. The completion of all iterations by the
TSWs and selection of new current solution by the TS
master is considered one global iteration. The TS
iterations executed by each TS worker are called local
iterations.

The processes described in Figures 2, 3, and 4, work
together to get a high quality solution with minimum
communication between them. A TSW process and a
CLW process exchange only the best solution between
them while the master and TSW exchange the best
solution as well as the associated tabu list.

4.2 PTS in a Heterogeneous Environment

We have implemented our proposed PTS algorithm on

a network of heterogeneous workstations using the PVM
tool. In our implementation, we account for speed and
load heterogeneity by letting the master receive the best
cost from any TSW that has finished the local iterations.
Once the number of TSWs that gave their best cost to the
master reaches half the total number of TSWs, the master
sends a message to all other TSWs forcing them to report
whatever best cost they have achieved. The same
approach is followed in the communication between
TSWs and their own CLWs.

Figure 2. Master process of parallel TS

Figure 3. TSW process.

Figure 4. CLW process.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

4.3 Classification of PTS

As mentioned earlier, the algorithm is parallelized on
two levels simultaneously. The upper one is at the tabu
search process level where a master starts a number of
TSWs and provides them with the same initial solution.
This is a multi-search threads approach where each TSW
performs its own search. The lower level is the Candidate
List construction level where each TSW starts a number
of CLWs. This level belongs to the strategy of functional
decomposition because CLWs are spawned only to
investigate the neighborhood of the current solution. The
algorithm falls into p-control class at the higher
parallelization level because the search control is
distributed among all TSWs. The lower level
parallelization belongs to the 1-control class because the
TSW controls the search done by its CLWs. On the
control and communication type dimension, the algorithm
follows rigid synchronization because the master waits
for its children or stops them. It is a multiple points single
strategy (MPSS) search on the search differentiation
dimension because TSWs diversify from the initial
solution at each global iteration using the diversification
scheme proposed by Kelly et. [10].

5. Experiments and Discussion

We present and discuss various experiments that are

performed using the proposed parallel tabu search
algorithm for VLSI standard cell placement. Experiments
were conducted on three different speed levels of
machines and four different architectures. Four ISCAS-89
benchmark circuits of different sizes were used in the
experiments. These circuits are: highway (56 cells), c532
(395 cells), c1355 (1451 cells), and c3540 (2243 cells).

In the paper, we study the effect of the degree of low-
level and high-level parallelization on the algorithm
performance, namely quality of best solution and
speedup. We also study the effect of diversification
performed by TSWs and the effect of heterogeneity of the
environment. The definition of speedup for non-
deterministic algorithms such as TS is different from that
used for deterministic constructive algorithms. For this
category of algorithms, speedup is defined as:

),(

),1(
),(

xn

x
xn t

t
Speedup =

where t(1,x) is the time needed to hit an x-quality solution
using one CLW (or TSW) and t(n,x) is the time needed to
hit the same solution quality using n CLWs (or TSWs).

5.1 Effect of Low-level Parallelization

In this experiment, different number of CLWs is tried,

from 1 to 4, for each circuit. The change in the best

solution quality is monitored as the number of CLWs is
changed. All other algorithm parameters are fixed. The
number of TSWs is 4 in all experiments. Twelve
machines are used as a parallel virtual machine. Figure 5
shows the effect of changing the number of CLWs on the
best solution quality for the four circuits. For most of the
circuits, it is clear that increasing the degree of low level
parallelization is beneficial. For highway, the circuit size
is small. That makes adding CLWs beyond 2 not useful.
Figure 6 shows the speedup achieved in reaching a
specific solution quality for 2 of the circuits. It is clear
from the figure that in most of the experiments, as the
number of CLWs increases from 1 to 4, the speedup
increases. The sharpness of the speedup increase depends
on the circuit size and the goodness of the initial solution.

5.2 Effect of High-level Parallelization

In this experiment, different numbers of TSWs are

tried, from 1 to 8, for each circuit. The change in the best
solution quality is monitored as the number of TSWs is
changed. The number of CLWs per TSW is fixed to 1 in
all experiments. As mentioned earlier, 12 machines are
used as a parallel virtual machine. Figure 7 shows the
effect of changing the number of TSWs on the best
solution quality for all circuits. It is clear that, for all
circuits, adding TSWs beyond 4 is not useful. Figure 8
shows the speedup achieved in reaching a specific
solution quality for two of the circuits. For c532, and
c3540 the critical point, occurred at 4 TSWs. Adding
more TSWs degraded the speedup.

5.3 Effect of Diversification

In this experiment, we try to see the effect of the

diversification step performed by the TSWs at the
beginning of each global iteration. Figure 9 shows a
comparison between two runs of four TSWs and one
CLW per TSW. In one run, diversification is done while
in the other run, no diversification is performed. It is clear
from the figure, that the diversified run outperforms the
non-diversified run significantly.

The message conveyed in Figure 9 is that some
diversification is always useful. However, it is known that
too much diversification without enough local
investigation might mislead the search by making it jump
from place to another without enough investigation any
where. Figure 10 shows the results of an experiment
where the number of global iterations is decreased (less
diversification) as the number of local iterations is
increased (more local investigation) for all circuits. It is
clear from the figure that no general conclusion can be
made about the best number of global iterations versus
local iterations. It all depends on the problem instance
itself. This experiment is used as a guide for the most

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

suitable number of local and global iterations that should
be used to continue searching for the best achievable
solution and to achieve the highest speed.

Fig. 5. Effect of number of CLWs on solution quality.

Fig. 6. Speedup achieved in reaching solution of cost less

than x for different number of CLWs.

Fig. 7. Effect of number of TSWs on solution quality.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Fig. 7. Effect of number of TSWs on solution quality.

Fig. 8. Speedup achieved in reaching a solution of cost

less than x for different numbers of TSWs.

Fig. 9. Effect of diversification.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Fig. 10. Local versus global iterations.

5.4 Accounting for Heterogeneity

In this experiment, we try to see the effect of
accounting for speed and load differences of various
machines by performing two runs. In the first one,
heterogeneous run, we run the algorithm while accounting
for heterogeneity by making the master ask for best
solutions from all TSWs once half of them complete all
assigned iterations, and report their best to their parent.
TSWs do the same by asking their CLWs to submit their
best solutions once half of them report their best to the
parent. In the second run, homogeneous run, each parent
waits for all its child processes to finish and return their
new best. In all experiments we used twelve machines to
make the parallel virtual machine. These machines
include seven high-speed machines, 3 medium-speed
machines, and 2 low-speed machines.

In both runs, we use 4 TSWs and 4 CLWs per TSW.
The run that does not account for heterogeneity is
supposed to give better solutions because the parent waits
for all of its children to give their best solutions.
However, since the number of global iterations is
maintained the same for both cases, the heterogeneous
run-time is expected to be far less than the homogeneous
runtime. Figure 11 shows the best quality of solution
achieved versus runtime for the homogeneous and
heterogeneous runs. For the three circuits shown here, we
observed no noticeable differences in solution quality.
Figure 11 shows that towards the end of experiment, the
heterogeneous run is doing either better than or at least as
good as the homogeneous run, but never performs worse.

Fig. 11. Best cost versus runtime for heterogeneous and

homogeneous runs

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Fig. 11 (cont.). Best cost versus runtime for

heterogeneous and homogeneous runs.

6. Summary of results

The goal of parallelization is to speedup the search and
to improve solution quality. Observations support that
both parallelization strategies are beneficial, with
functional decomposition producing slightly better results.
Below, we summarize our observations from extensive
experiments carried out on circuits of various sizes.
• For most test circuits, increasing the degree of low-

level parallelization and the degree of high level
parallelization was beneficial. However, in general the
most effective strategy seems to be a mix of high and
low level parallelization. Low level or high level alone
is not as effective.

• In order to achieve a specific solution quality, for all
circuits, adding more CLWs or more TSWs to a
certain limit resulted in reaching better solutions in
less time.

• Speed and load differences of machines are taken into
account by making the master ask for best solutions
from all TSWs once half of them have completed all
iterations. This strategy resulted in higher speedup.

Acknowledgement

The authors would like to thank King Fahd University of
Petroleum and Minerals for all the support provided. Dr.
Barada would also loke to thank Etisalat College of
Engineering for support.

References

[1] F. Glover, E. Taillard, and D. de Werra. A user’s guide to

tabu search. Annals of Operations Research, 41:3-28, 1993.
[2] Sadiq M. Sait and Habib Youssef. VLSI Design

Automation: Theory and Practice. McGraw-Hill Book Co.,
Europe, 1995.

[3] A. Casotto, F. Romeo, and A.L. Sangiovanni-Vincentelli,
“A parallel simulated annealing algorithm for the
placement of macro-cells”, IEEE Transactions on
Computer Aided Design, 6(5): 838-847, September 1987.

[4] K. Shahookar and P. Mazumder, “A genetic approach to
standard cell placement using metagenetic parameter
optimization”, IEEE Transactions on Computer Aided
Design, 9(5):500-511, May 1990.

[5] Sait, S.M., H. Youssef, and H. Ali, “Fuzzy Simulated
Evolution Algorithm for multi-objective optimization of
VLSI placement”, Proceedings of the 1999 Congress on
Evolutionary Computation, 1999, pp. 91-97.

[6] Fred Glover and Manuel Laguna. Tabu Search. Kluwer
Academic Publishers, USA, 1997.

[7] Al Geist et. Al.. PVM Parallel Virtual Machine: A User’s
Guide and Tutorial for Networked Parallel Computing. The
MIT Press, Cambridge, 1994.

[8] Youssef Habib and Sadiq Sait. 1999. Iterative Algorithms
and Their Applications in Engineering. IEEE Computer
Society Press, CA.

[9] T. Crainic, M Toulouse, and M. Gendreau, “Towards a
Taxonomy of Parallel Tabu Search Heuristics”, INFORMS
Journal of Computing, 9(1): 61-72, 1997.

[10] J.P. Kelly, M. Laguna, and F. Glover, “A study of
diversification strategies for the quadratic assignment
problem”, Computers & Operations Research, 21(8): 885-
893, 1994.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

