Fuzzy Simulated Evolution Algorithm For Topology Design
Of Campus Networks

Habib Youssef

Sadiq M. Sait

Salman A. Khan

Department of Computer Engineeri‘ngv
King Fahd University of Petroleum and Minerals
Dhahran-31261, Saudi Arabia

e-mail: {youssef,sadig,salmana}@ccse.kfupm.edu.sa

Abstract- The topology design of campus net-
works is a hard constrained combinatorial op-
timization problem. It consists of deciding the
number, type, and location of the active net-
work elements (nodes) and links. This choice
is dictated by physical and technological con-
straints and must optimize several objectives.
Example of objectives are monetary cost, net-
work delay, and hop count between communi-
cating pairs. Furthermore, due to the nonde-
terministic nature of network traffic and other
design parameters, the objective criteria are im-
precise. Fuzzy Logic provides a suitable mathe-
matical framework in such a situation. In this pa-
per, we present an approach based on Simulated
Evolution algorithm for the design of campus net-
work topology. The two main phases of the algo-
rithm, namely, evaluation and allocation, have been
fuzzified. To diversify the search, we have also in-
corporated Tabu Search-based characteristics in
the allocation phase of the SE algorithm. This
approach is then compared with Simulated An-
nealing algorithm, which is another well-known
heuristic. Results show that on all test cases,
Simulated Evolution algorithm exhibits more in-
telligent search of the solution subspace and was
able to find better solutions than Simulated An-
nealing.

Keywords: Structured Networks, Network Topol-
ogy, Fuzzy Logic, Campus Networks, Simulated Evolu-
tion, Tabu Search, Combinatorial Optimization.

1 Introduction

A typical campus network consists of a large num-
ber of components, such as mainframe computers, mini
systems, workstations, PCs, printers, etc. [1]. Vari-

0-7803-6375-2/00/$10.00 ©2000 IEEE.

180

ous devices such as bridges, routers, hubs, multiplex-
ers, are used to interconnect these computers and pe-
ripherals. The network topology is governed by several
constraints. Geographical constraints dictate the break-
down of such internetworks into smaller parts or groups
of nodes, where each group makes up what is called a
LAN. Thus, we can define a campus network as a col-
lection of interconnected LANs. Further, the nodes of a
LAN may be subdivided into smaller parts, called LAN
segments, to satisfy other constraints and objectives, for
example, minimization of delay, containment of broad-
cast traffic, and minimization of cabling and equipment
cost [1]. The topology design of LAN itself consists of
two main issues: segmentation, where LAN segments are
found, and design of actual topology, which consists of in-
terconnecting the individual segments. Topology design
at LAN level requires interconnection of LAN segments
via bridges and layer 2 switches [2, 3].

It is recommended to structure the campus/enterprise
network into the following layers (see Figure 1):

1. Local Access Layer, which provides workgroup ac-
cess to the network.

2. Distribution Layer, which provides policy based
connectivity among the workgroups. This layer is
implemented with layer 3 switches, routers, and
gateways. This is where packet manipulation takes
place.

Backbone Layer, which provides high speed optimal
transport of data among local sites.

Thus, the design of such a structured campus network
can be approached in four steps:

1.
2.

Assignment of users/stations to LAN segments.

Assignment of LAN segments to local sites that will
make up a single LAN.

. Design of the internal structure of each local site
(i.e., in what topology the LAN segments of a local

site are connected). This step serves also to select
appropriate switching equipment.

4. Backbone design, where the local sites are connected
to the backbone. This step also will dictate the
required backbone equipment.

Local Site 1 (cluster 1)

Local Site 2 (cluster 2)

Backbone :
.......... A N
! A
................. l.
i A
1 !
1 !
i e
' !
I
Backbone j
Local Site 3 (cluster 3) Layer ! Local Site 4 (cluster 4)
1
Distribution
Layer

Figure 1: A typical campus network.

- Topological design of campus networks is a hard prob-
lem [1]. Even the design of a LAN is itself an NP-hard
problem [2, 3, 4]. Therefore, we have to use approxima-
tion methods known as ‘heuristics’ to get near optimal
solutions in reasonable amount of time.

In this work, we have used simulated evolution (SE)
algorithm [5] for topology design of structured campus
networks based on several criteria, which are: mone-
tary cost, maximum number of hops between any source-
destination pair, and average network delay per packet.
For assignment of segments to local sites, Augmenting
Path algorithm is used [6]. According to recommended
structured cabling standards, the network topology is
constrained to be a tree. Hence we target to find a tree
topology of desirable quality with respect to the three
design objectives.

Since the backbone design problem is a multi-
objective combinatorial optimization problem, we resort
to fuzzy logic to formulate the various objectives in the
form of fuzzy rules that will guide the search toward so-
lutions of desirable quality.

In Section 2, assumptions and notation are given.
Section 3 describes computation of objective values and
constraints. Section 4 presents the proposed algorithm.
Section 5 gives results and discussion. We conclude in
Section 6.

181

2 Assumptions and Notation
e The term “node” is used to refer to different objects
at different levels. At the segment level, a node
refers to a user, while at the LAN level, a node
refers to a segment. At the backbone level, a node
refers to a LAN, which is also called a ‘cluster’.

¢ A cluster is constrained to consist of segments of the
same technology.

e The “capacity” of a network device is equal to the
number of interfaces it has.

"o The location of a node within a cluster can be repre-
sented by its (z,y) coordinates with respect to some
reference point.

e Each node has a LAN network interface card of a
particular technology such as 10/100baseT Ethernet
or Token Ring type [7].

e The Root node is a switch acting as a collapsed
backbone with given required interfaces.

e Between two local sites, only fiber optic cable [8] is
used.

e There is a user specified limit on the number of net-
work addresses per local site.

e The number of segments is known a priori i.e., users
have already been assigned to segments.

e Hubs, switches, routers and other networking de-
vices cannot be placed in any location. They have
designated locations.

e Maximum allowed utilization of any link should not
exceed a desired threshold (e.g., 60%).

In the following sections, we shall use the notation
given below:

n number of clusters.
m number of LAN segments in a cluster.
T? n x n local site topology matrix where t°;;

= 1, if local sites i and j are connected and
t*;; = 0 otherwise.

wj traffic within cluster 3.

s traffic on link 3.

Amaz,i capacity of link i.

L number of links of the proposed topology.

Dya delay due to network devices.

9 maximum number of clusters which can
be connected to cluster i.

Vi external traffic between clusters i and j.

¥ overall external traffic.

Sk the forwarding speed of network device k.

hij number of hops between clusters 7 and j.

3 Problem Statement

We seek to find a feasible topology of near optimum
overall cost. A feasible topology is one that satisfies de-
sign constraints. Optimality of a topology is measured
with respect to three objectives: monetary cost, average
network delay per packet (network latency), and max-
imum number of hops between any source-destination
pair.

Three important constraints are considered.

1. The first set of constraints is dictated by bandwidth
limitation of the links. A good network would be
one in which links are “reasonably” utilized, other-
wise this would cause delays, congestion, and packet
loss. Thus the traffic flow on any link ¢ must never
exceed a threshold value:

X < Amagi §=1,2,..,8 (1)

where s is the total number of links present in the
topology.

2. The second constraint is that the number of clusters
attached to a network device G must not be more
than the port capacity of that device.

n
S oth < g i=1,2,.,n Vi#j (2
J=1

3. The third set of constraints express the designer’s
desire to enforce certain hierarchies on the network
devices. For example, he might not allow a hub to
be the parent of a router or a switch to be the parent
of a router.

Below, we describe the objective criteria used to mea-
sure the goodness of a given topology.

3.1 Monetary cost

The goal is to find the topology with minimum pos-
sible cost, while meeting all the requirements and con-
straints. The cost of the cable and the cost of the net-
work devices are the two main entities affecting the mon-
etary cost, therefore:

cost = (I X ceapie) + (Cna) (3)

where [represents the total length of cable, c.qpe repre-
sents the cost per unit of the cable used, and c¢,q repre-
sents the combined costs of all the routers, switches, and
hubs used.

3.2 Average Network Delay

The second objective is to minimize the average net-
work delay, while considering the constraints and re-
quirements.

To devise a suitable function for average network de-
lay, we approximate the behavior of a link and network
device by an M/M/1 queue [2].

182

The delay per bit due to network device between local
sites 4 and jis B;; = pb;;, where b;; is the delay per
packet. If v;; is the total traffic through the network
device between local sites i and j, then the average delay
due to all network devices is:

R
Dng = 5 Do) By (4)

i=1 j=1

The, total average network delay is composed of de-
lays of links and network devices and is given by [2]

m

1 Ai

p=iy My

Y i—1 /\maz,i -

>

i=1j

YiBij ()

n n
=1

= |~

3.3 Maximum number of hops between any
source-destination pair
The maximum number of hops between any source-
destination pair is also another objective to be opti-
mized. A hop is counted as the packet crosses a network
device.

4 Fuzzy Simulated Evolution Algorithm
for Network Topology Design

4.1 Simulated Evolution

Simulated Evolution (SE) is a general iterative heuris-
tic proposed in [9]. It falls in the category of algo-
rithms which emphasize the behavioral link between par-
ents and offspring, or between reproductive populations,
rather than the genetic link {10]. This scheme com-
bines iterative improvement and constructive perturba-
tion and saves itself from getting trapped in local minima
by following a stochastic perturbation approach. It iter-
atively operates a sequence of evaluation, selection and
allocation steps on one solution. The selection and allo-
cation steps constitute a compound move from current
solution to another feasible solution of the state space.
The SE proceeds as follows (see Figure 2). It starts with
a randomly or constructively generated valid initial solu-
tion. A solution is seen as a set of movable elements, each
with an associated goodness measure in the interval [0,1].
The main loop of the algorithm consists of three steps:
evaluation, selection and allocation. These steps are
carried out repetitively until some stopping condition is
satisfied. In the evaluation step, the goodness of each
element is estimated. In the selection step, a subset of
elements are selected and removed from current solu-
tion. The lower the goddness of a particular element,
the higher is its selection probability. A bias parame-
ter Bis used to compensate for inaccuracies of goodness
measure. Finally, the allocation step tries to assign the
selected elements to better locations. Other than these
three steps, some input parameters for the algorithm are
set in an earlier step known as initialization.

Simulated_Evolution(B, ®;nitiar, StoppingCondition)
NOTATION

B= Bias Value.

&= Complete Solution.

e;= Individual link in .

O;= Lower bound on cost of i** link.

Ci= Current cost of i'" link in .

gi= Goodness of i'" link in &.

S= Queue to store the selected links.

ALLOCATE(e;, ®;)=Function to allocate e; in partial solution ®;
Begin

Repeat
EVALUATION: ForEache; € ® DO
begin
9i = &7
end
SELECTION: ForEach e; € ® DO
begin
IF Random > Min(g: + B, 1)
THEN
begin
S§=S5 U e;; Remove e; from ®.
end
end

Sort the elements of S
ALLOCATION: ForEache; € S DO
begin
ALLOCATE(e;, ®;)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated_Evolution)

Figure 2: Structure of the simulated evolution algorithm.

4.2 Proposed Algorithm and Implementa-
tion Details
This section describes our proposals of fuzzification
of different stages of the SE algorithm. We confine our-
selves to tree design because they are minimal and pro-
vide unique path between every pair of local sites.

4.3 Initialization

The initial spanning tree topology is generated ran-
domly, while keeping into account the feasibility con-
straints mentioned earlier.

4.4 Proposed Fuzzy Evaluation Scheme

The goodness of each individual is computed as fol-
lows. In our case, an individual is a link which inter-
connects two local sites (at the backbone level) or two
network devices (at the local site level). In the fuzzy
evaluation scheme, monetary cost and optimum depth
of a link (with respect to the root) are considered fuzzy
variables. Then the goodness of a link is characterized
by the following rule.

Rule 1: IF a link is near optimum cost
AND near optimum depth
THEN it has high goodness.

Here, near optimum cost, near optimum depth, and high
goodness are linguistic values for the fuzzy variables cost,
depth, and goodness. Using and-like compensatory op-

183

erator [11], Rule 1 translates to the following equation
for the fuzzy goodness measure of a link [;.

g, = pf(l) = a® x min(ui (L), pa (L)) +

2
-a)x 33wl ©)
i=1

The superscript e stands for evaluation and is used
to distinguish similar notation in other fuzzy rules. In
Equation 6, u¢(l;) is the fuzzy set of high goodness links
and af is a constant. The p$(l;) and p§(l;) represent
memberships in the fuzzy sets near optimum monetary
cost and near optimum depth.

In order to find the membership of a link with respect
to near optimum monetary cost, we proceed in following
manner. From the cost matrix, which gives the costs of
each possible link, we find the minimum and maximum
costs among all the link costs. We take these minimum
and maximum costs as the lower and upper bounds and
call them “LCostMin” and “LCostMax” respectively and
then find the membership of a link with respect to these
bounds. Furthermore, in this work, we have normalized
the monetary cost with respect to “LCostMax”. The
required membership function is represented as depicted

in Figure 3, where z —axis represents L_C%%E’ y—azxis
represents the membership value, A = f—g;’:—f—%, and
B= LCostMaz __ 1
— LCostMaz ~— °°

u

10

08

06

04

02

]

A B

Figure 3: Membership function for the objective to be
optimized.

In the same manner, we can find the membership of
a link with respect to near optimum depth. The lower
limit, which we call “LDepthMin” is taken to be a depth
of 1 with respect to the root (see Figure 4). The upper
bound, which we call “LDepthMax” is taken to be 1.5
times of the maximum depth generated in the initial so-
lution or a maximum of a user specified limit.! For exam-
ple, if in the initial solution, the maximum depth turns
out to be 4, then “LDepthMax” for the depth member-
ship function would be 6. This is done to give flexibility

I This user specified limit may be a design constraint, e.g., 1.
each hop represents a router that uses Routing Information Pro-
tocol (RIP) then a reasonable limit would be 7, i.e., a branch of
the tree should not have more than 7 routers.

to links which may have more depth than the one in the
initial solution. If we take the initial solution maximum
depth as “LDepthMax”, then in the following iterations
some links with higher depths will have a membership
malue of zero (with respect to depth membership func-
tion) and thus they will not be able to play any role as
far as depth is concerned. However, due to technologi-
cal limitations, we have limited the maximum possible
depth to 7, in the case when “LDepthMax” turns out
to be more than 4. The reason for having the maximum
depth of 7 is that the hop limit for RIP is 15. This means
that if a maximum depth of 7 is taken, then in the worst
case we would have a total of 14 hops from a source to
a destination. The membership function with respect to
near optimum depth can be represented as illustrated in
Figure 3, where z — axis represents LDepth, y — axis
represents the membership value, A = LDepthMin, and
B = LDepthMax.

Figure 4: Depths of links with respect to the root.

4.5 Selection

In this stage of the algorithm, for each link I; in
current tree topology, where i = 1,2,...; n-1, a ran-
dom number RANDOM € [0,1] is generated and com-
pared with g., + B, where B is the selection bias. If
RANDOM > g, + B, then link [; is selected for alloca-
tion and considered removed from the topology. Bias B
is used to control the size of the set of links selected for
removal.

A bias methodology called variable bias [12] has been
used in this paper. The wvariable bias is a function of
quality of current solution. When the overall solution
quality is bad, a high value of bias is used, otherwise a
low value is used. Average link goodness is a measure of
how many “good” links are present in the topology. The
bias value changes from iteration to iteration depending
on the quality of solution. The variable bias is calculated
as follows:

By =1— Gg—;

where B; is the bias for k** iteration and Gy_; is
average goodness of all the links at the end of (k — 1)%
iteration.

4.6 Proposed Fuzzy Allocation Scheme
During the allocation stage of the algorithm, the

selected links are removed from the topology one at a

time. For each removed link, new links are tried in such

184

a way that they result in overall better solution. Before
the allocation step starts, the selected links are sorted
according to their goodness values, with the link with
the worst goodness being the head-of-line in the queue.

In the fuzzy allocation scheme, the three criteria to be
optimized are combined using fuzzy logic to characterize
a good topology, as depicted in Figure 5.

Good Topology

Low maximum
number of hops.
between s-d pair

Low average

Low Monetary network delay

Cost

Figure 5: Basic components for a good topology.

The reason for using fuzzy logic is that the charac-
terization of a good topology with respect to several cri-
teria is usually based on heuristic knowledge which is
acquired through experience. Such knowledge is most
conveniently expressed in linguistic terms, which consti-
tute the basis of fuzzy logic. For the problem addressed
in this paper, a good topology is one that is character-
ized by a low monetary cost, low average network delay,
and a small maximum number of hops. In fuzzy logic,
this can easily be stated by the following fuzzy rule:

Rule 2: IF a solution X has low monetary cost
AND low average network delay
AND low mazimum number of hops between
any source-destination pair

THEN it is a good topology.

The words “low monetary cost”, “low average net-
work delay”, “low maximum number of hops”, and
“good topology” are linguistic values, each defining a
fuzzy subset of solutions. For example, “low average
network delay” is the fuzzy subset of topologies of low
average network delays. Each fuzzy subset is defined by
a membership function u. The membership function re-
turns a value in the interval [0,1] which describes the
degree of satisfaction with the particular objective cri-
terion. Using the and-like ordered weighted averaging
operator [11], the above fuzzy rule reduces to the follow-
ing equation.

p(z) = B* x min(ui(z), p3 (), us (z)) +

3
A=) x 33 w@
=1

where p%(z) is the membership value for solution zin the
fuzzy set good topology and ® is a constant in the range
[0,1]. The superscript a stands for allocation. Here, p¢

for i = {1,2,3} represents the membership values of so-
lution z in the fuzzy sets low monetary cost, low aver-
age network delay, and low mazimum number of hops
between any source-destination pair respectively. The
solution which results in the maximum value for Equa-
tion 7 is reported as the best solution found by the SE
algorithm.

Below we will see how to get the membership func-
tions for the three criteria we have mentioned above.

4.6.1 Membership Function for Monetary Cost

First, we determine two extreme values for monetary
cost, i.e., the minimum and maximum values. The min-
imum value, “TCostMin”, is found by using the Esau-
Williams algorithm [13], with all the constraints com-
pletely relaxed. This will surely give us the minimum
possible monetary cost of the topology. The maximum
value of monetary cost,“TCostMax”, is taken to be the
monetary cost generated in the initial solution. The
monetary cost is normalized with respect to “TCost-
Max”. The corresponding membership function is shown

: : : TCost _ :
in Figure 3, where = —azis represents W&y axis
represents the membership value, A = T—c;;’-sstt—M—f;%, and
B = TCostMaz _ 1

TCostMazx ~—

4.6.2 Membership Function For Average Net-
work Delay

We determine two extreme values for average network
delay. The minimum value, “TDelayMin”, is found by
connecting all the nodes to the root directly, ignoring
all the constraints and then calculating the average net-
work delay using Equation 5. The maximum value of
average delay, “TDelayMax”, is taken to be the average
delay generated in the initial solution. The average delay
is normalized with respect to “TDelayMax”. The mem-
bership function is shown in Figure 3, where z — azis

represents %, y — axis represents the member-
. __ TDelayMin _ T'DelayMax __

Shlp value, A= TDelayMaz’ and B = TDelayMaz — L.

4.6.3 Membership Function For Maximum

Number of Hops

Again, two extreme values are determined. The min-
imum value, “THopsMin”, is taken to be 1 hop, which
will be the minimum possible in any tree. The maximum
value, “THopsMax”, is taken to be the maximum number
of hops between any source-destination pair generated in
the initial solution. The membership function is shown
in Figure 3, where z — axis represents T Hops, y — axis
represents the membership value, A = THopsMin, and
B =THopsMax.

In the proposed allocation scheme, all the selected
links are removed one at a time and trial links are placed

185

for each removed link. We start with the head-of-line
link, i.e. the link with the worst goodness. We remove
this link from the topology. This divides the topology
into two disjoint topologies, as depicted in Figure 6.

Figure 6: Two disjoint trees containing nodes P and Q.

Now the placing of trial links begins. In this work,
the approach to place trial links is as follows. At most
ten trial moves (i.e., trial links) are evaluated for each
removed link. One point to mention is that for the ten
moves, some moves may be invalid. However, we search
for only four “valid” moves. Whenever we find four valid
moves, we stop, otherwise we continue until a total of
ten moves are evaluated (whether valid or invalid). The
removal of a link involves two nodes P and @, of which
node P belongs to the subtree which contains the root
node and node @ belongs to the other subtree, as shown
in Figure 6. For the ten moves we make, five of them
are greedy and five are random. For the greedy moves,
we start with node @ and five nearest nodes in the other
subtree are tried. For the random moves, we select any
two nodes in the two subtrees and connect them.

It may so happen that all the ten moves are invalid,
in which case the original link is placed back in its posi-
tion. The valid moves are evaluated based on Equation 7
and the best move among the ten moves is made perma-
nent. This procedure is repeated for all the links that
are present in the set of selected links. In the alloca-
tion phase, we have used tabu search characteristics. As
mentioned above, in the allocation phase certain number
of moves are made for each link in the selection set and
the best move is accepted, making the move (i.e., link)
permanent. This newly accepted link is also saved in
the tabu list. Thus our attribute is the link itself. The
aspiration criterion adopted is that if the link that had
been made tabu produces a higher membership value
than the current one in the membership function “good
topology”, then we will override the tabu status of the
link and make it permanent. This strategy prevents the
selection and allocation of a tree from repetitvely remov-
ing the same link and replacing it with a link of equal or
worse goodness. For details of tabu search, refer to [5].

4.7 Stopping Criterion

In our experiments, we have used a fixed number of
iterations as a stopping criterion. We experimented with
different values of iterations and found that for all the

Name | # of Local Sites | LCostMin | LCostMax | TCostMin | TDelayMin | Traffic
nld 15 1100 9400 325400 2.14296 24.63
n25 25 530 8655 469790 2.15059 74.12
n33 33 600 10925 624180 2.15444 117.81
n40 40 - 600 11560 754445 2.08757 144.76
n50 50 600 13840 928105 2.08965 164.12

Table 1: Characteristics of test cases used in our experiments. LCostMin, LCostMax, and TCostMin are in USS$.

TDelayMin is in milliseconds. Traffic is in Mbps.

Case SA SE % Gain

C D [H] T |TL] C D [H] T C | D | |
nld 318000 3.469 6 1.17 2 297100 2.78 4 2.25 6.57 19.86 33.3
n25 511320 3.725 6 3 5 483210 3.537 6 4 5.497 | 5.047 0
n33 708135 5.189 9 5.5 6 682465 4.19 6 8 2.76 19.25 33.3
n40 | 903735 5.213 8 27.5 7 783970 | 4.441 9 26 13.25 14.81 | -11.1
nb50 1124720 | 5.943 10 57 7 983020 | 5.245 11 65 12.6 11.74 | -9.09

Table 2: Comparison of SA and SE. C = Cost in US §, D = Delay in milli seconds per packet, H = hops, T =
execution time in minutes, TL= Tabu list size. The percentage gain shows the improvement achieved by SE compared

to SA.

test cases, the SE algorithm converges within 4000 iter-
ations or less.

5 Results and Discussion

The SE algorithm described in this paper has been
tested on several randomly generated networks. For each
test case, the traffic generated by each local site was col-
lected from real sites. Other characteristics, such as the
number of ports on a network device, its type, etc. were
assumed. However, the costs of the network devices and
links were collected from vendors. The characteristics of
test cases are listed in Table 1. The smallest test network
has 15 local sites and the largest has 50 local sites.

We compare the proposed SE with simulated Anneal-
ing (SA) algorithm [5]. SA has four important param-
eters which need to be tuned very carefully. These are:
cooling rate «, constant 3, initial temperature Ty, and M
which represents the time until next parameter update.
After trial runs, appropriate values of these parameters
were found to be a=0.9, $=1.0, Tp=10, and M=10.

Table 2 presents the results for SA and SE. From this
table, it is observed that SE performs better than SA as
far as monetary cost objective is concerned. In all the
test cases, a gain is achieved by SE. For example, a gain
of 12.6 % is achieved in case of n50. A similar behavior is
seen for average network delay metric, where SE achieves
gain in all the cases, e.g. in case of n40, where a gain
of 14.81% is observed. Similarly, for maximum number
of hops metric, a gain is achieved for small (n15) and
medium (n33) size test cases, with a loss of one hop for
n40 and n50. However, the loss in maximum hops for
n40 and n50 is compensated by the improvement in the
monetary cost and average network delay metrics. As
far as the execution time is concerned, SE has a slightly
higher execution time than SA in most of the cases. It is
due to the fact that SA performs one move per iteration

186

while SE performs multiple moves in a single iteration.

In order to compare the quality of search space of SA
and SE, frequency of solutions for different membership
ranges is plotted against the membership value in Fig-
ure 7(a) for n25. In SA, only one individual (link) is
selected at a time, and only one move is allowed for that
selected link. If the new link is not a feasible one or
does not pass the Metropolis criterion [5], then the orig-
inal link is placed back in its position. This implies that
there may be iterations where original links are placed
back and no alteration takes place to the currently exist-
ing solution. Therefore, such iterations are not included
as giving a new solution for SA. This in turn gives a total
of 2200 iterations (out of 4000 iterations) where an alter-
ation took place in the solution. Thus, only these 2200
iterations (solutions) are plotted in Figure 7(a). In this
figure, it is observed that SE has more solutions falling
in higher membership ranges than SA, suggesting that
SE has investigated a better solution subspace. For ex-
ample, SA has most of the solutions in the membership
range 0.2-0.25, whereas SE has most of the solutions in
the range 0.3-0.35.

Figures 7(b) and (c) illustrate very interesting and de-
sirable behavior of SE. The figures plot the cumulative
frequency of solutions for different membership ranges
after each 200 iterations for n25. In Figure 7(b), the
plot for SA shows that most of the solutions are falling
in membership range of 0.2-0.25 where the solutions in
this range are few initially but with the passage of iter-
ations, the cumulative frequency of solutions increases.
This figure also shows that there are no solutions at all in
higher membership ranges. On the other hand, the cu-
mulative distribution of solutions in different ranges for
SE in Figure 7(c) shows a pattern where solutions with
higher membership ranges are initially less. As more
iterations are executed, the cumulative frequency of so-

for different

Frequency of soiutions for different ﬁ-mhnhlp ranges, n25

for ditferent

C y fo
ranges for SE_TS, TLS=5, n25

2000 -,
, 1600~ |
i
@
»g,m.‘,“_..“., e e e . uuu-}r
3 g-'auo {r -
& 1000
5 1000 - . £
g e 800 -
’ 60
. § 800 - .
L aw -
- e
L e }
00006 00501 01015 01502 02025 02503 03036 QX4 ¢
200 0 1000

Membership Range
Fo= sE TS [E] sA

1800

600

1000
. herations.
== 02025 i1 02503 L ! 03035 (

! 0.350.4

(a)

(b)

()

Figure 7: Comparison of SE algorithm with SA for different membership ranges in fuzzy set “good topology”. (a),
(b) & (c) respectively compare the frequency of solutions, cumulative frequency of solutions for SA, and cumulative

frequency of solutions for SE.

lutions with higher membership ranges increases, while
the cumulative frequency of solution with lower mem-
berhsip ranges remains the same, suggesting that with
time, the algortihm is evolving towards better solution
subspaces.

6 Conclusion

In this paper we have presented a fuzzy SE for back-
bone topology design of campus networks. The proposed
SE algorithm was always able to find feasible topologies
with desirable qualities. Comparison with SA showed
that the search performed by SE is more intelligent, that
is, the solution subspace investigated by SE is of supe-
rior quality than that of SA. Further, as time elapsed,
SE progressively evolved toward better solutions, a de-
sirable characteristic of evolutionary heuristics.

Acknowledgments

Authors acknowledge King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia, for all
support.

References

[1] Habib Youssef, Sadiq M. Sait, and Osama A. Issa.
Computer-Aided Design of Structured Backbones.
In 15th National Computer Conference and Fxhi-
bition, pages 1-18, October 1997.
R. Elbaum and M. Sidi. Topological Design
of Local-Area Networks Using Genetic Algorithm.
IEEE/ACM Transactions on Networking, pages
766778, October 1996.

M. Gen, K. Ida, and J. Kim. A Spanning Tree-
Based Genetic Algorithm for Bicriteria Topological
Network Design. In IEEE International Conference
on Evolutionary Computation, pages 164-173, May
1998.

(2]

4]

7]

(8]
9]

10}

(11

(12]

[13]

187

C. Ersoy and S. Panwar. Topological Design of In-
terconnected LAN/MAN Networks. IEEE Journal
on Selected Area in Communications, pages 1172—
1182, October 1993.

Sadiq M. Sait and Habib Youssef. Iterative Com-
puter Algorithms and their Application to Engineer-
ing. IEEE Computer Science Press, Dec. 1999.
Salman A. Khan. Topology Design of Enterprise
Networks. MS Thesis. King Fahd University of
Petroleum and Minerals, 1999.

Mischa Shwartz. Telecommuncations Networks:
Protocols, Modeling, and Analysis. Addison-Wesley
Publishing Company, 1987.

Gerd. E. Keiser. Local Area Networks. McGraw-Hill
Book Compnay., 1989.

Ralph Michael Kling. Optimization by Simulated
Evolution and its Application to cell placement.
Ph.D. Thesis, University of Illinois, Urbana, 1990.
D. B. Fogel. An introduction to simulated evolu-
tionary optimization. IEEE Transactions on Neural
Networks, 5(1):3-14, Jan 1994.

Ronald Y. Yager. On Ordered Weighted Averag-
ing Aggregation Operators in Multicriteria Deci-
sionmaking. IEEE Transactions on Systems, Man,
and Cybernatics, 18(1):183-190, Jan 1988.

Ali S. Hussain. Fuzzy Simulated Fvolution Algo-
rithm for VLSI Cell Placement. MS Thesis, King
Fahd University of Petroleum and Minerals, 1998.
L. R. Esau and K. C Williams. On teleprocess-
ing system design. A method for approximating the
optimal network. IBM System Journal, 5:142-147,
1966.

