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Abstract

The topology design of campus networks is a hard con-
strained combinatorial optimization problem, dictated
by physical and technological constraints and must op-
timize several objectives. Furthermore, due to the non-
deterministic nature of network traffic and other design
parameters, the objective criteria are imprecise. Fuzzy
Logic provides a suitable mathematical framework in
such a situation. In this paper, we present an approach
based on Simulated Evolution (SE) algorithm for design
of campus network topology. Three variations of the
algorithm have been presented and compared together.
Results show that the third variation, namely, Simu-
lated Evolution with Tabu Search characteristics gives
best result.

Keywords: Fuzzy Logic, Campus Networks, Sim-
ulated Evolution, Tabu Search, Combinatorial Opti-
mization. V

1 Introduction

A typical campus network consists of an interconnected
collection of a relatively large number of nodes. The
network nodes fall into two general categories: end-user
nodes which represent network access points consisting
of workstations, personal computers, printers, main-
frame computers, etc., and the network active elements
consisting of various devices such as multiplexers, hubs,
switches, routers, and gateways. The active elements
and links provide the needed physical communication
paths between every pair of end-user nodes.

A good network topology is governed by several con-
straints. Geographical constraints dictate the break-
down of such internetwork into smaller parts or groups
of nodes, where each group makes up what is called a
LAN. A LAN consists of all the elements that create a

networked system up to a router. A campus network is

usually made up of a collection of interconnected LANS.
Further, the nodes of a LAN may be subdivided into
smaller parts, called LAN segments, to satisfy other
constraints and objectives, for example, minimization
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of delay, containment of broadcast traffic, and mini-
mization of cabling and equipment cost [1]. The topol-
ogy design of LAN itself consists of two main issues:
segmentation, where LAN segments are defined, and
design of actual topology, which consists of intercon-
necting the individual segments. Topology design at
LAN level usually consists of interconnecting the LAN
segments via bridges and layer 2 switches [2}.
Following the three-layer hierarchy for strcutred net-
work design [3], the design of such a campus network
can be approached in four steps:

1. Assignment of end-user nodes/stations to LAN
segments.

2. Assignment of LAN segments to local sites that
will make up a single LAN.

3. Design of the internal structure of each local site
(i-e., in what topology the LAN segments of a local
site are connected). This step serves also to select
appropriate switching equipment.

4. Backbone design, where the local sites are con-
nected to the backbone. This step also will dictate
the required backbone equipment. :

In this work, we have used simulated evolution (SE) al-
gorithm [4, 5] for topology design of structured campus
networks based on criteria such as monetary cost, hop
count between any source-destination pair, and average
network delay per packet. We have confined ourselves
to the fourth step, which is the backbone design. For
other steps, interested readers can refer to [6]. Accord-
ing to recommended structured cabling standards, the
network topology is constrained to be a tree. Hence we
target to find a tree topology of desirable quality with
respect to the three design objectives.

Since the backbone design problem is a multi-objective
combinatorial optimization problem, we resort to fuzzy
logic to formulate the various objectives in the form of
fuzzy rules that will guide the search toward solutions
of desirable quality.



In Section 2, assumptions and notation are given. Sec-
tion 3 describes computation of objective values and
constraints. Section 4 presents the proposed algorithm.
Section 5 gives results and discussion. We conclude in
Section 6.

2 Assumptions and Notation

o All hosts have either Ethernet (10 or 100 Mbps)
or Token Ring (4 or 16 Mbps) interfaces.

e The traffic rates generated among pairs of hosts
are assumed known.

e Vertical cabling (interconnection of local sites to
backbone switches) is implemented with fiber optic
cables.

o Horizontal cabling portion (cabling within the
work area/local site) is implemented with Cate-
gory 5 UTP (or STP for Token-Ring).

e There is a user specified limit on the number of
network addresses per subnet.

e Maximum allowed utilization of any link should
not exceed a desired threshold (e.g. 60 %).

For the following sections, we shall use the notation
given below:

n number of clusters/local sites.

‘m number of LAN segments in a cluster.

T n x n local site topology matrix where
t;; = 1, if local sites ¢ and j are connected and
t;; = O otherwise.

Ai traffic on link .

Amaz,i capacity of link 3.

L number of links of the proposed topology.

D4 average delay between any source destination
pair.

P; maximum number of clusters which can be
connected to device i.

Yij external traffic between clusters ¢ and j.

v overall external traffic.

3 Problem Statement

We seek to find a feasible topology of near optimum
overall cost with respect to three objectives mentioned
earlier. Three important constraints are considered.

1. The first set of constraints is dictated by band-
width limitation of the links. A good network
would be one in which links are “reasonably” uti-
lized, otherwise this would cause delays, conges-
tion, and packet loss. Thus the traffic flow on any
link ¢ must never exceed a threshold value:

A < Amaz,i 1=1,2..,s

(1)

where s is the total number of links present in the
topology.
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2. The second constraint is that the number of clus-
ters attached to a network device i must not be
more than the port capacity P; of that device.

Sty<P i=12..,n Vi#j (2
j=1

3. The third set of constraints express the designer’s
desire to enforce certain hierarchies on the network
devices. For example, one might not allow a hub
to be the parent of a router or backbone device.

Below, we describe the objective criteria used to mea-
sure the goodness of a given topology.

3.0.1 Monetary cost

The cost needs to be minimized; this includes costs of
cable and network devices:

®3)

where [ represents the total length of cable, ¢.qpe rep-
resents the cost per unit of the cable used, and c,q rep-
resents the combined costs of all the routers, switches,
and hubs used. '

cost =(l X Ccable) + (cﬂd)

3.0.2 Average Network Delay

To devise a suitable function for average network delay,
we approximate the behavior of a link and network
device by an M/M/1 queue and use the formula derived
in (2], which suggests that the total average network
delay is composed of delays of links and network devices
and is given by:

d d
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i=1

where d is the total number of network devices.

3.0.3 Maximum hops

The maximum number of hops between any source-
destination pair is also another objective to be opti-
mized. A hop is counted as the packet crosses a net-
work device.

4 Fuzzy SE for Topology Design

4.1 Simulated Evolution

Simulated Evolution (SE) is a general iterative heuris-
tic proposed in [5]. The SE starts with a randomly or
constructively generated valid initial solution. A so-
lution is seen as a set of movable elements, each with



an associated goodness measure in the interval [0,1].
The main loop of the algorithm consists of three steps:
evaluation, selection and allocation. These steps
are carried out repetitively until some stopping condi-
tion is satisfied. In the evaluation step, the goodness
of each element is estimated. In the selection step, a
subset of elements are selected and removed from cur-
rent solution. The lower the goddness of a particular
element, the higher is its selection probability. A bias
parameter B is used to compensate for inaccuracies of
goodness measure. Finally, the allocation step tries to
assign the selected elements to better locations. Other
than these three steps, some input parameters for the
algorithm are set in an earlier step known as initial-
ization.

4.2 Proposed Algorithm

This section describes our proposals of fuzzification of
different stages of the SE algorithm. We confine our-
selves to tree design because they are minimal and pro-
vide unique path between every pair of local sites.

4.3 Initialization

The initial spanning tree topology is generated ran-
domly, while keeping into account the feasibility con-
straints mentioned earlier.

4.4 Proposed Fuzzy Evaluation Scheme
The goodness of each individual is computed as fol-
lows. An individual is a link which interconnects two
local sites. In the fuzzy evaluation scheme, monetary
cost and optimum depth of a link (with respect to the
root) are fuzzy variables. Then the goodness of a link
is characterized by:

Rule 1: IF a link is near optimum cost AND near
optimum depth THEN it has high goodness.

Here, near optimum cost, near optimum depth, and high
goodness are linguistic values for the fuzzy variables
cost, depth, and goodness. Using and-like compen-
satory operator [7], Rule 1 translates to the following
equation for the fuzzy goodness measure of a link ;.

g = po(ls) = o x min(pui(L), p5 (L) +

1 2
(1-0%) x 3 3 pih)

=1

(5)

The superscript e stands for evaluation. In Equation
5, p¢(l;) is the fuzzy set of high goodness links and a®
is a constant. The p§(l;) and p§(l;) represent mem-
berships in the fuzzy sets near optimum monetary cost
and near optimum depth.
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The membership of a link with respect to near opti-
mum monetary cost is found using the cost matrix,
which gives the costs of each possible link. The cost ma-
trix gives minimum (LCostMin) and maximum (LCost-
Max) costs among all the link costs. We then find the
membership of a link with respect to these bounds.
Furthermore, we have normalized the monetary cost
with respect to “LCostMax”. The required member-
ship function is represented as depicted in Figure 1,

where T — azis represents pAS%i- y — azis rep-
. _ LCostMin
resents the membership value, 4 = {25, and

B — LCostMaz
— LCostMax

= 1.
w
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Figure 1: Membership function for the objective to be
optimized.

In the. same manner, membership of a link with re-
spect to near optimum depth is found. The lower limit,
“LDepthMin” is taken to be a depth of 1 with respect
to the root. The upper bound, “LDepthMax” is taken
to be 1.5 times of the maximum depth generated in
the initial solution or a maximum of a user specified
limit!, which is taken to be 7, in case if LDepthMax
turns out to be more than 7. The membership func-
tion with respect to near optimum depth is illustrated in
Figure 1, where x — axis represents LDepth, y — aris
represents the membership value, A = LDepthMin,
and B = LDepthMax.

4.5 Selection

Based on the goodness of a link, it is either removed
or not. This is done by comparing a random number
RANDOM € [0,1] with g., + B, where B is the selec-
tion bias. Two types of biases, namely, Fixed (4], and
Variable [8] are-used. The variable bias varies with the
average goodness of links in each iteration, but fixed
bias is set to a value in the initialization.

the set of links selected for removal.

4.6 Proposed Fuzzy Allocation Scheme
During the allocation stage of the algorithm, the se-
lected links are removed from the topology one at a

1This user specified limit may be a design constraint, e.g.,
if each hop represents a router that uses Routing Information
Protocol (RIP) then a reasonable limit would be 7, i.e., a branch
of the tree should not have more than 7 routers.



time. For each removed link, new links are tried in
such a way that they result in overall better solution.
In the fuzzy allocation scheme, the three criteria to be
optimized are combined using fuzzy logic to character-
ize a good topology. In fuzzy logic, this can easily be
stated by the following fuzzy rule:

Rule 2: IF a solution X has low monetary cost AND
low average network delay AND low mazimum number
of hops between any source-destination pair THEN it
is a good topology.

The words “low monetary cost”, “low average network
delay”, “low maximum number of hops”, and “good
topology” are linguistic values, each defining a fuzzy
subset of solutions. Each fuzzy subset is defined by a
membership function g which returns a value in the
interval [0,1] describing the degree of satisfaction with
the particular objective criterion. Using the and-like
operator [7], the above fuzzy rule reduces to the fol-
lowing equation.

u*(z) = B* x min(ui (z), ug (<), p3(z)) +

1 3
(1= 6% x 3 3 B )

=1

(6)

where p%(z) is the membership value for solution z in
the fuzzy set good topology and B° is a constant in the
range [0,1]. The superscript a stands for allocation.
Here, p? for i = {1,2,3} represents the membership val-
ues of solution z in the fuzzy sets low monetary cost, low
average network delay, and low mezimum number of
hops between any source-destination pair respectively.
The solution which results in the maximum value for
Equation 6 is reported as the best solution found by
the SE algorithm.

Below we will see how to get the membership functions
for the three criteria we have mentioned above.

4.6.1 Membership for Monetary Cost

First, we determine two extreme values for monetary
cost, i.e., the minimum and maximum values. The
minimum value, “TCostMin”, is found by using the
Esau-Williams algorithm [9), with all the constraints
completely relaxed. The maximum value of mone-
tary cost,“TCostMax”, is taken to be the monetary
cost generated in the initial solution. The monetary
cost is normalized with respect to “TCostMax”. The
corresponding membership function is shown in Fig-

ure 1, where £ — axis represents yA<l—, y — azis
represents the membership value, 4 = %ﬁ, and
B = TCostMazx __ 1

— TCostMaz ~ ™
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4.6.2 Membership For Network Delay

We determine two extreme values for average network
delay. The minimum value, “TDelayMin”, is found
by connecting all the nodes to the root directly, ig-
noring all the constraints and then calculating the av-
erage network delay using Equation 4. The maximum
value of average delay, “TDelayMax”, is taken to be the
average delay generated in the initial solution. The
average delay is normalized with respect to “TDelay-
Max”. The membership function is shown in Figure
1, where z — azis represents e Delay _ Y — axis rep-

TDelayMaz?

. _. TDelayMin
resents the membership value, A = TDelayMaz’ and
B= TDelayMoaz __ 1

— TDelayMaz ~—

4.6.3 Membership For Maximum Hops

Again, two extreme values are determined. The mini-
mum value, “THopsMin”, is taken to be 1 hop, which
will be the minimum possible in any tree. The max-
imum value,“THopsMax”, is taken to be the maxi-
mum number of hops between any source-destination
pair generated in the initial solution. The membership
function is shown in Figure 1, where z — axis repre-
sents T H ops, y—axis represents the membership value,
A =THopsMin, and B = THopsMaz.

In the proposed allocation scheme, all the selected links
are removed one at a time and trial links are placed for
each removed link. We start with the head-of-line link,
i.e. the link with the worst goodness. We remove this
link from the topology. This divides the topology into
two disjoint topologies. '
Now the placing of trial links begins. At most ten trial
moves (i.e., trial links) are evaluated for each removed
link. However, some moves may be invalid. Therefore,
we search for only four “valid” moves. Whenever we
find four valid moves, we stop, otherwise we continue
until a total of ten moves are evaluated (whether valid
or invalid). The removal of a link involves two nodes P
and @, of which node P belongs to the subtree which
contains the root node and node @ belongs to the other
subtree. For the ten moves we make, five of them are
greedy and five are random. For the greedy moves, we
start with node Q and five nearest nodes in the other
subtree are tried. For the random moves, we select any
two nodes in the two subtrees and connect them.

It may so happen that all the ten moves are invalid,
in which case the original link is placed back in its po-
sition. The valid moves are evaluated based on Equa-
tion 6 and the best move among the ten moves-is made
permanent. This procedure is repeated for all the links
that are present in the set of selected links. In the
allocation phase, we have used tabu search character-
istics. As mentioned above, in the allocation phase



Table 1: Characteristics of test cases used in our experiments. LCostMin, LCostMax, and TCostMin are in USS$.

TDelayMin is in milliseconds. Traffic is in Mbps.

Name | # of Local Sites | LCostMin | LCostMax | TCostMin | TDelayMin | Traffic
nlb 15 1100 9400 325400 2.14296 24.63
n25 25 530 8655 469790 2.15059 74.12
n33 33 600 10925 624180 2.15444 117.81
n40 40 600 11560 754445 2.08757 144.76
n50 50 600 13840 928105 2.08965 164.12

certain number of moves are made for each link in the
selection set and the best move is accepted, making the
move (i.e., link) permanent. This newly accepted link is
also saved in the tabu list. Thus our attribute is the link
itself. The aspiration criterion adopted is that if the
link that had been made tabu produces a higher mem-
bership value than the current one in the membership
function “good topology”, then we will override the
tabu status of the link and make it permanent. This
strategy prevents the selection and allocation of a tree
from repetitvely removing the same link and replacing

it with a link of equal or worse goodness. For details -

of tabu search, refer to {4].

4.7 Stopping Criterion

Fixed number of iterations is used as stopping crite-
rion. Experimentation with different values of itera-
tions showed that SE algorithm converges within 4000
iterations for all test cases.

5 Results and Discussion

The proposed SE algorithms have been tested on sev-
eral randomly generated networks. For each test case,
the traffic generated by each local site was collected
from real sites. Other characteristics, such as the num-
ber of ports on a network device, its type, etc. were
assumed. However, the costs of network devices and
links were collected from vendors. The characteristics
of test cases are listed in Table 1. The smallest test
network has 15 local sites and the largest has 50 local
sites.

Table 2 shows the best solutions generated by best
fixed bias SE_FF and SE_VB, while Table 3 compares
them. It is clear from these tables that, in general,
SE_VB produces comparable results with SE_FF as far
as “monetary cost” objective is concerned. For “aver-
age network delay” and “maximum hops” objectives,
a general trend is that SE_FF performs better than
SE_VB. As far as execution time is concerned, SE_VB
has lower execution time than best fixed bias SE_FF for
smaller cases (such as n15, n25, and n33), while for
bigger cases (n40 and n50), SE_VB has higher execu-
tion time than SE_FF. However, if we consider the time
spent in trial runs of SE_FF algorithm to find the best
fixed bias, then SE_VB can be considered better than
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the fixed bias SE_FF. There were at least 3 trial runs
with different bias values to identify the best value for
each test case for SE_FF. For SE_VB, there is no need
to run several trials. Figures 2(a), (b), and (c) show
the progression of the two algorithms with respect to
the three optimization objectives.

Monetary Cost
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Figure 2: Progression of objective values with itera-
tions for SE_FF and SE_VB for (a) monetary cost (b)
delay (c) hops. (d), (e), (f) compare the same objec-
tives respectively for SE_FF and SE_TS.

Table 2 also shows the results of SE_TS. Table 3 shows
the percentage improvement achieved by best tabu list
size SE_TS when compared to SE_FF. From these ta-
bles, it is seen that SE_TS performs better than SE_FF
for monetary cost objective. For all test cases, a gain
is achieved by SE_TS. Similarly, for average network



Table 2: Comparison of SE_FF, SE_VB, and SE_TS. B = best bias, C = Cost in US §, D = Delay in msec/packet,
H = hops, T = execution time (minutes), TL= Tabu list size.

Case SE_FF . SE_VB SE_TS

B <C D JH|T C | D [H[TJ[TL] C | D [H][ T
nl5 | 0.2 | 314400 | 3.282 | 5 | 4 | 305500 ] 4.135 | 7 | 1 2 | 207100 | 2.78 | 4 | 2.25
n25 0.2 509050 4.26 7 5 512415 4.37 7 4.4 5 483210 | 3.537 6 4
n33 | 0.0 | 687760 [ 4.729 | 8 | 40 | 702815 | 5319 | 7 | 17 | 6 | 682465 | 4.19 | 6 8
n40 0.3 866900 4.126 | 8 12 800580 6.637 | 10 | 42 7 783970 | 4.441 9 26
n50 | 0.3 [ 1061900 | 532 | 9 | 8 | 1042080 | 8.236 | 10 | 62 | 7 | 983020 | 5.245 | 11 | 65

. . Acknowledgments
Table 3: Percentage improvement achieved by SE_VB Authors acknowledge King Fahd University of

compared to SE_FF and SE_TS compared to SE_FF. C
= Cost in US §, D = Delay in ms/packet, H = hops.

Case | _SEVB vs SEFF SE-TS vs SEFF

C D | H c D | H
nl5 2.83 -25.99 -40 5.5 15.29 20
n25 | -0.657 | 251 | 0 [ 5.07 [ 16.97 | 14.29
n33 -2.19 -12.48 12.5 | 0.755 11.4 25
nd0 | 7.65 | -60.85 | 25 | 957 | 763 | -125
n50 | 1.87 | -548 | 111 | 743 | 1.4l | 222

delay metric, SE_TS achieves gain in all cases. For
maximum number of hops metric, a gain is achieved
for all the cases except n50. However, the loss in maxi-
mum hops for n50 is compensated by the improvement
in the monetary cost and delay metrics. As far as the
execution time is concerned, it is also comparable. Fig-
ures 2(d),(e), and (f) show the progression of SE_FF
and SE_TS for the three optimization objectives. The
reason SE_TS has better performance than SE_FF is
the following. In SE_FF, since the search space for
valid solutions is limited, it happens that after some
iterations, same moves are repeated and the algorithm
keeps searching in the same search space most of the
time, while in SE_TS, more search space is covered be-
cause previous moves remain tabu for some time, caus-
ing the algorithm to diversify the search into another
subarea.

6 Conclusion

In this paper we have presented three variations of
fuzzy SE for backbone topology design of campus
networks. The proposed SE algorithms were always
able to find feasible topologies with desirable qualities.
Comparisons among the variations showed that the so-
lution subspace investigated by SE_TS is of superior
quality than that of the other two variations. Further,
as time elapsed, all variants progressively evolved to-
ward better solutions, a desirable characteristic of evo-
lutionary heuristics.
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