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Abstract-In this paper, we address the problem of FSM in the logic or by reducing the switching capacitance or both
state assignment to minimize area and power. The objectives of them.
are targeted as single/independent as well as multi-objective There has been much interest in power reduction strategies
optimization (MOP) problems. Novel methods for estimating area for FSM. Most of the work reported in literature strategies
and power of an FSM are presented. A fuzzy-based aggregation [8]-[f3] triesfunction is employed to combine the two objectives. The work to minimize total switching on the flip-flops. This is done by
employs genetic algorithm for search space exploration. Exper- formulating the problem as a graph embedding problem where
imental results demonstrate the effectiveness of the proposed edges between a state pair indicate the steady state transition
measures. probability between them. The problem is thus reduced to

minimizing the total transitions between the states. Such a
I. INTRODUCTION formulation is referred to as Minimum Weighted Hamming

Distance (MWHD).
State assignment (SA) for Finite State Machine (FSM) The hard nature of SA problem has generated considerable

is one of the main optimization problems in the synthesis interest in the use of non-deterministic heuristics such as
of sequential circuits. The SA of an FSM determines the genetic algorithm [3], [11] and simulated annealing [1], for its
complexity of its combinational circuit and thus area and design automation. These algorithms are capable of efficiently
power dissipation of the implementation. State assignment searching for a near optimal solution in a large solution
involves an injective mapping f: S -> BT where n is the code space and have been very successful in solving a number of
length (n > 1log2 lS 1) and Bn is an n-dimensional Boolean combinatorial optimization problems in various disciplines of
space, a Boolean hypercube. science and engineering.
The objective of state assignment varies depending on In this paper, we explore the use of genetic algorithm for

whether the targeted implementation is two-level or multilevel. SA problem where the logic synthesized is implemented as
The focus of this work is towards minimizing multilevel FSM multilevel circuit. We present novel and efficient strategies
implementation. for estimating multilevel area and power dissipation in an

The complexity measure for multilevel circuits is the num- FSM. We also evaluate several integration mechanisms for
ber of literals in the optimized logic network assuming mini- combining area and power measures.
mum encoding length. Literal savings by extracting common
subexpressions has been the focus of most of the work done II. PROPOSED METHODOLOGY
for multilevel FSM optimization. This involves finding pairs of A. State Assignment for Area
states that when encoded can result in extraction of common The contemporary approach employed towards multilevel
subexpressions. In contrast to two-level circuits, state pairs in FSM area minimization is by using weighted-graph approach
multilevel implementations do not necessarily have to be given where weights between edges of states define the relative
adjacent codes for literal savings [1]-[3]. proximity in assignment (affinity).
The problem of multilevel area minimization of an FSM Affinity cost as modeled in adjacency graphs is then used

has been modeled as weighted [1]-[3] or constrained [4]-[6] to minimize Equation 1:
graph-embedding problem on Boolean hypercubes.

Portable electronics applications have given power-aware nS nS
computing a whole new importance. This is due to limitations Si()
in battery capacities and to the fact that progress in their i=1 j=1
technologies trail far behind the ever increasing computing where A (Si, Sj) is the Hamming distance between codes of
requirements. Power consumption is thus constrained and op- states Si and Sj, mS being number of states, and Asp. s being
timized at all levels of design hierarchy [7]. The major source the affinity between two states as given by the used cost
of power consumption in CMOS circuits is due to charging measure.
and discharging of circuit capacitances. Power consumption in In [14], several literal saving measures based on weighted-
a circuit can be reduced by either reducing the total switching graph embedding problem including those based on Jedi
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[1], Mustang [2] and Armstrong [15] cost measures were it tries to maximize power reductions mainly due to point 1
investigated. It was found that all these measures weakly discussed above.
correlate with the actual literal savings measure. In this work, we propose a new cost function for minimizing

There are several complications in using weighted graph power dissipation in an FSM. The idea is based on mini-
approach for literal savings measure estimation based on com- mizing fanout branches out of frequently switched sequential
mon cube extraction. First, the common cubes interact with elements. Reducing fanout branches on highly switching flip-
each other, annulling certain predicted savings. Second, such flops reduces the switching capacitance and hence reduces
measures optimize relative literal savings rather than absolute power dissipation. The transition probabilities of sequential
number of literals in an implementation. Consequently, they elements are computed based on steady state transition proba-
may lead the search to solutions having higher relative savings bilities computed from the state table. The flip-flops' transition
with higher implementation costs. Such an interaction is very frequencies are weighted with their respective fanout counts
difficult to predict at higher level of abstractions. for determining minimum weighted fanout (MWF) solution by

In order to use an efficient but accurate estimate of actual minimizing Equation 3:
literal savings, we propose the use of EXPAND function,
employed in ESPRESSO [16], as a measure for estimating area n

of an FSM. EXPAND is the first step employed in two-level MWF TiBi (3)
logic minimization and provides a cover for the function that i=1
is minimal with respect to single-cube containment. However, where Bi and Ti are the number of fanout branches and the
the cover might contain some redundant terms. It should be transition frequency of flip-flop i, respectively. Expand cover
observed that ESPRESSO [16] is based on iterative application is used in estimating flip-flop fanout branches.
of several functions including EXPAND, IRREDUNDANT
and REDUCE. Hence, using EXPAND as a cost measure is C. Genetic Algorithm
more efficient than using ESPRESSO. As will be illustrated Genetic algorithms have been adopted to explore the so-
by experimental results in Section III, it is found that using 1.EXPAND~ ~ ~ .wit sigl oupu opiiainsrnl orlts ution space in search of good state assignments. The chro-EXPNDwihsngeuttmezatnsuremosomal representations employed and the crossover operator
with actual multilevel literal savings measure.

used is similar to the one suggested by Amaral et al. [3]. In
B. State Assignment for Low Power this representation, each state code is described as an array of

Switching activity in combinational logic of the controllers bits equal to the number of storage elements required. Parent
. . . ~~~~~~~~selection for crossover is based on the roulette wheel method.is due to logic transitions on the flip-flops as well as on

primary inputs. Thus, to reduce power dissipation in an FSM, Crossover is performed by randomly selecting a subset of
one can: state encoding columns from the first parent and the rest from

...Minimize switching activity at theflip-flops.
the second parent. The mutation operator used swaps two

1) Minimize switchigc activitynceato flip-flops.beingswi randomly selected states in a randomly selected parent. The
2M m tcptefp-flops number of mutations occurring in a generation is controlledi.e., fanout branches (fanout) from flip-flops. by the mutation rate. A value of 20% is selected and mutation

3) Minimize the combinational logic being switched. is applied to all but the best solution.
State assignment for power minimization can also be mod- After every generation, members for the next generation are

eled by a weighted graph where weights between edges of selected from both parents and newly generated offsprings.
states represent the total switching probability between the two A combination of greedy (for the best half of parents and
states. By assigning shorter distance codes to states connected new offsprings) and random from the second half is used.
with higher weights, i.e., higher transition probability, the over- Diversity in population is maintained by discarding duplicate
all switching on the state lines of the FSM can be minimized, offsprings. In this work, a population size of 64 and a
Thus, a cost model for minimizing power consumption can maximum generation size of 350 are used.
be to have Minimum Weighted Hamming Distance (MWHD). The area and power objectives are aggregated using product
Mathematically, this can be achieved by minimizing Equation based and Ordered Weighted Averaging (OWA) operator [17].
1 with the affinity being modeled as: In OWA, we employ both "orlike" (Max) and "andlike" (Min)

fuzzy operators as given in Equation 4:

where Pij is the state transition probability from state Si to /3 x Ot(pa,,up) + (1-/3) x- (a, + 1P) (4)
state Si. 2
The first formulation for power minimization used in this where 0 is max/mmn type fuzzy operator, ,ui represents cost

work tries to optimize the above MWHD cost. MWHD ap- for area or power objective and Q is a constant parameter
proach tries to minimize the total transition probability of that represents the degree to which OWA operator resembles
the state machine in the hope that the total number of logic a pure "or"~or pure "and"~, respectively. In this work we employ
transitions in the synthesized circuit will also get reduced, i.e., Q 0.5
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TABLE I
COMPARISON OF EXPAND-SO MEASURE WITH OTHER AREA MINIMIZATION HEURISTICS.

Benchmark EXPAND-SO ESPRESSO-SO+FX EXPAND-MO Jedi ( [1]) Nova Mustang [2] Armstrong( [3])
bbara 56(52) 51 57 73(57) 57 64 59(86)
bbsse 110(105) 100 120 134(111) 140 106 127(180)
cse 198(228) 183 239 240(200) 214 206 220(NA)
dkl4 104(86) 101 115 108(76) 111 117 124(NA)

donfile 87(72) 68 106 82(76) 154 160 171(NA)
ex2 78(68) 66 130 123(122) 127 119 131(NA)
ex3 56(48) 53 67 65(66) 71 71 68(NA)
keyb 199(205) 161 161 260(140) 201 167 334(NA)
lion9 11(11) 10 25 19(13) 27 17 27(21)
planet 486(436) 469 557 603(547) 591 544 607(NA)
pma 165(152) 153 189 263(NA) 241 NA 218(NA)
sI 227(105) 155 285 282(152) 340 183 291(NA)

s1494 570(624) 543 717 679(NA) 715 NA 696(NA)
s832 231(218) 215 307 357(NA) 274 NA 301(NA)
sand 498(494) 473 514 554(437) 558 462 619(NA)

shiftreg 2(2) 2 4 2(2) 2 2 2(10)
styr 419(429) 423 466 518(508) 502 546 546(NA)
tbk 353(268) 312 493 305(278) 365 547 711 (NA)

traianlI1 22(20) 18 29 34(27) 32 37 32(47)
%Improvement -8.89 15.48 17.63(6.51) 18 22.56 26.72(41.57)

III. EXPERIMENTAL RESULTS weighted OWA aggregation. As can be seen from the re-
In this section, experimental results of the proposed state sults, the multiobjective optimization of both area and power

assignment measures for area and power minimization are achieves overall higher reduction in both area and power with
presented. Experiments are performed on a subset of MCNC- MWF(Fuzzy-Max) resulting in the least power dissipation.
93 FSM benchmark circuits with different complexities. C. Literature ComparisonA.~~~~~~~~~~~~~~CAreatreCoprloA. Area In Table III, we compare the performance of the

In Table I, we compare the performance of several cost MWF(Fuzzy-Max) measure to other techniques reported in
functions targeting area minimization including Espresso with literature [10]-[13]. Comparison is made relative to the output-
single-output minimization followed by FX (ESPRESSO- oriented (default) Jedi state assignment algorithm, with results
SO+FX), Expand with single-output minimization (EXPAND- reported as %reduction relative to Jedi. The last row in the
SO), Expand with multiple-output minimization (EXPAND- table shows the percentage improvement achieved by our
MO), Jedi [1], Nova [6], Mustang [2], and Armstrong [3]. technique over other techniques.

The values in the table represent the literal count obtained It can be seen that our approach achieves higher overall sav-
after synthesizing the obtained solutions using ESPRESSO- ings over all the approaches. The MWF(Fuzzy-Max), though
SO+FX. Results shown in brackets are those reported in being slightly better in power dissipation, significantly out-
literature based on synthesis using script.rugged except for performs Pedram's approach [10] in area savings. Significant
Amaral et al. [3] where results are reported in factored form. power savings are also observed between our approach and

The last row in the table shows the percentage improvement Ciesielski et al. [12] and IITG8 [13] measures. The ingenuity
of EXPAND-SO over all other cost measures. It is observed of our measure can also be seen from its complete dominance
that EXPAND-SO achieves significant improvements over over Almiani et al.'s approach [11] in both area and power
all other techniques and only lags behind the accurate cost optimizations, although the latter employs a more expensive
measure using ESPRESSO-SO+FX by nearly 9%. Espresso iteration in their cost calculation.

B. Power IV. CONCLUSION

The performance of the proposed MWF measure is next
compared with MWHD and default Jedi state assignment In this work, we have presented a genetically engineered
algorithm in Table II. Power consumptions are measured in state assignment solution for area and power minimization.microwtts uingT ower.Pet c

tAL option f
m

We have proposed efficient cost functions that highly correlate
SIS and assuming default conditions. It can be seen that the with the actual literal count and power dissipation of a multi-
MWF measure achieves better results than MWHD and Jedi level circuit implementation. Experimental results demonstrate
on both area and power, and on average it achieves 6.47% less the effectiveness of the proposed measures in achieving lower
power and 14.53% less area, per circuit, than Jedi algorithm. area and power dissipation solutions in comparison to tech-

The multiobjective optimization of both area and power niques reported in the literature.
is shown by integrating the Expand-SO area estimate with
MWF measure. We employ both the product of area and ACKNOWLEDGMENT
power estimates (MWFA) as well as fuzzy-based aggregations, This work is supported by King Fahd University of
employing Max and Min type fuzzy operators using equal Petroleum & Minerals under Project#FT2005-63.

5305



TABLE II
AREA AND POWER DISSIPATION FOR VARIOUS HEURISTICS.

MWHD MWF Jedi MWFA MWF(Fuzzy-Max) MWF(Fuzzy-Min)
Benchmark Power Area Power Area Power Area Power Area Power Area Power Area

bbara 214.7 82 150.5 55 187.7 74 181.2 65 181.2 58 181.2 58
bbsse 446.1 140 412.2 122 538.8 149 394.5 118 437.1 123 448.2 128
cse 528.9 217 424.8 211 495.8 251 391.3 209 455.2 205 459.9 210
dkl4 661.2 140 561.4 103 714.4 157 561.4 103 551.3 101 579.2 115
donfile 895.9 206 513.7 109 380.8 89 474.1 100 355.2 82 295.8 75
keyb 655.3 263 645 237 767.6 260 517.3 215 535.6 210 511.7 192
lion9 142 20 116.7 19 145.6 19 100.8 15 105.3 16 129.9 11
planet 1788.6 656 1795.1 553 2001.5 675 1889.7 510 1702.5 470 1843.2 465
pma 653.4 198 778 180 883.7 236 693.1 165 651.2 155 675.2 145
sI 1165.1 406 766.5 187 1205.3 353 771.4 197 751.2 191 625.8 161

s1494 1376.3 734 1553.1 625 1668.9 679 852.4 569 838.2 530 1025.5 505
s832 922.1 368 677.5 271 1068.4 376 665.2 260 650.2 242 621.5 249
sand 1645.5 599 1541.4 559 1458.9 651 1617.2 585 1289.9 490 1352.2 498

shiftreg 163.3 27 96.3 2 132.5 9 98.8 4 96.3 2 96.3 2
styr 1277.5 540 1062.9 431 1118.6 567 1086.8 453 1022.3 432 1100 376
tbk 1682 630 1589.3 488 721.2 305 1766.6 556 1095.2 422 1350 398

trainlI1 180.4 38 136.3 23 218.2 35 142.4 22 122.2 23 150.1 21
Average 846.96 309.65 754.16 245.59 806.35 287.35 717.89 243.88 637.65 220.71 673.28 212.29

TABLE III
POWER AND AREA %-REDUCTION COMPARISON WITH JEDI.

MWF(Fuzzy-Max) Pedram [10] Ciesielski [12] IITG8 [13] Almaini [11]
Power Area Power Area Power Power Power Area

bbara 3.46 21.62 17.97 -10.14 16.07 -25.68 21.62
bbsse 18.88 17.45 18.37 6.56 5.66
cse 8.19 18.33 12.15 -1.41 18.48 2.58 18.33
dkl4 22.83 35.67 4.92 -0.98 16.19

donfile 6.72 7.86 6.22 22.64 -5.57 7.86
keyb 30.22 19.23 35.56 20.87 2.53 19.23
lion9 27.68 15.79
planet 14.93 30.37 -19.22 30.37
pma 26.3 34.32
sI 37.68 45.89 -22.46 -7.32 45.89

s1494 49.78 21.94 6.89
s832 39.14 35.64 7.75 26.68
sand 11.58 24.73 10.52 16.12 -19.29 -30.32

shiftreg 27.32 77.78 -29.08
styr 8.61 23.81 -9 9.16 23.81
tbk -51.86 -38.36 5.03

trainlI1 44 34.28 11.61 13.2 34.29
%Improvement 2.09 73.9 29.31 74.74 130 24.36
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