El-Maleh AH, Sadig M. Sait, Shazli SZ
Evolutionary algorithms for state justification in sequential automatic test pattern generation
ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS 13 (1): 15-21

Evolutionary Algorithms for State Justification in Sequential
Automatic Test Pattern Generation

Aiman H. El-Maleh
Department of Computer Engineering, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia

Sadiq M. Sait
Department of Computer Engineering, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia

Syed Z. Shazli
Department of Computer Engineering, King Fahd University of Petroleum and

Minerals, Dhahran, Saudi Arabia

Jun 18, 2003

Abstract. Sequential circuit test generation using deterministic, fault-oriented
algorithms is highly complex and time consuming. New approaches are needed
to enhance the existing techniques, both to reduce execution time and improve
fault coverage. Evolutionary algorithms have been effective in solving many search
and optimization problems. A common search operation in sequential Automatic
Test Pattern Generation is to justify a desired state assignment on the sequential
elements. State justification using deterministic algorithms is a difficult problem
and is prone to many backtracks, which can lead to high execution times. In this
work, a hybrid approach which uses a combination of evolutionary and deterministic
algorithms for state justification is proposed. A Genetic Algorithm is employed,
to engineer state justification sequences vector by vector. This is in contrast to
previous approaches where GA is applied to the whole sequence. The proposed
method is compared with previous GA-based approaches. Significant improvements
have been obtained for ISCAS benchmark circuits in terms of state coverage and
CPU time. Furthermore, it is demonstrated that the state-justification sequence
generated, helps the ATPG in detecting a large number of hard-to-detect faults.

Keywords: Sequential ATPG, Genetic Algorithms, Evolutionary strategies, State
Justification

1. Introduction

Testing of integrated circuits is an important area which nowadays,
accounts for a significant percentage of the total design and production
costs of ICs. In order to obtain acceptably high quality tests, design for
testability (DFT) techniques are in use [12]. One such technique is Full-
scan design, which reduces the sequential test generation problem to
a less difficult combinational test generation problem. In large circuits
however, this technique adversely affects the test application time as all

2

the test vectors have to be scanned in and out of the flip-flops. Partial-
scan design involves scanning a selected set of memory elements. A
sequential test generator is necessary in case of a partial scan or no-
scan design [13]. In this work, we assume either no-scan or partial scan
designs. Generating test sequences for synchronous sequential circuits
is a more challenging problem than that of combinational circuits for
several reasons. They may be itemized as follows:

— Each fault must be first excited by presenting a given value not
only on the primary inputs but also on the flip-flop outputs.

— The assignments on the flip-flops have to be justified backward in
time, requiring a state justification sequence.

— The difference existing on the fault source between the values of
the fault-free and the faulty circuit must be then propagated to
the primary outputs. This is accomplished normally in the next
time frames, requiring a fault propagation sequence.

— The lengths of justification and propagation sequences are not
known before hand as they depend on the starting state and the
Finite State Machine (FSM).

— The presence of invalid states and signal dependencies across mul-
tiple time-frames, results in a large number of backtracks.

— Untestable faults require a large amount of time to be identified
due to the large search space.

For sequential circuit ATPG, the worst-case search space is 9™,

where m is the number of flip-flops. This exponential search space
makes exhaustive ATPG search computationally impractical for large
sequential circuits [13]. In recent years, one of the main goals of re-
searchers was to develop effective algorithms for sequential circuit test
pattern generation [7].
State Justification: A common operation in sequential ATPG, is
to justify a desired state assignment on the memory elements. Both
deterministic and simulation-based algorithms have been used for state
justification. In simulation-based approaches, the search proceeds in
the forward direction only. Hence, there are no backtracks and state
justification is easier as compared to deterministic ATPGs. The main
drawback of simulation-based approaches lies in their inability to detect
untestable faults [21].

Genetic Algorithms (GAs) have been effective in solving many search
and optimization problems [26]. Several approaches to test generation

3

using genetic algorithms have been proposed in the past [2] [5] [20] [21]
[10] [7] [24] [22] [3] [6] [25] [23] [8] [14] [4] [9] [11]. A major difference in
various GA-based approaches lies in the way the fitness (closeness to the
optimal solution) is computed. Some techniques use logic simulation for
evaluation of candidate vectors or sequences, while other techniques use
fault simulation. In addition, there are certain other techniques which
target different objectives in various phases of test generation. These
techniques typically, use both logic and fault simulation in evaluating
candidate sequences. The main advantage of GA-based ATPGs, as com-
pared to other approaches, is their ability to cover a larger search space
in lower CPU time. Traversing a larger number of states, improves the
fault coverage of sequential ATPGs as mentioned in [16].

In [10], Genetic Algorithms have been used for state justification.
The state justification sequences were genetically engineered. The length
of the sequence was predetermined and fixed. It was a function of the
structural sequential depth of the circuit, where sequential depth is
defined as the minimum number of flip-flops in a path between the pri-
mary inputs and the farthest gate. In case of feed-back loops however,
the structural sequential depth may not give a correct estimate of the
number of vectors required for justifying a given state. Thus, if a state
requires longer justification sequence, it will not be justified by this
approach. The approach also does not take into account the quality of
intermediate states reached and evaluates a sequence only on the basis
of the final state reached.

In this work, a hybrid framework for state justification is proposed.
Both deterministic and Genetic-based approaches are used. We use an
incremental approach in our Genetic-based state justification. State jus-
tification sequences are genetically engineered vector by vector. Thus,
the length of the sequences is not restricted or fixed.

The remainder of this paper is organized as follows: The proposed
genetic-based state justification technique is presented in Section 2.
Experimental results are given in Section 3. Section 4 concludes the
paper.

2. Genetic-based State Justification

State justification is the most difficult task in sequential ATPG. Storing
the complete state information for large circuits is impractical. Simi-
larly, keeping a list of sequences capable of reaching each reachable
state is also infeasible. In [10] and [21], deterministic algorithms were
used for fault excitation and propagation, and a GA was used for
state justification. Sequences were evolved over several generations. The
fitness of each individual was a measure of how closely the final state
reached matched the desired state. A chromosome was represented by a

4

sequence of vectors. Candidate sequences were simulated starting from
the last state reached at the end of the previous test sequence. The
objective was to engineer a test sequence that justified the required
state. If a sequence was found which justified the required state, the
sequence was added to the test set.

In this work, we genetically engineer state justification sequences
vector by vector. Individual vectors are represented by chromosomes
in the population and genetic operators are applied at individual bit
positions. Deterministic ATPG is run for every target fault. First, the
fault is activated and propagated to a primary output. Next, state
justification is attempted. If the required state is justified by the de-
terministic ATPG, then the derived sequence is fault simulated and
all detected faults are dropped from the fault list. Otherwise, our
GA-based algorithm attempts to justify the required state. The best
sequence obtained in a given number of generations is viewed as a
partial solution. The state reached by this sequence could be close to
the required state, which could help the ATPG in justifying it in the
next attempts. The generated sequence is then fault simulated and the
detected faults are dropped. A block diagram of the proposed state-
justification methodology is shown in Figure 1.

Encoding of the chromosome: In this work, a binary encoding is
used. A chromosome is represented by a single vector. Each bit of a
vector corresponds to the value at a primary input.

Fitness Function: In Genetic Algorithms, a solution is considered
to be better than another if its fitness is higher. We logic simulate each
vector to get the state reached. This state is compared with all the
flip-flop assignment values of the target state. The fitness f(v;) of a
vector v; is computed as follows:

where s; is the state reached by vector v;, s; is the target state and
m(s;, sj) are the number of matching specified bits in s; and s;. B(s;)
gives the number of specified bits in s; (i.e., those which are not don’t
cares).

Crossover and Mutation: In this work, one-point uniform crossover
is used. In one-point uniform crossover, a random cut-point is selected.
Each of the two parents are divided into two parts at this random cut
point. We generate an offspring by catenating the segment of one parent
to the left of the cut point with the segment of the second parent to

5

the right of the cut point. Mutation introduces new characteristics in
the offspring by randomly changing values of some genes. In this work,
mutation corresponds to flipping a randomly selected bit.

Selection for the next generation: A generation corresponds to an
iteration of GA where parents are selected for crossover and offsprings
are created. A constant number of individuals are selected from the
offsprings for the new generation. The new population thus consists of
both members from the current generation and the offsprings created.
In this work, three replacement strategies have been experimented with.

(n+ 1) selection strategy: In this strategy, one chromosome is changed
in every generation. A crossover is performed on two selected parents.
A child replaces the worst member of the previous generation, if its
fitness is higher. Hence, the best n — 1 members are selected for the
new generation from a population of n.

Random Elitist strategy: We produce n offsprings, by performing n/2
crossovers on a population of n chromosomes. The best n/2 members
of both the offsprings and the original population are transferred to the
next generation. The remaining n/2 members of the new generation are
selected randomly from the leftover chromosomes.

Roulette Elitist strategy: This strategy is the same as Random Elitist
strategy except that the second half of the members of the new gener-
ation are selected based on a roulette wheel mechanism. This gives an
advantage to the relatively more fit members of the population to be
transferred to the next generation.

A flowchart of the proposed GA-based state justification algorithm
is shown in Figure 4. The algorithm works as follows.

A target state is initially selected from the list of desired states.
Genetic Algorithm is run for a fixed number of iterations. If the target
state is reached by any of the chromosomes, that chromosome is ap-
pended to the final state justification sequence and the next target state
is picked. If however, the target state is not reached, the fittest chromo-
some found is picked, and the state reached by the chromosome is added
in a tabu list. Tabu List [26], is used to prevent the algorithm from
visiting recently visited states. The chromosome is appended to the
final sequence. The next fit chromosome is chosen, if the state reached
by the fittest one is already in the Tabu List. If the states reached by
all the chromosomes in the population are present in the tabu list, the
algorithm backtracks to a previously visited state and the last vector
is removed from the final state justification sequence. The algorithm

6

stops further searching for a target state after a specified number of
backtracks. Another stopping criteria is also used. If the fitness of the
currently visited state, fit(s), is less than the average fitness of the
last Nlimit states, fit(Nlimit), the algorithm stops further searching
of the desired state; otherwise the search is continued. Hence, at least
Nlimit number of states are traversed before the algorithm gives up
the search for a desired state. When a sequence is generated by the
algorithm for a target state, the states reached by the sequence are
compared with the list of desired states. All the desired states reached
by the sequence are removed from the list of target states. This is done
to prevent searching again for those states which have been already
reached while searching for some other target state.

3. Experimental Results and Discussion

In this work, experiments have been conducted on ISCAS89 benchmark
circuits [1]. The circuits used are those for which the deterministic
ATPG HITEC, was unable to detect the faults after exhausting a back-
track limit of 1,000,000. In addition, four re-timed circuits for which
HITEC required a large amount of CPU time [17], are considered. Table
I lists the number of primary inputs, primary outputs, and D flip-flops
of the circuits used in this work.

In this section, the proposed genetic-based state justification proce-
dure is evaluated.

A list of target states is obtained for each circuit as follows:

— A deterministic test pattern generator HITEC [19] is stretched to
a backtrack limit of 10° to identify the redundant faults.

— The aborted faults are taken and are converted to their full-scan
equivalents

— HITEC then produces a test for each of these faults.

— The required state is then relaxed to produce a partially specified
state using PROOF'S [18].

— The desired states are merged if they are compatible.

Table II lists the target states obtained for each of the circuits.

The logic simulator HOPE [15], is used to compute the fitness of
chromosomes. Three replacement policies have been experimented with.
The results of the simulations carried out using these three replacement
policies are shown in Table III.

7

In Table III, the number of states reached (SR) and the time taken
to reach those states are given for each replacement strategy described
above. It was observed that the (n + 1) replacement strategy was the
best in terms of execution time. It also reached a comparable number
of states for most of the circuits. This strategy changes only one mem-
ber of the previous generation and hence the number of operations in
one generation of (n + 1) replacement strategy requires less time as
compared to other strategies. Moreover, changes in the characteristics
of the population do not occur as abruptly as in the other two schemes.
Figure 3 shows the average and best fitness of the population against
the number of generations for one of the target states that is justified
by the algorithm using the (n + 1) replacement strategy. It can be seen
that the average fitness increases monotonically with the number of
generations. This is due to the fact that we are always preserving the
best chromosome in each generation. One-point crossover was used with
a probability of 1 and mutation rate was kept at 0.01. A roulette-wheel
selection scheme, as given in [20], was used as it gave the best results.

State traversal for one of the target states of the circuit s1423 that
has been reached by the algorithm is shown in Figure 4. It can be seen
that better states are reached in terms of the Hamming distance as the
algorithm runs for more iterations. Less fit states are reached if a better
state cannot be reached due to the Tabu restriction. Moreover, the best
state among all alternatives is chosen, even if that state is worse than
the current state. This helps in avoiding the local minima.

In Figure 5, state traversal for one of the unreached states is shown.
In case the desired state is not reached, the sequence leading to the best
reached state is generated. It can be observed from the figure, that the
quality of states reached is better in terms of Hamming distance as the
algorithm runs for more iterations.

In order to determine the effect of the parameters on the results,
extensive experiments were run to perform a sensitivity analysis of
each of the parameters. Based on the experiments performed and the
observed results, certain parameters were found to perform better than
others for most of the circuits.

A population size of 32 gave good quality results in comparable
time. 400 generations of the algorithm gave solutions of good quality.
A backtrack limit of 10 and Tabu List size of 15 gave good results.
Nlimit is suggested as 1.5 times the number of flip-flops in the circuit.
The algorithm was run with the parameters suggested above for all
circuits. Results are shown in Table IV. In Table V, the best results
obtained for each of the circuits are presented. The parameters are
listed for every circuit. It can be seen from Table IV and Table V, that

8

the suggested parameters gave good quality results when compared
with the best results obtained for each circuit.

The proposed state justification technique, which uses a GA for
traversing from a state to a state, has been compared with the one
proposed in [10][21]. In [10], GA has been used for state justification
and sequences are genetically engineered. GA has been applied on a
sequence of vectors as opposed to individual vectors in this case.

The parameters proposed in [10] were 32 chromosomes and 8 gen-
erations. The number of vectors in each chromosome was 4 times the
sequential depth of the circuit.

The experiments were run on SUN ULTRA 10 stations and the
results of comparing the two state justification techniques are shown in
Table VI.

The first column in the table shows the circuit name. The states
reached and CPU time obtained by the proposed algorithm are given
in the next two columns. For comparison purposes, the algorithm pro-
posed in [10] was run for several number of generations and the results
are shown in the next columns.

It can be observed from the results that the number of desired states
reached by the proposed technique is more than those reached by the
technique used in [10] for all the circuits. Many of the target states
may correspond to redundant faults as the ATPG aborted the search
of a sequence for detecting the target fault after a given number of
backtracks. Hence, those states are not reached by the algorithm. Fur-
thermore, the proposed technique reached a higher number of states
than [10] in all the circuits even when the latter was run for a greater
amount of CPU time.

In order to verify the effectiveness of the generated state justification
sequences in detecting hard-to-detect faults, the sequences were seeded
to the deterministic test pattern generator HITEC [19]. HITEC makes
use of previously visited states while doing state justification. The faults
detected by an initial run of HITEC with 1000000 backtracks were
removed from the fault list. The results are shown in Table VII.

It can be observed that a large number of hard-to-detect faults are
detected when HITEC is seeded with the state justification sequence
obtained by the proposed strategy. The number of faults detected are
significantly higher than the faults detected when the ATPG is seeded
with the state justification sequences generated by the technique pro-
posed in [10]. Apart from justifying more states, the porposed technique
takes advantage of the partial justification sequences generated.

4. Conclusion

In this work, a hybrid approach is proposed which uses a combination
of evolutionary and deterministic algorithms for state justification. Ge-
netic Algorithms (GAs) are used for generating sequences that will help
the Automatic Test Pattern Generator (ATPG) in detecting more faults
by reaching specific states. A new state justification technique based
on GA is proposed which engineers the sequence vector by vector. In
previous approaches, GA has been applied to the whole sequence. The
previous approaches fail to justify many hard-to-reach states because
of fixed-length sequences. Moreover, they evaluate a chromosome only
on the basis of the final state reached. In this work, dynamic length
sequences are used and the fitness measure takes into account all the
states reached by the sequence. The approach has been compared with
previous approaches and improvements in reached states and fault cov-
erage have been demonstrated.

Acknowledgment: The authors thank King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia, for support.

References

1. Brglez, F., D. Bryan, and K. Kozminski: 1989, ‘Combinational profiles of
sequential benchmark circuits’. International Symposium on Circuits and
Systems pp. 1929-19347.

2. Corno, F., P. Prinetto, M. Rebaudengo, and S. Reorda: 1996a, ‘A Parallel Ge-
netic Algorithm for aoutomatic generation of test sequences for digital circuits’.
In: International Conf. on High Performance Computing and Networking,
Belgium.

3. Corno, F., P. Prinetto, M. Rebaudengo, and S. Reorda: 1996b, ‘GATTO: A
genetic algorithm for automatic test pattern generation for large synchronous
sequential circuits’. IEEE Transactions on CAD of Integrated circuits and
systems 15, 991-1000.

4. Corno, F., P. Prinetto, M. Rebaudengo, S. Reorda, and E. Veiluva, ‘A portable
ATPG tool for parallel and distributed systems’. In: VLSI Test Symposium.
pp. 29-34.

5. Corno, F., M. Rebaudengo, and S. Reorda: 1998, ‘Experiences in the use of
evolutionary techniques for testing digital circuits’. In: Application and Science
of Neural Networks, Fuzzy Systems and Evolutionary computation, SPIE.

6. F.Corno, P.Prinetto, M.Rebaudengo, S. Reorda, and M.Violante: 1997, ‘Ex-
ploiting logic simulation to improve simulation-based sequential ATPG’. In:
Sizth IEEE Asian Test Symposium, Arta, Japan.

7. Hsiao, M. S.: 1997, ‘Use of Genetic Algorithms for testing sequential circuits’.
Ph.D. Dissertation, UIUC.

8. Hsiao, M. S., E. M. Rudnick, and J. H. Patel: 1996, ‘Alternating strategies
for sequential circuit ATPG’. In: European Design and Test Conference. pp.
368-374.

10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hsiao, M. S., E. M. Rudnick, and J. H. Patel: 1997, ‘Sequential circuit test
generation using dynamic state traversal’. In: European Design and Test
Conference. pp. 22-28.

Hsiao, M. S., E. M. Rudnick, and J. H. Patel: 1998, ‘Application of genetically
engineered finite-state-machine sequences to sequential circuit ATPG’. IEEE
Transactions on CAD of Integrated circuits and systems 17, 239-254.

Hsiao, M. S., E. M. Rudnick, and J. H. Patel: 2000, ‘Dynamic state traversal for
sequential circuit test generation’. ACM Transactions on Design Automation
of Electronic Systems 5.

Kim, Y. C. and K. K. Saluja: 1998, ‘Sequential test generators: past, present
and future’. INTEGRATION, the VLSI journal 26, 41-54.

Konijnenburg, M. H., J. T. van der Linden, and A. J. van de Goor: 1997,
‘Sequential test generation with advanced illegal state search’. In: International
Test Conference.

Krishnaswamy, D., M. S. Hsiao, V. Saxena, E. M. Rudnick, and J. H. Patel:
1997, ‘Parallel Genetic Algorithms for simulation-based sequential circuit test
generation’. In: IEEE VLSI Design Conference. pp. 475-481.

Lee, H. K. and D. S. Ha: 1996, ‘HOPE: An Efficient Parallel Fault Simulator
for Synchronous Sequential Circuits’. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 15, 1048-1058.

Marchok, T., A. El-Maleh, W. Maly, and J. Rajski: 1995, ‘Complexity of
Sequential ATPG’. In: European Design and Test Conference. pp. 252-261.
Marchok, T., A. El-Maleh, W. Maly, and J. Rajski: 1998, ‘A complexity analysis
of sequential ATPG’. IEEE Transactions on CAD of Integrated circuits and
systems 15, 1409-1423.

Niermann, T.;, W. T. Cheng, and J. H. Patel: 1990, ‘PROOFS: A fast memory
efficient sequential circuit fault simulator’. In: Design Automation Conf. pp.
535-540.

Niermann, T. and J. H. Patel: 1991, ‘HITEC: a test generation package for
sequential circuits’. In: Furopean Test Conf. pp. 214-218.

Rudnick, E. M., J. G. Holm, D. G. Saab, and J. H. Patel: 1994a, ‘Application of
Simple Genetic Algorithm to sequential circuit test generation’. In: European
Design and Test Conference. pp. 40—45.

Rudnick, E. M. and J. H. Patel: 1996, ‘State justification using Genetic Algo-
rithms in sequential circuit test generation’. A survey report from CRHC Univ.
of Illinois, Urbana.

Rudnick, E. M., J. H. Patel, G. S. Greenstein, and N. M. Niermann: 1994b,
‘Sequential circuit test generation in a genetic algorithm framework’. In: Design
Automation Conference. pp. 698-704.

Rudnick, E. M., J. H. Patel, G. S. Greenstein, and N. M. Niermann: 1997, ‘A
Genetic algorithm framework for test generation’. IEEE Transactions on CAD
of Integrated circuits and systems 16, 1034-1044.

Saab, D. G., Y. G. Saab, and J. A. Abraham: 1992, ‘CRIS: A test cultivation
program for sequential VLSI circuits’. In: International Conf. on Computer-
aided Design. pp. 216-219.

Saab, D. G., Y. G. Saab, and J. A. Abraham: 1996, ‘Automatic test vec-
tor cultivation for sequential VLSI circuits using genetic algorithms’. IEEE
Transactions on CAD 15, 1278-1285.

Sait, S. M. and H. Youssef: 1999, Iterative Computer Algorithms with appli-
cations in Engineering: Solving combinatorial optimization problems. IEEE
Computer Society.

Table I. The benchmark circuits used.

circuit # of PI # of PO # of DFF
s1423 17 5 74
s3271 26 14 116
s3384 43 26 183
sb378 35 49 179
s6669 83 55 239
scfRjisdre 27 54 20
s832jcsrre 18 19 31
sb10Rjcsrre 20 7 30
sb10Rjosrre 20 7 32

11

12

Table II. The
states obtained.

number of target

circuit # of target states
s1423 135
$3271 45
$3384 102
sb378 524
s6669 32
scfRjisdre 267
s832jcsrre 57
sb10Rjcsrre 114
sb10Rjosrre 114

Table ITII. Comparison of the selection schemes

13

(n+1) Random Elitist ~ Roulette Elitist
circuit CHR GEN BT NLimit TLS SR Time SR Time SR Time
$1423 16 100 10 120 150 58 126 19 508 32 748

32 100 10 120 150 64 365 31 778 49 3586

64 100 10 120 150 64 572 49 11300 68 13704

83271 16 800 20 225 150 20 4592 11 5023 15 11214
32 100 20 225 150 21 6244 18 11805 20 18113

256 100 20 225 150 21 10625 19 12976 21 109612

$3384 16 800 10 375 150 65 11849 23 14912 34 17445
64 800 10 375 150 66 23115 51 24905 41 30023

256 800 10 375 150 66 41225 65 68428 50 100615

s5378 16 400 10 275 150 64 25294 22 84225 45 112610
32 400 10 275 150 113 29274 53 100324 61 141251

64 400 10 275 150 115 34893 55 117520 61 161225

$6669 16 10 10 375 150 19 130 19 871 22 914
16 100 10 375 150 27 503 19 5151 22 8681

16 400 10 375 150 30 1664 22 17905 22 24668

scfRjisdre 16 100 10 40 150 18 25 17 285 26 836
64 100 10 40 150 19 42 34 832 43 6700

256 100 10 40 150 20 114 46 5055 50 48820

s832jcsrre 16 400 100 100 150 7 79 6 77 6 82
256 400 100 100 150 7 190 7 1946 7 2126

1024 400 100 100 150 360 8 3441 9 4956

s510Rjcsrre 16 400 10 45 150 12 14 8 120 6 140
256 400 10 45 150 16 132 23 523 23 1208

512 400 10 45 150 23 260 31 2340 31 5038

s510Rjosrre 16 800 10 45 150 12 92 5 233 4 305
64 800 10 45 150 19 661 13 1171 11 2841

256 800 10 45 150 19 2740 17 9870 19 19342

Table IV. Results obtained from the
suggested parameters

circuit Reached Time(sec)
s1423 74 3119
s3271 21 6015
$3384 67 18314
$5378 115 31281
s6669 30 1764
scfRjisdre 48 803
s832jcsrre 8 139
sb10Rjcsrre 16 163

sb10Rjosrre 16 181

Table V. Best results obtained for each circuit

15

circuit Chromes Gen BT NLimit TLS Reached Time(sec)
s1423 32 400 100 120 15 75 4212
s3271 16 400 10 225 150 21 2455
$3384 16 800 100 375 15 68 17703
s5378 32 400 10 275 15 115 31281
s6669 16 400 10 375 15 30 1466
scfRjisdre 16 800 100 40 15 48 735
$832jcsrre 1024 400 100 100 150 9 360
sb10Rjcsrre 512 400 10 45 150 23 260
sb10Rjosrre 64 800 10 45 150 19 661

16

Table VI. Comparison of the two state-justification techniques
our approach approach in Hsiao98 approach in Hsiao98
circuit states time(sec) gens states time(sec) gens states time(sec)
reached reached reached
51423 74 3119 8 50 2743 50 61 3953
53271 21 6015 8 15 1664 200 18 6319
53384 67 18314 8 31 3794 250 45 21161
s5378 115 31281 8 45 3133 100 48 225160
56669 30 1764 8 23 1701 50 24 2289
scfRjisdre 48 803 8 25 501 100 31 5196
s832jcsrre 8 139 8 7 120 100 7 2170
s510Rjcsrre 16 163 8 12 61 100 13 504
sb10Rjosrre 16 181 8 9 62 100 13 583

17

Table VII. Faults detected by the two state-justification techniques

faults detected

states reached

circuit TF approach in Hsia098 our approach TS approach in Hsiao98 our approach
$1423 926 312 578 135 61 74
83271 61 34 41 45 18 21
$3384 376 91 116 102 45 67
$5378 1221 103 285 524 48 115
s6669 40 29 31 32 24 30
scfRjisdre 1920 1397 1802 267 31 48
s832jcsrre 293 38 147 57 7 8
s510Rjcsrre 374 45 85 114 13 16
s510Rjosrre 459 232 431 114 13 16

18

Select Target Fault

Run deterministic
ATPG

Fault simulate

{+———Yes: Fault detected
generated sequence

Justify state using
Genetic Algorithm

Figure 1. A block diagram of the hybrid state-justification methodology.

START

Select a target

state

i

drop additional

states reached Generate a -
chromosome Yes
f
state reached. Logic simulate
append
chromosome to
final sequence
Yes
num-chr<pop-size
bt=bt+1
No fit(s)<fit(NLimit)
Yes
No Append
chromosome to
final sequence
Yes i s=s+1;
No
Add state
Apply replacement Logic simulate the c<pop-size to tabu
policy child
1 Yes T remove first
element from
Yes tabu
state
Yes reached is No
tabu No

Fitness=1

Pick the
next fittest

vector
c=c+1;

sort the
chromosomes
t=0; ¢=0; bt=0

N04T

Figure 2. A flowchart of the meta-heuristic used.

20

1.2
1
§ 0.8 74/—/
£ e 7M Avg. Fitness
L 0.4 -)
0.2 1 —— Best Fitness
O TTITTTTIT I T T I I T I T T T I T I T ITIT T]
A N~ MO O W0 o I~
- a4 N ™M ™M
No. of generations

Figure 8. Average and best fitness vs. number of generations.

21

Fitness
cococo r
ONDROORLN

A N~ MO O 1 d I~ ™M
=T <4 N OO M <

States Traversed

Figure 4. States traversed versus the fitness of reached states for a target state of
s1423 circuit.

22

0.8
0.6
0.4
0.2

Fitness

- < N~ O M ©O© O N v
- N ¥ O © N~ O O
—

118

States Traversed

Figure 5. States traversed vs the fitness of reached states for one of the unreached

state of s1423 circuit.

	Text1: El-Maleh AH, Sadiq M. Sait, Shazli SZ
Evolutionary algorithms for state justification in sequential automatic test pattern generation
ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS 13 (1): 15-21

