
2556 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

construction). The tradeoff coefficients α and β are used based on the
importance of the two objectives. Here, we adjust the coefficients so
that these two terms are approximately of equal weights. In fact, these
two terms are tradeoff terms and are different in different test cases. In
order not to bias one side, we choose a pair of α and β to balance the
effects. Although we have observed a slight increase in I/O wirelength
for “industry3” case containing many I/O-involved nets, we have ob-
tained a better I/O timing performance by an averagely smaller I/O
wirelength.

V. CONCLUSION

In this paper, we have presented an I/O clustering step, considering
DC and performance optimization for high-end flip-chip design. We
formulate the problem as a min-cost maximum flow problem, and
the experimental results are encouraging. With a slight increase in the
percentage of VDTV, we can automate the I/O buffer block generation,
which, in turn, will yield an averagely better timing performance and
a much less DC.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
providing precious suggestions to greatly improve this paper.

REFERENCES

[1] Design of High-Performance Microprocessor Circuits, A. Chandrakasan,
W. Bowhill, and F. Fox, Eds. Piscataway, NJ: IEEE Press, 2001.

[2] L. Cao and J. Krusius, “A new power distribution strategy for area array
bonded ICS and packages of future deep sub-micron ULSI,” in Proc.
IEEE Electron. Compon. Technol. Conf., 1997, pp. 1138–1145.

[3] P. Sandborn, M. Abadir, and C. Murphy, “The tradeoff between periph-
eral and area array bonding of components in multichip modules,” IEEE
Trans. Compon., Packag., Manuf. Technol. A, vol. 17, no. 2, pp. 249–256,
Jun. 1994.

[4] V. Maheshwari, J. Darnauer, J. Ramirez, and W.-M. Dai, “Design of
FPGAS with area I/O for field programmable MCM,” in Proc. ACM Symp.
Field Programm. Gate Arrays, 1995, pp. 17–23.

[5] P. Buffet, J. Natonio, R. Proctor, Y. Sun, and G. Yasar, “Methodology for
I/O cell placement and checking in ASIC designs using area-array power
grid,” in Proc. IEEE Custom Integr. Circuits Conf., 2000, pp. 125–128.

[6] G. Yasar, C. Chiu, R. Proctor, and J. Libous, “I/O cell placement and
electrical checking methodology for ASICs with peripheral I/Os,” in Proc.
IEEE Int. Symp. Quality Electron. Des., 2001, pp. 71–75.

[7] R. Farbarik, X. Liu, M. Rossman, P. Parakh, T. Basso, and R. Brown,
“CAD tools for area-distributed I/O pad packaging,” in Proc. IEEE Multi-
Chip Module Conf., 1997, pp. 125–129.

[8] P. Zuchowski, J. Panner, D. Stout, J. Adams, F. Chan, P. Dunn, A. Huber,
and J. Oler, “I/O impedance matching algorithm for high-performance
ASICs,” in Proc. IEEE Int. ASIC Conf. Exhib., 1997, pp. 270–273.

[9] J. Kozhaya, S. Nassif, and F. Najm, “I/O buffer placement methodol-
ogy for ASICs,” in Proc. IEEE Int. Conf. Electron. Circuits Syst., 2001,
pp. 245–248.

[10] R. Lomax, R. Brown, M. Nanua, and T. Strong, “Area I/O flip-chip
packaging to minimize interconnect length,” in Proc. IEEE Multi-Chip
Module Conf., 1997, pp. 2–7.

[11] C. Tan, D. Bouldin, and P. Dehkordi, “Design implementation of intrinsic
area array ICS,” in Proc. 17th Conf. Adv. Res. VLSI, 1997, pp. 82–93.

[12] J. McGrath, “Chip/package co-design: The bridge between chips and
systems,” in Advanced Packaging Mag., Jun. 2001.

[13] J. Parker, R. Sergi, D. Hawk, and M. Diberardino, (2003, Nov.).
“IC-package co-design supports flip-chips,” EE Times. [Online].
Available: http://www.eedesign.com/story/OEG20031113S0055

[14] K.-Y. Chao and D. Wong, “Signal integrity optimization on the pad as-
signment for high-speed VLSI design,” in Proc. IEEE Int. Conf. Comput.-
Aided Des., 1995, pp. 720–725.

[15] S. Nassif and J. Kozhaya, “Fast power grid simulation,” in Proc.
ACM/IEEE Des. Autom. Conf., 2000, pp. 156–161.

[16] L. Pillage, R. Rohrer, and C. Visweswariah, Electronic and System Simu-
lation Methods. New York: McGraw-Hill, 1995.

[17] A. Berman and R. Plemmons, Nonnegative Matrices in the Mathematical
Sciences. Philadelphia, PA: SIAM, 1994.

[18] I.-M. Liu, H.-M. Chen, T.-L. Chou, A. Aziz, and D. Wong, “Integrated
power supply planning and floorplanning,” in Proc. IEEE Asia South
Pacific Des. Autom. Conf., 2001, pp. 589–594.

[19] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows—Theory, Algorithms,
and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[20] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
Cambridge, MA: MIT Press, 1990.

[21] W. Choi and K. Bazargan, “Incremental placement for timing optimiza-
tion,” in Proc. IEEE Int. Conf. Comput.-Aided Des., 2003, pp. 463–466.

[22] H. Yu, X. Hong, and Y. Cai, “MMP: A novel placement algorithm for
combined macro block and standard cell layout design,” in Proc. IEEE
Asia South Pacific Des. Automation Conf., 2000, pp. 271–276.

[23] P. Madden, “Reporting of standard cell placement results,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 21, no. 2, pp. 240–247,
Feb. 2002.

[24] A. Caldwell, A. Kahng, S. Mantik, and I. Markov, “Implications of area-
array I/O for row-based placement methodology,” in Proc. IEEE Symp.
IC/Package Des. Integr., 1998, pp. 93–98.

Efficient Static Compaction Techniques for Sequential
Circuits Based on Reverse-Order Restoration

and Test Relaxation

Aiman H. El-Maleh, S. Saqib Khursheed, and Sadiq M. Sait

Abstract—The authors present efficient reverse-order-restoration
(ROR)-based static test compaction techniques for synchronous sequential
circuits. Unlike previous ROR techniques that rely on vector-by-vector
fault-simulation-based restoration of test subsequences, the authors’
technique restores test sequences based on efficient test relaxation. The
restored test subsequence can be either concatenated to the compacted
test sequence, as in previous approaches, or merged with it. Furthermore,
it allows the removal of redundant vectors from the restored subsequences
using a state traversal technique and incorporates schemes for increasing
the fault coverage of restored test subsequences to achieve an overall
higher level of compaction. In addition, test relaxation is used to take ROR
out of saturation. Experimental results demonstrate the effectiveness of
the proposed techniques.

Index Terms—Fault coverage, linear reverse-order restoration (LROR),
state traversal (ST), static compaction, test relaxation.

I. INTRODUCTION

The complexity of sequential automatic test pattern recognition
(ATPG) is significantly higher than combinational ATPG [1]. For this
reason, to maximize fault coverage, sequential ATPG uses heuristics
that could result in large test sequences. For example, when genetic
algorithms are employed, a high fault coverage is achieved, but at the
expense of long test sequences [2].

The length of a test set for testing system-on-chip (SoC) crucially
affects the test application time (TAT) and memory requirements of
the tester. Therefore, test compaction focuses on reducing the length
of a test set while maintaining its fault coverage. Test compaction

Manuscript received March 1, 2005; revised July 5, 2005 and September
22, 2005. This work was supported by King Fahd University of Petroleum and
Minerals under Project FT 2004/07. This paper was recommended by Associate
Editor S. M. Reddy.

The authors are with the Department of Computer Engineering, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia (e-mail:
aimane@ccse.kfupm.edu.sa; saqib@ccse.kfupm.edu.sa; sadiq@ccse.kfupm.
edu.sa).

Digital Object Identifier 10.1109/TCAD.2006.873895

0278-0070/$20.00 © 2006 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006 2557

algorithms can be classified into two main classes, namely: 1) dynamic
compaction and 2) static compaction. Dynamic compaction algorithms
incorporate heuristics aimed at producing shorter test length into the
test generation process; whereas, static compaction algorithms are
applied as a postprocessing step to the test generation process. Static
compaction is known to be more efficient for sequential circuits than
dynamic compaction.

Static compaction algorithms for sequential circuits are useful for
both scan and nonscan sequential circuits. Scan circuits benefit from
these algorithms in two ways: 1) To reduce the number of scan
operations that require a large number of clock cycles, sequences
of primary inputs can be applied between scan operations. Static
compaction can be effective in reducing the length of such primary
input sequences [3]. 2) Recently, an approach called “transparent” scan
was proposed, which considers a scan circuit as a sequential circuit
with extra inputs and outputs corresponding to scan-chain inputs,
scan-select input, and the scan-chain outputs [4]. Under this approach,
static compaction algorithms for nonscan sequential circuits can be
applied directly for scan circuits, without altering the algorithm.

Several well-known static compaction techniques are proposed in
the literature. Pomeranz and Reddy proposed vector omission [5],
which removes a test vector from the test set if it does not reduce
the fault coverage. Hsiao et al. [6] explored another aspect of vector
omission in which test vectors that take the test set to the same state
(cycles) without contributing to fault detection are removed. The idea
is extended in [7] using relaxed state assignments, and a higher level
of compaction is achieved by locating bigger cycles in the test set.

The results of vector omission showed that the majority of test
vectors can be removed from the test set, which suggested that it
would be more appropriate to find test vectors that are needed for
maintaining the fault coverage rather than those that can be removed.
This observation led to the concept of vector restoration [8].

Test vector restoration [8] removes all the test vectors and restores
them one by one considering the target fault(s) in decreasing order of
detection time. Test vectors are added to the compacted test set until the
target fault is detected. The compacted test set is then fault simulated,
and all the faults that are detected are dropped. This process continues
until all the faults (detected earlier by the original test set) are detected.
Restoration also produces a covering effect, as hard-to-detect faults
that are detected toward the end have higher chances of detecting easy-
to-detect faults that are detected by initial test vectors thrown randomly
by ATPG. The restoration algorithm places test vectors in the original
order of their appearance.

Many algorithms are developed on top of vector restoration. Linear
reverse order restoration (LROR) was proposed by Guo et al. to speed
up the vector restoration process [9]. The algorithm selects some faults,
in decreasing order of detection time, restores test vectors using fault
simulation, and places the restored test vectors toward the end of the
compacted test sequence. Thus, only newly restored test vectors are
fault simulated rather than the entire test set as in original vector
restoration.

Another heuristic based on restoration is the single fault restoration
(SIFAR), proposed by Lin et al. [10]. It targets a single fault in
decreasing order of detection time and restores test vectors until the
fault is detected. It uses parallel pattern simulation to speed up the
restoration process, achieving better compaction results in lesser time
than LROR [9].

Guo et al. improved LROR [11], [12] by making the following mod-
ifications to their previous proposal [9]. During test vector restoration,
if the algorithm comes across a time frame with undetected faults, then
these faults are added to the target fault list and restoration continues.
Results obtained by this modified method were comparable to SIFAR
and other previous versions of restoration algorithm.

Finally, Guo et al. [12] improved LROR [11] by using vector-
omission-based technique to the newly restored subsequences in
Mixed-Mode (MISC) algorithm. In this technique, test vectors are
omitted if they do not contribute to the detection of target faults.
The MISC algorithm gave overall best published results in terms of
compaction but is comparatively more CPU-intensive than LROR [11]
and SIFAR [10].

Vector restoration algorithms suffer from quick saturation; usu-
ally, they can be applied a small number of times to reduce the
test set, and mostly, reductions are found in the first few iterations.
Pomeranz and Reddy [13], [14] proposed a number of schemes to help
restoration algorithms move out of saturation. These algorithms rely on
inserting new test vectors to give the compaction algorithm a chance
to further reduce the size. Although effective in terms of reducing the
size of a test set, they have high computational complexity.

Vector restoration algorithms could suffer from a large number of
fault simulations to restore a test sequence to detect the target faults,
which makes it computationally expensive. Recently, an efficient test
relaxation scheme was proposed for sequential circuits by El-Maleh
and Al-Utaibi [15]. The relaxation algorithm returns the relaxed as-
signments on inputs as well as on flip-flops of the circuit, considering
a certain number of target faults.

In this paper, we utilize the relaxation algorithm in extracting a
test sequence. This is achieved by stopping the relaxation process
whenever the required values on all the flip-flops are either do not cares
(Xs) or are compatible with the states reached by a previously restored
test sequence. This gives an efficient way of restoring test sequences
compared with the expensive vector-by-vector fault-simulation-based
restoration technique. The restored test sequences using this scheme
have the additional property of being relaxed, i.e., not fully specified,
and therefore can be merged using schemes similar to those proposed
in [16].

In addition, we propose an efficient way to identify redundant
vectors in a restored test subsequence based on a technique similar
to state traversal (ST) [6].

The proposed relaxation-based LROR technique (RX-LROR) also
takes advantage of the state of the already restored compacted test
sequence in reducing the size of the currently restored subsequence.
Furthermore, the test relaxation algorithm is used to take RX-LROR
out of saturation.

We also propose a technique that enhances the performance of
RX-LROR by increasing the fault coverage of currently compacted test
sequence before restoring a subsequence for the next target fault(s).
This is done by relaxing and randomly filling the compacted test set,
and it is found effective in drastically reducing the test size. Finally, we
propose three hybrid compaction techniques that reduce the inherent
limitation of vector restoration algorithms of quick saturation and offer
a tradeoff between compaction quality and CPU time.

The paper is divided as follows: Section II discusses the proposed al-
gorithms with illustrations, Section III discusses the limitations of the
justification step of the test relaxation algorithm, Section IV presents
experimental results, and, finally, Section V concludes the paper.

II. PROPOSED ALGORITHMS

In this section, different algorithms proposed in this paper are
described.

A. Relaxation-Based ROR With ST

Algorithm 1 illustrates our implementation of the ROR technique
based on test relaxation. Let us suppose that the size of the test set to
be compacted, T , is of length l. We denote the compacted test set as
C; initially, C = ∅. Given a time frame i, we denote the set of faults

2558 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

detected at i by Fi. The good and faulty states of the flip-flops are
denoted by Sg and Sf , respectively. We also denote the required flip-
flop values for justifying the faults Fi by (Sg/Sf)i. Ftarget holds all
the faults detected by T .

Algorithm 1. Reverse order restoration (RX-LROR)
1) Fault simulate the circuit using the given test set. Collect the

detection time of each fault.
2) Restore the first k test vectors as a synchronizing sequence

from the given test set T . C = {v1, v2, v3, . . . , vk}.
3) Fault simulate the restored sequence C and drop all the faults

detected from Ftarget. Store the (Sg/Sf) values of all the flip-
flops for all undetected faults.

4) if (Ftarget = ∅) Return C else Go to Step 5).
5) V = Test Restoration(n,Fn), where n is the last time frame

having undetected faults.
6) V = State Traversal(V, Fn, Ftarget).
7) C = C & V ; Go to Step 3).

Let Si and Sj indicate the flip-flop values (required or reached) at
time frames i and j, respectively. Then, the state justification require-
ments of Sj are covered by those of Si, if Sj ⊇ Si. For example, let Sj
be 1X and Si be 10. Then, Sj ⊇ Si, and this means that the required
values on Sj are satisfied by Si. Finally, & is a concatenation operator.

Algorithm 1 starts by restoring a self-synchronizing sequence of
length k vectors, where k is user specified. Then, it starts the restora-
tion process from the last time frame in the test sequence at which
some faults are detected. Test restoration is shown in Algorithm 2.
A test subsequence for a set of faults is restored by justifying the
required values for detecting the faults frame by frame. The restoration
process of the test subsequence terminates if the required values on the
flip-flops at a time frame are all Xs or are covered by the flip-flop
values reached by the previously restored sequence. It should be noted
that (Sg/Sf) holds the states for all undetected faults that reached
to the flip-flops after fault simulation in Step 3) of Algorithm 1.
On the other hand, (Sg/Sf)i, as shown in Algorithm 2, indicates
the required good and faulty values for time frame i. However, it
should be observed that the good and faulty values in (Sg/Sf)i and
(Sg/Sf) are compared only with respect to the faults being justi-
fied, i.e., Fi.

Algorithm 2. Test Restoration(n,Fn)
1) Let i = n, and V = ∅ be the sequence currently restored.
2) (Sg/Sf)i = Justify(Fi, i) and let j = i.
3) while (((Sg/Sf)j �= X) and ((Sg/Sf)j �⊇ (Sg/Sf))) {
V = Vj & V // add current time frame to V
j = j − 1 // move back single time frame
(Sg/Sf)j = Justify(Fi, j) // get the required values for all flip-
flops in this time frame
} // end while

4) Return (V).

Once a test subsequence is restored, an attempt to reduce its size
is made by the ST algorithm, which is discussed in the next section.
Finally, the reduced subsequence is concatenated to the previously re-
stored sequence, and only the concatenated sequence is fault simulated
and detected faults are dropped. The process continues until all the
faults are detected.

B. ST

During restoration, the algorithm stores for each fault the Sg/Sf
requirements that have to be justified in previous time frames. The
ST algorithm is called after a sequence is restored and is shown in

Fig. 1. Compaction by ST algorithm.

Algorithm 3. In Algorithm 3, it is assumed that the restored subse-
quence V , consisting of n vectors, detects F faults. It is also assumed
that i and j are variables corresponding to time frames i and j,
respectively.

Algorithm 3. State Traversal(V, Fn, Ftarget)
1) Let i = 2 and j = n.
2) while (j > 2) {

if ((for each fault k ∈ Fn((Sg/Sf)i ⊆ (Sg/Sf)j)) &
(No fault ∈ Ftarget detected in time frames i to j − 1)) {

Clip vectors Vi to Vj−1 from V
j = i− 1; i = 2 }

else if (i < j − 1)i++
else {j −−; i = 2}
} // end while

3) Return (V).

For each time frame j, the algorithm checks for the earliest possible
time frame i such that the justification requirements of time frame j
are satisfied by the justification requirements of time frame i. If such
a time frame i is found, then the vectors from i to j − 1 are redundant
and can be removed. Algorithm 3 removes these vectors if no fault is
detected within these vectors. This heuristic was found experimentally
useful in reducing the overall restored test sequence by ST and not
resulting in longer test sequences.

Algorithm 3 is illustrated in Fig. 1. As shown in Fig. 1, the algorithm
stores Sg/Sf for each fault in a list. Because (Sg/Sf)4 ⊇ (Sg/Sf)2
for fault f1, the state requirements at time frame 4 are satisfied by the
state requirements at time frame 2. Therefore, test vectors 2 and 3 can
be removed from the restored subsequence without affecting the fault
coverage. It should be observed that Algorithm 3 takes into account
all the faults in Fn when comparing (Sg/Sf) values. Therefore, the
algorithm removes redundant vectors, just by state comparison, with-
out doing any additional fault simulation.

C. Merging Restoration (MR)

MR follows the same flow as Algorithm 1. However, it takes
advantage of the unspecified assignments at the inputs of the extracted

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006 2559

Fig. 2. Compaction by RX-LROR based on increasing fault coverage algorithm.

subsequence and merges it with previously restored subsequences
rather than concatenating it. In MR, Step 7) of Algorithm 1 is replaced
by first calling Algorithm 4 and then moving back to Step 3). However,
in Step 3), the states of flip-flops (Sg/Sf) are not stored for the
undetected faults. Furthermore, the while condition in Step 3) of test
restoration algorithm is replaced by only ((Sg/Sf)j �= X)) condition.
Therefore, in Step 5) of MR, test restoration algorithm returns the self-
initializing subsequence for the target faults.

Algorithm 4. Merging from Top (C, V)
1) Let nc and nv be the number of test vectors in C and V .
2) if (nc < nv) swap C with V and nc with nv .
3) Let i = last test vector in C, SM = i
4) Let j = last test vector in V
5) if (i ≥ 1)

while (j ≥ 1 and i ≥ 1) {
if (C[i] and V [j] are compatible) {j = j − 1; i = i− 1;

if (i = 0 OR j = 0) Merge C and V , starting from
C[SM] and V [nv]

} // end if
else { SM = SM− 1; i = SM

Go to Step 4)} // breaking the while loop
} // end while

6) else C = V & C;
7) Return (C).

The idea of merging is similar to the one proposed by Roy et al. [16].
The subsequences can be merged in different ways. Merging from top
is shown by Algorithm 4. It checks the compatibility of the two test
sequences (currently restored V and compacted test set C) and tries
to merge the two test sequences starting from the last test vectors
of V and C toward the beginning of the test sequences. Merging
from bottom, on the other hand, is exactly the opposite; it checks
the compatibility of the two test sequences C and V and tries to merge
the two sequences starting from the first test vectors toward the end
of the test sequences. Similarly, another scheme uses a more greedy
heuristic and decides on merging the subsequence wherever savings
are higher. However, experimental results showed that merging from
top gave overall best results. Therefore, our work uses merging from
top only. ST is not applied in MR as higher compaction is achieved
without it.

A drawback of MR, compared with concatenating subsequences
(RX-LROR), is that the currently compacted test set C needs to be
fault simulated in contrast to fault simulating only the newly restored
subsequence.

After a single run of the MR Algorithm, there is a large percentage
of unspecified bits. These bits can be randomly filled for subsequent
iterations.

D. Subsequence Fault Coverage Increasing LROR (SFC-LROR)

In this section, we propose a modification to the RX-LROR com-
paction algorithm (Algorithm 1) to maximize its effectiveness in
producing more compacted test sequences.

The proposed algorithm is called SFC-LROR and is shown as
Algorithm 5. It follows the same steps as RX-LROR, Algorithm 1, with
a difference that after concatenating the newly restored test sequence to
the compacted test set, relaxation algorithm [15] is called to return the
unspecified input assignments on the currently compacted test set. This
step is followed by randomly filling the unspecified inputs. Randomly
filling the unspecified inputs is essentially used for increasing the fault
coverage as more faults can be detected, which could lead to reducing
the number of restored test sequences. These two steps, “relaxation”
followed by “random filling,” are done once each time a test sequence
is restored, and if the fault coverage of the compacted test sequence
increases, the process is repeated.

Algorithm 5. Subsequence Fault Coverage Increasing RX-LROR
(SFC-LROR)

1) Fault simulate the circuit using the given test set. Collect the
detection time of each fault.

2) Restore the first k test vectors as a synchronizing sequence from
the given test set T . C = {v1, v2, v3, . . . , vk}.

3) Fault simulate the restored sequence C and drop all the faults
detected from Ftarget. Store the (Sg/Sf) values of all the flip-
flops for all undetected faults.

4) if (Ftarget = ∅) Return C else Go to Step 5).
5) V = Test Restoration(n,Fn), where n is the last time frame

having undetected faults.
6) V = State Traversal(V, Fn, Ftarget)
7) C = C & V ;
8) while (fault coverage of C increases & Ftarget �= ∅) {

C = Relaxation(C)
RandomFill(C) }

9) Go to Step 3).

It is important to emphasize that the objective of subsequence
fault coverage increasing is to achieve higher compaction rather than
higher fault coverage by the compacted test sequence. Compaction can
increase the overall fault coverage of the test set, which was noted
earlier by Guo et al. in PROPTEST [17], [18] for achieving higher
fault coverage.

Fig. 2 illustrates the behavior of SFC-LROR in comparison with
RX-LROR. RX-LROR restores the test sequence (6, 7) to detect the
faults f3 and f10 and the test sequence (11, 12) to detect faults f5
and f6. On the other hand, SFC-LROR detects these faults in earlier
test sequences. SFC-LROR increases the fault coverage of the test
sequence (1–3) to detect f3. Similarly, the test sequence (4, 5) detects

2560 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Fig. 3. Hybrid-III scheme.

the faults f5 and f10, and the test sequence (8–10) detects the fault f6,
in addition to previously detected faults. Hence, SFC-LROR restores
lesser test sequences giving higher level of compaction.

E. Hybrid Schemes

In this section, we propose three hybrid schemes that reduce the
inherent limitation of vector restoration algorithms of quick saturation
and capitalize on combining the benefits provided by the different
algorithms proposed in this work.

Hybrid-I is composed of two primary steps. In the first step
(step-I), the proposed RX-LROR algorithm (Algorithm 1) is run for
two iterations, and if there is any reduction in test sequence length in
any of these two iterations, the algorithm runs for one more iteration.
The algorithm reiterates by running an extra iteration as long as the
last iteration reduces the test sequence length. This step is followed
by test relaxation [15] and randomly filling the unspecified bits, which
forms the second step (step-II) of Hybrid-I. Test relaxation and random
filling (step-II) change the composition of test set while maintaining its
fault coverage. This helps moving the algorithm out of local minima,
and the search space is therefore increased. Furthermore, it allows
RX-LROR to reiterate far longer and partially replaces almost every
test vector at a very low cost of CPU time. Step-II is again followed by
step-I, and the process continues (step-I followed by step-II) until four
consecutive iterations are unable to reduce the test size.

Hybrid-II is based on the intuition that merging of relaxed sub-
sequences (MR) gives another level of freedom to test compaction;
therefore, it may further squeeze the size of test set, if applied after
Hybrid-I. As mentioned previously, MR requires comparatively larger
number of fault simulations than RX-LROR. This drawback makes it
vulnerable to large-sized test set in terms of CPU time.

Hybrid-II is proposed to keep the advantages offered by MR while
restricting its limitations. It applies MR to the solution found by
Hybrid-I. In this algorithm, MR is applied once and is reiterated until
one pass of MR does not further reduce the test size.

Hybrid-III is another powerful compaction scheme, which combines
SFC-LROR and MR. The algorithm reiterates SFC-LROR until four
consecutive iterations are unable to reduce the test size. This step is
followed by MR, which is reiterated until one iteration of MR does
not reduce the test size. MR is again followed by SFC-LROR, and the
process continues as long as each pass (SFC-LROR followed by MR)
reduces the test size. The idea is illustrated by Fig. 3.

III. LIMITATIONS OF JUSTIFICATION ALGORITHM

The proposed compaction scheme is based on the test relaxation
algorithm in [15], which involves justification of the required values to
detect a fault. The justification algorithm has limitations that may lead
to the restoration of longer test sequences than necessary.

The justification algorithm is guided by cost functions in case of
having several choices for justifying a value. To minimize the length of

the extracted sequence, a multiplicative weight of 10 or 100 is applied
to flip-flop cost functions whenever a flip-flop is reached during cost
function computation. The approximate nature of the computed cost
functions may guide the justification algorithm to a choice that leads
to the extraction of a longer test sequence.

Another limitation is during justification of faulty values. Because
the justification algorithm is based on the cost of good values only, it
may lead to the selection of inferior choices. For instance, to justify 1/0
at the output of a gate, the algorithm considers the cost of justifying 0
as a very high number, as the good value of the gate is 1; it may choose
this path only when there is no cheaper choice available or it is the only
choice.

This is illustrated in Fig. 4. Suppose that it is required to restore
a test subsequence for the fault k s-a-0 from the given test sequence
(10, 11, 11, 11).

The fault is detected in the last time frame, and justifying the value
1/0 on the output leads to the requirement of 1/0 on line m and X/0
on line n. The faulty value on line m is justified through the fault site,
and this leads to the requirement of 1/X on input A. There are no
justification requirements on input B; and hence, it can be relaxed.

The value X/0 on line n has to be justified in the previous time
frame (i.e., time frame 3). This will lead to the justification requirement
X/0 on line o in time frame 3. Notice that this value could be
justified through line p from the fault site leading to the test sequence
(XX, 1X). However, the algorithm uses cost functions based on good
values only; the cost of having a zero on line p is a very high number.
Thus, line p is not selected, and line q is selected as it has lesser
cost. This causes the algorithm to go back until the first time frame,
where the value is justified through input B. Thus, the algorithm
will return the test sequence (X0, 1X, 1X, 1X), which has redundant
vectors.

One way to address this limitation is by computing the cost of
faulty values (in addition to good values) for a single time frame.
This could be computed by injecting the faulty values at the fault
site and processing the circuit level by level. These two cost functions
could better guide the justification process for good and faulty values
separately, using respective cost functions. However, this step could be
time consuming.

A second and more exact method to address this limitation is by
setting an upper limit to the size of restored subsequence. During the
justification process, if the restored subsequence reaches that upper
limit, it could then be fault simulated using the target fault list. In
case of failure in fault detection, the justification algorithm would
continue until it justifies the fault or it reaches the upper limit again.
In either case, a pass of fault simulation would restrict the size of
subsequence. This scheme is a compromise between large test size due
to inexact nature of cost functions and expensive vector-by-vector fault
simulation to find the exact starting point of the subsequence as used
by LROR.

The second limitation of current implementation is the memory
requirement. Currently, our technique stores all faults that get excited
and propagated, even if they are not detected. The memory usage can
be significantly reduced by storing only information about propagated
faults from the time of their excitation to detection. A two-pass fault
simulation scheme, as proposed by Hsiao et al. [6], can be used to find
exactly those time frames where the faults are excited, propagated, and
reach to the primary output. For faults that require large test sequence,
the algorithm can be altered to run in phases to store only the good
and faulty values in a predetermined number of frames to reduce the
memory requirements. This will require running the fault simulator in
phases to determine the required good and faulty values for the set of
frames across which the faults are going to be justified. These ideas
will be investigated in future work.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006 2561

Fig. 4. Limitation of justification algorithm in extraction of longer test sequence.

TABLE I
COMPACTION RESULTS ON STRATEGATE TEST SEQUENCES

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed test compaction al-
gorithms, we have performed experiments on the ISCAS89 benchmark
circuits using STRATEGATE [2] and HITEC [19] test sequences. The
experiments are conducted on an IBM P-IV 2.0-GHz processor, with
512-MB RAM, and HOPE [20] is used as a fault simulator.

The RX-LROR version implemented in our work is similar to the
one proposed by Guo et al. [9], as it does not include new faults into
the target fault set during subsequence restoration for a group of faults
in a single time frame. Therefore, our implementation of RX-LROR is
compared with that proposed by LROR [9] for a fair comparison. This
version of LROR [9] used 20 test vectors as synchronizing sequence
in case of test size more than 300 vectors and l/16 otherwise. The
number of vectors in a synchronizing sequence is kept the same in our
version of RX-LROR for the sake of comparison. The proposed hybrid
schemes have shown better results and are also compared with the
other best known compaction algorithms, i.e., LROR [12], MISC [12],
and SIFAR [10], to show their overall performance. It should be noted
that LROR [12] uses a single test vector as a synchronizing sequence;
therefore, for fair comparison, hybrid schemes and SFC-LROR
have also used the same synchronizing sequence in their respective
RX-LROR implementations.

During cost function computation for flip-flops, our implementation
of RX-LROR, RX-LROR-ST, and test relaxation applies a multi-
plicative weight of 10; whereas, in SFC-LROR and MR, it applies a

multiplicative weight of 100. These weights were selected based on
experiments.

The performance of compaction algorithms on STARATEGATE [2]
test sequences, together with CPU time, reported in brackets are shown
in Table I. The results of LROR [9] are compared with the proposed
algorithms. From Table I, it can be seen that the proposed RX-
LROR performed better than LROR [9] on seven out of ten circuits,
with slightly better overall savings and comparable CPU time. These
results are further improved by applying ST to the newly restored
subsequences in RX-LROR-ST algorithm. RX-LROR-ST has further
reduced the compacted test set against a small penalty of CPU time.
It has again performed better than LROR [9] on seven out of ten
circuits. The next column (ITE-RX-LROR-ST) is the iterative version
of the same algorithm. Although it shows comparable results to ITE-
LROR [9], it can be noticed that ITE-RX-LROR-ST has suffered
from quick saturation, and for many circuits it is unable to reduce the
test size.

It can be observed that for some circuits, e.g., s5378, the compacted
test sequence length obtained by our proposed implementation of
RX-LROR (Algorithm 1) is larger than the one obtained by
LROR [9]. This is due to the current limitations of the justification
algorithm, which will be addressed in future work.

The next column in Table I shows the performance of MR. MR did
not perform well compared with our implementation of RX-LROR. It
has achieved better results on two circuits only (compared with our

2562 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

TABLE II
HYBRID-II IN COMPARISON TO BEST KNOWN COMPACTION ALGORITHMS ON STRATEGATE AND HITEC TEST SEQUENCES

TABLE III
COMPARISON OF RX-LROR-ST AND SFC-LROR ON STRATEGATE AND HITEC TEST SEQUENCES

version of RX-LROR). This is due to the fact that the extracted test
sequences are not fully specified, which reduces the number of faults
detected by the restored sequence compared with the fully specified
one. This also results in extracting a larger number of test sequences,
which affects the compaction quality and CPU time. Despite these
limitations, it has the potential of improving the compaction quality,
if applied after RX-LROR, as discussed previously.

ITE-Hybrid-I is shown next in Table I. It can be seen that ITE-
Hybrid-I has significantly improved the results of ITE-RX-LROR-ST
and has performed better than ITE-LROR [9] on nine out of ten
circuits, with higher overall savings.

The last column of Table I shows the performance of ITE-Hybrid-II.
MR has shown the effect of further squeezing the size of test set, which
is already reduced by ITE-Hybrid-I. ITE-Hybrid-II has performed
better than ITE-LROR [9] on nine out of ten circuits and has given the
highest overall savings, in comparison to all other algorithms shown
in Table I.

Based on the above results, ITE-Hybrid-II is compared with ITE-
LROR [12], ITE-MISC [12], and ITE-SIFAR [10] on STRATEGATE
[2] and HITEC test sequences [19] in Table II.

Considering STRATEGATE test sequences [2], it can be seen that
ITE-Hybrid-II has performed better on eight out of ten circuits, with
higher overall savings than ITE-LROR [12]. When compared with

ITE-SIFAR [10], ITE-Hybrid-II has again performed better on seven
out of ten circuits, whereas one resulted in a draw. In terms of overall
savings, ITE-Hybrid-II has shown higher savings than ITE-SIFAR.
However, ITE-MISC has performed better than ITE-Hybrid-II on
six out of ten circuits, but the overall savings are comparable and the
CPU time is significantly higher than that of ITE-Hybrid-II.

Next, these algorithms (other than ITE-SIFAR) are compared on
HITEC [19] test sequences. As shown in Table II, ITE-Hybrid-II gives
better results than ITE-LROR [12] on nine out of thirteen circuits,
with significantly higher overall savings. However, comparing to
ITE-MISC [12], it shows better performance on nine out of thirteen
circuits, with slightly better overall savings and lesser CPU time. The
effect of ITE-Hybrid-II is even more pronounced for the circuits s1196,
s1238, s3271, s3384, and s4863.

The performance of SFC-LROR is shown in Table III. The one-shot
version of RX-LROR-ST and SFC-LROR on STRATEGATE [2] and
HITEC test sequences [19] is shown. It can be seen that SFC-LROR
has made significant improvement on our implementation of
RX-LROR-ST. It has shown a higher level of compaction on eight out
of ten circuits, with higher overall savings on STRATEGATE [2] test
sequences. This trend is even more pronounced on HITEC [19] test
sequences, shown next in the same table. On HITEC test sequences
[19], SFC-LROR has performed better than RX-LROR-ST on twelve

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006 2563

TABLE IV
HYBRID-III IN COMPARISON TO BEST KNOWN COMPACTION ALGORITHMS

out of thirteen circuits and achieved much higher overall savings. It
is worth mentioning that this (fault coverage increasing) scheme is
generic and can be applied on top of any static compaction scheme.
These results demonstrate the strong potential of the scheme.

The performance of the iterative version of SFC-LROR (ITE-SFC-
LROR) is shown in Table III. ITE-SFC-LROR reiterates SFC-LROR
until four consecutive iterations are unable to reduce the test size. It
can be seen that in comparison to SFC-LROR on STRATEGATE test
sequences [2], it has further reduced the test size on nine out of ten
circuits and achieved higher overall savings of nearly 400 test vectors.
Similarly, on HITEC test sequences [19], it has further squeezed the
test size on eleven out of thirteen circuits, with nearly 900 test vectors
higher overall savings.

ITE-SFC-LROR can also be compared with the other best known
compaction algorithms shown in Table II. On STRATEGATE test
sequences [2], in comparison to ITE-LROR [12], ITE-SFC-LROR
has performed better on eight out of ten circuits, with higher overall
savings. In comparison to ITE-SIFAR [10], it has again performed
better on six out of ten circuits, with higher overall savings. Finally, in
comparison to ITE-MISC [12], it has performed better on four out of
ten circuits, with comparable savings. The effect is more pronounced
on s5378.

The performance of ITE-SFC-LROR can also be compared with all
these algorithms (other than SIFAR [10]) on HITEC test sequences
[19] shown in Table II. It can be noticed that ITE-SFC-LROR has
performed better than ITE-LROR [12] on ten out of thirteen circuits,
whereas one resulted in a draw. It has shown more than 600 test vectors
savings than ITE-LROR [12]. In comparison to ITE-MISC [12], it has
performed better on eight out of thirteen circuits and achieved almost
200 test vectors savings more than ITE-MISC [12]. Some of the cir-
cuits like s713, s820, s1238, s1488, s5378, and s4863 are worth
noticing.

Finally, Table IV shows the performance of ITE-Hybrid-III and
compares it with the best known compaction algorithms on STRATE-
GATE [2] and HITEC [19] test sequences. On STRATEGATE test
sequences [2], in comparison to ITE-LROR [12], ITE-Hybrid-III has
performed better on eight out of ten circuits, with significantly higher
overall savings. In comparison to ITE-SIFAR [10], it has again per-
formed better on eight out of ten circuits, with higher overall savings.
Finally, in comparison to ITE-MISC [12], it has performed better on
five out of ten circuits, with higher overall savings. The effect is more
pronounced on s1196, s1238, and s5378.

TABLE V
RX-LROR IN COMPARISON TO LROR TO DEMONSTRATE

LIMITATIONS OF JUSTIFICATION ALGORITHM

ITE-Hybrid-III is compared next in the same table on HITEC test
sequences [19]. It can be noticed that ITE-Hybrid-III has performed
better than ITE-LROR [12] on eleven out of thirteen circuits, whereas
one resulted in a draw. It has shown more than 1000 test vectors
savings than ITE-LROR [12]. In comparison to ITE-MISC [12], it
has performed better on twelve out of thirteen circuits and achieved
almost 600 test vectors higher overall savings. Some of the circuits
like s713, s820, s1196, s1238, s1488, s5378, s3271, s3384, and
s4863 have achieved significantly higher savings than the other two
algorithms.

The circuits for which RX-LROR resulted in much longer test
sequences than LROR [9] are shown in Table V. It should be noted that
we have implemented LROR scheme, similar to [9], for ease of com-
parison, because [9] did not report results on HITEC test sequences.
These circuits are not shown in other tables as they demonstrate lim-
itations of justification algorithm either on HITEC or STRATEGATE
test sequences. It should be observed that s382, s1423, and s1494 have
shown better results than LROR on one of the two (either on HITEC
or STRATEGATE) test sets, but are removed from other tables due
to much higher test size on the other test sequence. The difference in
test size is due to the limitations of the used justification algorithm.
Techniques to address these limitations are proposed in Section III and
will be further investigated in future work.

It can be observed from our experimental results of the proposed
compaction algorithms and the results reported in the literature [9],
[12], [10] that the CPU time increases nonlinearly with the reduction in
test sequence length. It is justifiable to spend high CPU time to achieve
more compacted test sequences because test compaction is an offline
process and is performed only once in the design cycle. Sequential

2564 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

ATPG is often used for high-volume manufacturing designs that
cannot adopt the full-scan design methodology, e.g., microprocessors.
Having more compacted test sequences will reduce the TAT and the
overall testing cost.

V. CONCLUSION

In this paper, we have proposed several static compaction algorithms
for sequential circuits based on efficient test relaxation and ROR
schemes. The proposed work has the advantage of quickly restoring a
test sequence for a set of faults compared with vector-by-vector fault-
simulation-based restoration techniques. The restored subsequence is
further compacted by ST algorithm, which allows the removal of
redundant vectors without additional fault simulation. These restored
subsequences can be either concatenated (having fully specified bits;
making RX-LROR), or they can be subjected to increasing the fault
coverage (SFC-LROR) and, finally, can also be merged (relaxed input
assignments, MR). MR is found to be more effective after applying
RX-LROR and SFC-LROR as demonstrated by ITE-Hybrid-II and
ITE-Hybrid-III. Finally, we have also proposed an efficient way of
taking any compaction algorithm out of saturation. This is achieved by
using test relaxation and randomly filling the unspecified bits before
reiterating the algorithm, demonstrated by ITE-Hybrid-I.

The proposed static compaction algorithms in this paper have
clearly shown the tradeoffs between compaction quality and CPU time.

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Guo for clarifying some of
the concepts of vector restoration and K. Al-Utaibi for his help and
support in the test relaxation algorithm.

REFERENCES

[1] T. Marchok, A. El-Maleh, W. Maly, and J. Rajski, “A complexity analysis
of sequential ATPG,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 15, no. 11, pp. 1409–1423, Nov. 1996.

[2] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Sequential circuit test
generation using dynamic state traversal,” in Proc. Eur. Design Test Conf.,
Mar. 1997, pp. 22–28.

[3] I. Pomeranz and S. M. Reddy, “Vector restoration-based static compaction
using random initial omission,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 23, no. 11, pp. 1587–1592, Nov. 2004.

[4] ——, “A new approach to test generation and test compaction for scan
circuits,” in Proc. Design Automation Test Eur., 2003, pp. 1000–1005.

[5] ——, “Procedures for static compaction of test sequences for synchronous
sequential circuits,” IEEE Trans. Comput., vol. 49, no. 6, pp. 596–607,
Jun. 2000.

[6] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Fast static compaction algo-
rithms for sequential circuit test vectors,” IEEE Trans. Comput., vol. 48,
no. 3, pp. 311–322, Mar. 1999.

[7] M. S. Hsiao and S. T. Chakradhar, “State relaxation based subsequence
removal for fast static compaction in sequential circuits,” in Proc. DATE,
Feb. 1998, pp. 577–582.

[8] I. Pomeranz and S. M. Reddy, “Vector restoration based static compaction
of test sequences for synchronous sequential circuits,” in Proc. Int. Conf.
Computer Design, Oct. 1997, pp. 360–365.

[9] R. Guo, I. Pomeranz, and S. M. Reddy, “On speeding-up vector restora-
tion based static compaction of test sequences for sequential circuits,” in
Proc. Asian Test Symp., 1998, pp. 467–471.

[10] X. Lin, W. T. Cheng, I. Pomeranz, and S. M. Reddy, “SIFAR: Static
test compaction for synchronous sequential circuits based on single fault
restoration,” in Proc. IEEE VLSI Test Symp., 2000, pp. 205–212.

[11] R. Guo, S. M. Reddy, and I. Pomeranz, “PROPTEST: A property based
test pattern generator for sequential circuits using test compaction,” in
Proc. Design Automation Conf., Jun. 1999, pp. 653–659.

[12] ——, “Reverse-order-restoration-based static test compaction for syn-
chronous sequential circuits,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 22, no. 3, pp. 293–304, Mar. 2003.

[13] I. Pomeranz and S. M. Reddy, “Vector replacement to improve static-test
compaction for synchronous sequential circuits,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 20, no. 2, pp. 336–342, Feb. 2001.

[14] ——, “Sequence reordering to improve the levels of compaction achiev-
able by static compaction procedures,” in Proc. Conf. Design Automation
Test Eur., Mar. 2001, pp. 214–218.

[15] A. El-Maleh and K. Al-Utaibi, “An efficient test relaxation technique for
synchronous sequential circuits,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 23, no. 6, pp. 933–940, Jun. 2004.

[16] R. Roy, T. Niermann, J. H. Patel, J. Abraham, and R. Saleh, “Compaction
of ATPG-generated test sequences for sequential circuits,” in Proc. Int.
Conf. Computer-Aided Design, Nov. 1988, pp. 382–385.

[17] I. Pomeranz and S. M. Reddy, “On static compaction of test sequences for
synchronous sequential circuits,” in Proc. 33rd Conf. Design Automation,
Jun. 1996, pp. 215–220.

[18] S. M. Reddy, R. Guo, and I. Pomeranz, “PROPTEST: A property-
based test generator for synchronous sequential circuits,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 8, pp. 1080–1091,
Aug. 2003.

[19] T. M. Niermann and J. H. Patel, “HITEC: A test generation package for
sequential circuits,” in Proc. EDAC, 1991, pp. 214–218.

[20] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault simulator for
synchronous sequential circuits,” in Proc. Design Automation Conf., Jun.
1992, pp. 336–340.

Exact and Heuristic Approaches to Input Vector Control
for Leakage Power Reduction

Feng Gao and John P. Hayes

Abstract—Leakage power consumption is an increasingly serious prob-
lem in very large-scale integration circuits, especially for portable appli-
cations. Two novel approaches to leakage power minimization in static
complementary metal–oxide–semiconductor circuits that employ input
vector control (IVC) are investigated. The authors model leakage effects
by means of pseudo-Boolean functions. These functions are linearized and
incorporated into an exact (optimal) integer linear programming (ILP)
model, called virtual-gate ILP, which analyzes leakage variation with
respect to a circuit’s input vectors. A heuristic mixed-integer linear pro-
gramming (MLP) method is also proposed, which has several advantages:
it is faster, its accuracy can be quickly estimated, and tradeoffs between
runtime and optimality can easily be made. Furthermore, the MLP model
also provides a way to estimate a lower bound on circuit leakage current.
The proposed methods are used to generate an extensive set of experimen-
tal results on leakage reduction. It is shown that average leakage currents
are usually 1.25 times the minimum, confirming the effectiveness of IVC.
The heuristic MLP approach is shown to be approximately 13.6 times
faster than the exact ILP method, whereas finding input vectors whose
power consumption is only a few percent above the optimum. In addition,
the lower bound estimated by the MLP model is also within a few percent
of the optimal value.

Index Terms—Input vector control, integer linear programming, leak-
age current minimization, pseudo-Boolean functions.

I. INTRODUCTION

As CMOS technology evolves, leakage currents are becoming
responsible for more and more of a circuit’s overall power con-
sumption [10]. This problem is especially serious in portable and

Manuscript received January 25, 2005; revised June 29, 2005. This work
was supported by the National Science Foundation under Grant CCR-0073406.
This paper was presented at ICCAD 2004. This paper was recommended by
Associate Editor M. Pedram.

F. Gao is with Advanced Micro Devices, Inc., Boxborough, MA 01719 USA
(e-mail: feng.gao@amd.com).

J. P. Hayes is with the Advanced Computer Architecture Laboratory, Univer-
sity of Michigan, Ann Arbor, MI 48109 USA (e-mail: jhayes@eecs.umich.edu).

Digital Object Identifier 10.1109/TCAD.2006.875711

0278-0070/$20.00 © 2006 IEEE

