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Abstract

In this paper the hardware design and VLSI im-
plementation of a byte-wise CRC generator is pre-
sented. The algorithm is based on the work presented
in [10] in which a software implementation was pro-
posed. The byte-wise CRC algorithm is translated to
hardware and expressed in AHPL [6]. The method
used here calculates CRC ‘on the fly  and is much
faster than the look-up table method proposed by Lee
[5]. The chip is 8 times faster than the serial tmple-
mentation of [12] with smaller hardware requirements
(occupies lesser area). The number of clock cycles re-
quired to generate and transmit any CRC (for an 8
byte message) is just two more than the time required
to calculate it (in all 10 clock pulses). The CRC chip
can be used in a number of applications. These in-
clude areas such as error detection and correction in
data communications, signature analysis, and mass
storage devices for parallel information transfers.

1 Introduction

Data corruption is the principal problem associated
with the storage and transmission of data. When-
ever data is transmitted over communication chan-
nels, there is always a finite probability of occurrence
of some errors. The errors may occur due to a num-
ber of factors, some of which are radiation, atmo-
spheric conditions, fading of signals. interference be-
tween channels etc. Hence it is of paramount impor-
tance that the receiving module must be able to dif-
ferentiate between an error free message and an erro-
neous one. There are various methods which are used
to detect errors. Most of them do so by introducing
some extra (redundant) bits exclusively for the pur-
pose of detecting errors. Some of the commonly used
approaches for error detection in data communica-
tions include parity check codes (vertical and hori-
zontal), longitudinal redundancy check (LRC) codes,
checksums, and cyclic redundancy check (CRC). The
most widely used method for error detection is CRC.

In the modules using CRC, the data bits are rep-

resented as a binary polynomial, m(D), with coeffi-
cients my _1, My —2,...,mg where I is the length of
the string of data bits.

m(D) = mu—1DX™V 4+ mp_oDE2 4 4 my
(1)
The CRC is represented as another polynomial given
below.

C(D)y=CL D*' +---+ 1D+ Cy  (2)

where L is the length of the CRC. The frame to be
transmitted (including the message and CRC) can be
represented as:

F(D) = m(D)D* + C(D) (3)

The CRC polynomial C'(D) is defined in terms of a
generator polynomial g(D) which is a polynomial of
degree L with binary coefficients that specify the par-
ticular CRC code to be used. If we divide m(D)D~
by g(D), the remainder obtained is the CRC polyno-
mial, i.e.,

m(D)D:

C(D) = remainder
(D) ( 9(D)

] (4)
Let ¢(D) be the quotient resulting from dividing
m(D)D* by g(D). Then we have

m(D)DE = ¢(D)¢(D) + C(D) (5)

Subtracting C(D) modulo-2 from both sides of the
above equation and recognizing the fact that modulo-
2 addition and subtraction are same we get

m(D)D* + C(D) = g(D)q¢(D) (6)

Hence all the code words are divisible by g(D) and all
polynomials divisible by g(D) are code words. C(D)
is of degree at most L — 1.

Thus the CRC algorithm calculates C'(D) and ap-
pends it to the data string being sent. At the re-
ceiver, the received message (with CRC appended) is
divided by the generator polynomial g(D). If the re-
mainder is zero it is assumed that there are no errors
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CRC-16 D16, D154+ D2+ 1
CRc-ccTT D'+ D124, D%+1

CRC-12 D201 +D3+D24+D+1
LRCC-16 D141

LRCC-8 D8 +1

Figure 1: Common CRC generator polynomials.
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p.= 1 implies the exor gate is present
i
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Flip - Flop

Figure 2: Shift register implementation of CRC gen-
erator.

in the received message or the errors have gone unde-
tected due to one valid code word being erroneously
converted to another. The probability of such an
occurrence is 27 L. If however the remainder is non-
zero, the message is declared to be in error. There
are various generator polynomials in use. The most
common are given in Figure 1.

Implementation of CRC generators can be done
both in software as well as hardware. Several algo-
rithms to compute the CRC by considering a bit, a
byte or even a word of the message have been sug-
gested. Conventionally, bitwise CRC computations
are implemented in hardware by means of a simple
shift register, with exclusive-or (EXOR) logic gates.
Such a shift register arrangement has been shown in
Figure 2. It is popularly known as linear feedback
shift register (LFSR), which handles one bit of the
data stream at a time. This paper discusses a hard-
ware implementation of a CRC generator chip which
calculates CRC byte-wise using CRC-16 as the gen-
erator polynomial. Since the method is general, only
slight modification in the hardware program will be
needed to generate CRC for other generator polyno-
mials. The CRC generator chip can be fitted on the
data link control (DLC) module and may prove to be
quite convenient and economical.

In the following sections, we discuss the need to

. a Output

calculate CRC byte-wise, the algorithm, the design
considerations in brief, the hardware modeling and
simulation in Universal AHPL [6], the process of
VLSI layout generation and finally conclusions.

2 Need to Calculate CRC

Bytewise

At the turn of the century an entire new set of appli-
cations is emerging which will require extremely high
bit rates. Some such applications are HDTV, digital
audio, high resolution color graphics, medical imag-
ing, interconnection between mainframes, supercom-
puter support for research environments etc. Al-
though the reliability of the physical media is likely
to increase manifolds with the introduction of fiber-
optic communication which has error rate 10 orders
of magnitude lower than telephone lines, there is still
some probability of error in the transmitted mes-
sages. Some of the applications may require ultra
high precision and in such cases the use of CRC or
other methods to quickly detect any errors occurring
during transmission and/or propagation becomes im-
perative. The CRC checks being so versatile, pow-
erful and easy to implement are obviously preferred
over other methods of error detection. For any given
message the CRC can detect the following types of
errors:

1. All single bit errors.

2. All double bit errors as long as the generator
polynomial, g(D) has a factor with at least three
terms.

3. All odd number of bit errors as long as g(D) has
a factor (D + 1).

4. Any burst error for which for which the length
of the burst is less than the length of the CRC.

5. Most larger burst errors.

Before a packet is transferred, the CRC is appended
to it at the end. The message bits along with the
header and trailer constitute what is known as the
frame to be transmitted. So in order to attain high
speed not only the transmission rate should be high
but also the frame should be synthesized at rapid
speed. Hence there is also a need to speed up the
process of CRC generation which is the motivation
behind calculating CRC byte-wise.

3 Algorithm Derivation

In order to calculate CRC byte-wise i.e., simultane-
ously for 8 bits of the message, we got to have an
algorithm that will produce the same value of CRC
as produced by the bitwise CRC method for 8 bits
of the message. What happens at each of the eight
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shifts of a bitwise CRC calculation is shown in Fig-
ure 3 [10].

As is clear from the Figure, the final contents of
the CRC register, after eight shifts is the exclusive-
OR of various combinations of the input data byte
and the previous contents of the CRC register. Hence
the byte-wise CRC calculation algorithm must pro-
duce these same values. We can define a function X;,
to further simplify the contents of the CRC register.
The function X; is the exclusive-OR of the ' bit
of the input data byte with the i'* bit of the CRC
register, l.e.,

Xi=C & M; (7)

Hence we can say that the vector X (composed of
Xi’s) can be obtained by exclusive-ORing the low
order byte of the CRC register and the input message
byte. The new simplified version is also shown in the
Figure 4. As can be observed from the Figure, that
after 8 shifts

o the higher byte of the CRC register is a function
of only the initial lower byte while

o the lower byte of the CRC register is a function
of the initial higher byte of the CRC register.
initial lower byte of the CRC register and the
input message byte.

The final contents of the CRC register after eights
shifts using CRC-CCITT as the generator polyno-
mial has also been shown in Figure 4. From the above
we can conclude that it is possible to calculate CRC
byte-wise using the following algorithm:

1. Exclusive-OR the lower byte with the message
byte to get the values of Xj.

2. Shift the higher order byte of the CRC register
into the lower order byte and then discard the
lower order byte.

3. Exclusive-OR a 16-bit word defined by every-
thing below the dotted line (as shown in the Fig-
ure) with CRC register to get the new contents
of the CRC register.

For VLSI synthesis, the hardware that implements
the above given algorithm is first modeled in AHPL
[6]. Details of hardware are described in the following
sections.

4 Design Considerations

Several software implementations of CRCs have been
reported in literature. In [9] an emphasis has been
given on parallel implementation of the code. In [10],
an attempt has been made to emulate the hardware
process of CRC generation in software. A byte-wise
algorithm has been proposed based on look-up table
techniques in [10]. The hardware implementation is

SH IN CRC-16 REGISTER
R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6é R5 R4 R3 R2 R1
0 Ct6 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1
1 M{ C1 C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2
M1 C1 Cc1
M1 M1
2 M2 C2 C1 C16 C15 C14 C13 C12 C11C10 C9 C8 C7 C6 C5 C4 C3
Ct M1 C2 C1 c2
M1 Cct M1 C1
M2 M1 M1
M2 M2

g Ms R16 R15R14 R13 R12 R11 R10 R9 R8 R7 R6 RS R4 R3 R2 Ri
R Q_9_.0_0__0_0_0 _0 C16CI5C14C13C12C11010C9 _

C8 C7 Cg8 C7 C6 C5 C4 C3C2 Ci cs
M8 M7 M8 M7 M6 M5 M4 M3 M2 M1 M8
C7 Cé6 c7 C6 C5 C4 C3 C2Ci c7
M7 M6 M7 M6 M5 M4 M3 M2 M1 M7
C6 C5 C6
M6 M5 M6
Ccs5 C4 cs
M5 M4 M5
C4 C3 C4
M4 M3 M4
c3 C2 c3
M3 M2 M3
c2 ¢ c2
M2 M1 M2
C1 C1
M1 M1

Figure 3: CRC register after eight shifts.

SH IN CRC-16 REGISTER

R16 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1
0 0 0 0 O 0 0 0 C16C15C14C13C12C11CI10CY

X8 X7 X8 X7 X6 X5~ X4 B2 X X8
X7 X6 X7 X6 X5 X4 X3 X2 X1 X7
X6 X5 X6
X5 X4 X5
X4 X3 X4
X3 X2 X3
X2 X1 X2
X1 X1
SH IN CRC-CCITT REGISTER

R16 R15 R14R13 R12 R11 R10 R9 R8 R7 Ré R5 R4 R3 R2 R1

0 0 0 0 0o 0 0 0 C16C15 C14C13C12C11 C10C9

X4 X3 X2 X1 X4 X3 X2 X1 X1 X4 X3 X2 X1 X3 X2 X1
X8 X7 X6 X5 X4 X3 X2 X5 X4 X7 X6 X5
X8 X7 X6 X8

Figure 4: Simplified CRC register contents after eight
shifts using Xj;.
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preferred for several reasons namely:

(1) bit-wise software implementations are very slow,
their applicability is limited only to low encoding
rates and they introduce a considerable amount of
delay before delivering data.

(2) byte-wise or word-wise software implementations
are normally based on table look-up methods. These
algorithms have a large memory and considerable
CPU time requirements.

(3) hardware implementation is fast, simple and easy
to realize.

It can be concluded from the results of (9], [10] and
[11] that a software implementation is not feasible
for high speed information transfers. Thus, hardware
implementation offers the necessary solution. A few
hardware implementations of CRCs have also been
reported in literature [1], [7]. In these implementa-
tions, an emphasis has been given on VLSI realiza-
tion to exploit the high transmission bandwidth of
the communication media. From the above discus-
sion it is clear that a hardware implementation of
byte-wise CRC generator which calculates CRC “on
the fly’ is a novel idea and can prove to be extremely
useful. In the next section, we present the implemen-
tation details of a byte-wise CRC generator realized
in VLSL

5 Implementation

The hardware description languages (Verilog, CDL,
DDL, AHPL, VHDL, ISPS etc.) have been used suc-
cessfully for documentation, communication and ver-
ification. They have also been used as input speci-
fication languages to design automation (DA) sys-
tems which synthesize VLSI layouts [3]. We have
used UAHPL [6] (derived from AHPL), a RTL HDL
for modeling the 16-bit byte-wise CRC generator.
UAHPL facilitates structural specification of a de-
sign. The hardware compiler and functional simula-
tor of UAHPL are used to perform logic synthesis. A
wire/gate list generated is fed to a translator program
to obtain a netlist. This netlist is used by VPNR. a
layout sub-system of OASIS to generate the layout.
OASIS is a cell-based silicon compiler that enables
the design of semi-custom testable integrated circuits
(2], {4], [8]- The UAHPL model of the CRC genera-
tor, the process of translating wirelist to netlist and
the layout generation are discussed in detail in the
following sections.

Any sequential circuit can be considered to be con-
sisting of finite state machines (FSM). Our CRC gen-
erator is a 4-state FSM as shown in Figure 6. It has
following characteristics:

e based on internal Exclusive-Or (IE) type LFSR

MODULE:BCRCGENERATOR.

MEMORY:CREG{16};COUNT{3}.

BUSES: FBUS{8};FOT;F17.

BUSES: MBUS{7};TEMP{3};WBUS{8}.

EXINPUTS:CLOCK:RESET;START.

EXINPUTS:MESIN{8}.

OUTPUTS: CRCRDY;:MESOUT({8}.

CLUNITS : INC{3}

BODY SEQUENCE: CLOCK.

1 = (START)/(1)

“goback to 1 if start is low”

2 MESOUT=MESIN;
FBUS=MESIN@CREG{8:15};
TEMP=CREG{0:1}.CREG{7};
F17=FBUS{1}GFBUS{2}@FBUS{3}@FBUS{4}@
FBUS{5}@FBUS{6}@FBUS{7};

F07 = FBUS{0}@ F17; WBUS = FBUS{0:7};
MBUS = WBUS{0:6} @ WBUS{1:7};
CREG{10:14}<CREG{2:6};
CREG{15}<«<TEMP{2} @ F07;
CREG{0:7}«F07,F17 MBUS{0:5};
CREG{8}«CREG{0} @ MBUS{6};
CREG{9}«<CREG{1} @ FBUS{7};
COUNT<«INC(COUNT);

=" (& /COUNT)/(2).

“goto 3 if all bits of count are high”

3 MESOUT = CREG{8:15};CRCRDY=\1\.
“Least significant byte of CRC is ready”

4 MESOUT = CREG{0:7};CREG <« 1630;
CRCRDY=\1\;= (1).

“Most significant byte of CRC is ready”

ENDSEQUENCE
CONTROLRESET(RESET)/(1);

END.

Figure 5: UAHPL description of byte-wise CRC gen-
erator.

e simple to design and easy to implement

o high speed and optimal hardware and memory
space requirements

o cnables efficient realization in VLSI

With each clock pulse the data comes in continu-
ously in bytes, and a 16-bit CRC is generated on the
fly which means that all the necessary calculations
are done in a single clock pulse. The data moves out
continuously through the MESOUT bus. When the
whole data has moved out the final 16-bit result is
transferred to the output in two clock pulses, 8-bits
at a time. This way, any desired generator polyno-
mial of degree-16 can be implemented.

6 Hardware Design and
UAHPL Model

The UAHPL description of CRC generator is shown
in Figure 5. The declaration of inputs, outputs, inter-
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nal and external buses, memory elements/registers,
combinational logic unit (CLU) and the clock pre-
cedes the actual body of the CRC generator. The
code corresponding to the four states of the FSM is
enclosed within BODY SEQUENCE and END-
SEQUENCE keywords.

The initialization is done in the 13" STATE. In the
2nd STATE, a 64-bit message is supplied byte-wise,
in each clock pulse, on the line MESIN. The message
byte is processed in the same clock pulse by the data
path logic and transmitted ‘on the fly’ on the output
line MESOUT. The processing of each byte of the
message 1s done as follows:

e The message byte (on the MESIN bus) is
exclusive-ORed with the lower 8-bits of the CRC
register, CREG, to get Xs.

o The 0 bit of the CREG gets the exclusive-OR
of all X;s, i.e., X to Xi.

e The 15 bit of the CREG gets the exclusive-OR
of X; to X7.

e This process is continued till the final contents
of the CREG are as shown in Fig. 4.

o Inthesame state (i.e., 2”! STATE), the COUNT
register, which stores the number of loops
performed, is incremented. The contents of
COUNT are checked to see if all the bits are
high (by taking NAND of all the bits). If it is
so, then we go to the next state; otherwise we
go back to the 2"¢ STATE.

e The loop is execcuted 8 times since we have 8
bytes of the message. At the eund of the last
iteration, CREG contains the CRC generated for
the 64-bit message.

o In the 3¢ STATE, the lower byte of the CRC
is appended at the end of the message (on
MESOUT bus) and the signal CRCRDY be-
comes high to indicate this.

o In the 4*" STATE, the higher byte of the CRC
is transmitted on the MESOUT bus. CRCRDY
is still high. The control is returned to the 1%
STATE to perform the same task as described.
for another message, if any.

The 16-bits CRC pattern generated is available in
only the 9" clock pulse. The transmission of the first
byte of the CRC can take place in 9" clock pulse and
the next byte is transmitted in the 10" clock pulse.
Thus, the number of clock cycles required to generate
and transmit any CRC in our implementation, is just
two more than the time required to calculate it.

The hardware of a small segment of the CRC
circuit is given in Figure refcreg. Note that
CREG{9} corresponds to bit R; which must get
the exclusive-OR of C'j5 (CREG{1}) and X; where
X corresponds to the exclusive-OR of €y and M,
(FBUS{7}). C) and M, being the least significant
bits of CREG and MESIN. that is. CREG{15} and

Hardware Design and VLSI Implementation of a Byte-Wise CRC Generator Chip

Initialization

4
Transmission of

CRC pattem (‘

©

.( state
i
|
/

Generation of
CRC pattern

Figure 6: Four state FSM.

CREG{1}
CREG{15} b Q
D CREG{9}
) FBUS{7} al
MESIN{7}
csL2
CcLOCK

Figure 7: Hardware segment of the CRC generator
constructed from its UAHPL model.

MESIN{7} respectively. Also note that the transfer

into this register is enabled only during state 2, hence
the clock is ANDed with the signal CSL2. !

7 Hardware of a small segment
of the CRC generator.

Logic synthesis: A hardware compiler and a
functional-level simulator were used to compile and
simulate the UAHPL model of CRC generator re-
spectively. After the UAHPL code is compiled by
Stage-1 compiler, it is simulated at the RTL level.
The Stage-2 compiler is used for logic synthesis. It
generates a logic netlist of the hardware circuit.
Logic/Gate-level simulation: The RNL netlist
was simulated at the logic/gate-level by performing
RNL simulation and the results were observed on
SigView. a simulation (signal) viewing program.
Translation of netlist to layout: The standard
cell library of OASIS [8] consists of scalable CMOS
cells compatible with 2y SCMOS technology of MO-
SIS. The layout sub-system of OASIS called Vanilla
Place aNd Route (VPNR) generates the standard
cell layout from the RNL netlist. VPNR uses a k-
brary of pre-designed standard cells to make the lay-
out. It also incorporates testability by including scan
path based testing circuitry in the layout.

INote that in UAHPL, by convention the MSBit of a vector
has zero index. For example, CREG{0} refers to R16.
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8 Conclusion

In this paper we have presented the VLSI imple-
mentation of a byte-wise CRC generator written in
UAHPL. The design and implementation details were
discussed. Besides a small area, the chip generates
CRC at an enhanced speed which is much faster than
the bitwise implementation for the same purpose. It
can be used in various data communication and data
compression applications. Simulation has been car-
ried out at various levels to verify the design process
and ensure that the chip will work after fabrication.
The chip consists of 27 I/O pins and is fully testable.

L

Figure 8: Layout of byte-wise CRC generator chip.
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