SADIQ M. SAIT, TANVIR MSK
VLSI LAYOUT GENERATION OF A PROGRAMMABLE CRC CHIP
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 39 (4): 911-916 NOV 1993

Sait and Tanvir: VLSI Layout Generation of a Programmable CRC Chip 911

VLSI LAYOUT GENERATION OF A PROGRAMMABLE CRC CHIP

Sadig M. Sait and Mohammed Shahid K. Tanvir
Department of Computer Engineering
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

Abstract

VLSI layout generation of a programmable CRC chip
with a CRC of 16-bits is presented. The hardware of CRC
generator 1s specified in a hardware description language
(HDL). The hardware compiler and functional level sim-
ulator of HDL are used for logic synthesis. The second
stage of the compilation process generates a netlist of logic
gates. The netlist so produced is translated to RNL com-
patible netlist by a translator program. The layout sub-
system of VPNR is used to generate the VLSI layout of
the programmable CRC chip from RNL netlist. The de-
sign rules and technology files of MOSIS are used. The
layout 13 viewed tn MAGIC layout editor and simulated
by irsim at transistor-level. The CRC chip can be used
in a number of applications. These include areas such as
date communications for error detection and correction,
digital system testing for test pattern generation and sig-
nature analysis, and mass storage devices for parallel in-
formation transfers.

1 Introduction

Data integrity is of prime importance in storage and
transmission applications. Some of the commonly
used approaches for error detection in data commu-
nications include checksums, parity checks, longitu-
dinal redundancy code (LRC), and cyclic redundancy
check (CRC) code. Out of these, CRC is very popu-
lar and is widely used because it can detect:

e all one or two bit errors

¢ all odd number of bit errors

o all burst errors less than or equal to the degree
of the generator polynomial used

¢ most burst errors greater than the degree of the
polynomial used

CRCs can be mathematically computed by modulo-
2 division. CRC computation can be implemented
both in software as well as hardware. It is possible
to compute CRC code by considering a bit, a byte
or even a word of the message at a time. Several

Contributed Paper

Manuscript received September 8, 1993

algorithms based on this idea have been reported in
literature. Traditionally, the CRC computations are
implemented in hardware by means of a simple shift
register [13], with exclusive-or (EXOR) logic gates.
We have used such a shift register arrangement as
shown in Figure 1. It is popularly known as linear
feedback shift register (LFSR), which handles one bit
of the data stream at a time.

In the following sections, we discuss the design con-
siderations in brief, the modeling and simulation in
Universal AHPL and the process of VLSI layout gen-
eration. The switch/transistor level simulation re-
sults are presented. The advantages of VLSI imple-
mentation and the various applications of the CRC
chip are discussed. The design approach described
can also be used for VLSI implementation of a paral-
lel CRC generator. We conclude by a brief discussion
on parallel CRC generation.

2 Design Considerations

Several software implementations of CRCs have been
reported in literature. In [10], an emphasis has been
given on parallel implementation of the code. In {11},
an attempt has been made to emulate the hardware
process of CRC generation in software. A byte-wise
algorithm has been proposed based on look-up ta-
ble techniques. The hardware implementation is pre-
ferred for several reasons namely:

(1) bit-wise software implementations are very slow,
their applicability is limited only to low encoding
rates and they introduce a considerable amount of
delay before delivering data.

(2) byte-wise or word-wise software implementations
are normally based on table look-up methods. These
algorithms have a large memory and considerable
CPU time requirements.

(3) hardware implementation is fast, simple and easy
to realize.

It can be concluded from the results of {10], {11} and
[12] that a software implementation is not feasible

0098 3063/93 $03.00 © 1993 IEEE

912 IEEE Transactions on Consumer Electronics, Vol. 39, No. 4, NOVEMBER 1993

for high speed information transfers. Thus, hard-
ware implementation offers the necessary solution.
A few hardware implementations of CRCs have also
been reported in literature [1], [8]. In these imple-
mentations, an emphasis has been given on VLSI
realization to exploit the high transmission band-
width of the communication media. In the next sec-
tion, we present the implementation details of a pro-
grammable CRC generator realized in VLSI.

3 Implementation

The hardware description languages (Verilog, CDL,
DDL, AHPL, VHDL, ISPS etc.) have been used
successfully for documentation, communication and
verification [4]. They have also been used as input
specification languages to design automation (DA)
systems which synthesize VLSI layouts [7]. We have
used UAHPL (derived from AHPL), a RTL HDL for
modeling the 16-bit programmable CRC generator.
UAHPL facilitates structural specification of a de-
sign. The hardware compiler and functional simula-
tor of UAHPL are used to perform logic synthesis. A
wire/gate list generated is fed to a translator program
to obtain a netlist. This netlist is used by VPNR, a
layout sub-system of OASIS to generate the layout.
QASIS is a cell-based silicon compiler that enables
the design of semi-custom testable integrated circuits
{2], {5}, [6]. The UAHPL model of the CRC genera-
tor, the process of translating wirelist to netlist and
the layout generation are discussed in detail in the
following sections.

Any sequential circuit can be considered to be con-
sisting of finite state machines (FSM). Our CRC gen-
erator is a 3-state FSM as shown in Figure 2(a). It
has following characteristics:

based on internal Exclusive-Or (IE) type LFSR
simple to design and easy to implement

highly programmable

enables efficient realization in VLSI

A CRC generator is said to be programmable if it
can generate CRCs for various generator polynomi-
als having same or different degrees. In our imple-
mentation, the CRC generator can produce 16-bit
CRC pattern for 2!° different generator polynomials
of degree 16. The programmability is achieved by
controlling the EXOR gates in Figure 1 by the in-
puts pl, p2, p3 etc. as shown in Figure 2(b). The
presence or absence of an EXOR gate corresponds to
the presence or absence of a term in the divisor poly-
nomial. A vector VEC of 16-bits is declared as a bus
in UAHPL model, discussed in the following section.
A logic-1 at any of these lines means that the cor-
responding EXOR gate in Figure 1 is present and a
logic-0 means that the EXOR gate is absent. This

Characteristics polynomial of the LFSR shown is :

n n1
pPX)=X +p X 4 +..... +pX+1
n-1 1

pis 0 implies the exor gate is absent

pis 1 implies the exor gate is present

@ ox - OR gate

fori=1ton-1

Flop

Figure 1: Shift register implementation of CRC gen-

erator

Initialization

@’@

Transmission

Generation of

of CRC pattern CRC pattern
(a)
Mesin
(Serial Input Message) 4
FSM
4) Combinational Logic
Gates
(input lines P3 ——» 1 Zout
to select ! ! 7 Zou
various ! D - Flip/Flops (Serial Output
. !
polynomiais) Message
p15 : foliowed by
1 9 CRC pattern)
16-bit Shift Register | .,
CRC.

CRCoy

(b)

Figure 2: (a) State diagram of programmable CRC
generator. (b) Structure of programmable CRC gen-

erator.

Sait and Tanvir: VLSI Layout Generation of a Programmable CRC Chip

MODULE:CRCGENERATOR.
MEMORY:CREG{16};COUNT{6}.
BUSES: X{6};Y;ZOUT;CRCRDY.
EXBUSES: Z;COUT;VEC{16}.
EXINPUTS:CLK;RESET;START.
EXINPUTS:MESIN.
CLUNITS : INC{6}
BODY SEQUENCE: CLK.
1 COUNT <« 680;
“initialize counter and CRC register”
CREG <« 1630;
={START)/(1)
“goto 2 if start is high”
2 ZOUT=MESIN;
Y=MESIN@CREG{15};
COUNT«X;
CREG «<Y,CREG{0:14}@(VEC{0:14}&Y);
“shift and Exor to get CRC”
=& /COUNT)/(2).
“goto 3 if all bits of count are high”
3 COUNT «X;CRCRDY= \1\;
“CRC is ready”
CREG <« \0\,CREG{0:14};
“append the CRC pattern to message”
ZOUT=CREG{15};
= ((& /COUNT {2:5 }),COUNT{1})/(3,1).
ENDSEQUENCE
CONTROLRESET(RESET)/(1);
X=INC(COUNT);
Z=20UT;
COUT=CRCRDY.
END.

Figure 3: UAHPL description of programmable CRC
generator.

way, any desired generator polynomial of degree-16
can be specified. Thus, besides modulo-2 division,
CRCs for many popular generator polynomials of de-
gree 16 such as CRC-16, CRC-SDLC (IBM,CCITT),
CRC-16 reverse and CRC-SDLC-16 reverse can be
generated.

4 VUAHPL model of CRC gen-

erator

The UAHPL description of CRC generator is shown
in Figure 3. The declaration of inputs, outputs, inter-
nal and external busses, memory elements/registers,
control logic unit (CLU) and the clock precedes the
actual body of the CRC generator. The code corre-
sponding to the three states of the FSM is enclosed
within BODY SEQUENCE and END keywords.

The initialization is done in the 1°* STATE. In the
ond STATE, a 64-bit message is supplied sequentially
on line ZOUT and a 16-bit CRC pattern is simulta-

neously generated and stored in a register, CREG.
When all the message bits have been processed, the
CRC pattern is ready by that time and it can be seri-
ally appended to the message data stream for trans-
mission. The CRC pattern is serially appended to
the message in 3"¢ STATE. The generator then goes
to the initial state to perform the same task described
for another message, if any.

The 16-bit CRC pattern generated is available in
664 clock pulse. The transmission of 16" bit takes
place in 81% clock pulse. Thus, the number of clock
cycles required to generate and transmit any CRC
in our implementation, is the sum of the size of the
message and the degree of the generator polynomial

used.

VPNR
UAHPL Compiler - Route & Placement
Stage -1 Compitation tool of OASIS
UAHPL Compiler . .
Stage -2 Logic Synthesis
(functional simulator)j RTL simulation

913

) Switch/Transistor - level irsim simulator of
UAHPL Netlist simulation MAGIC
Pad layout included l
Routing
Translator Program i
(Pascal or'C') Qroee

RNL simulator Logic/Gate - level
(Logic and Timing) simulation

irsim simulator of

Switch/Transistor - level MAGIC

simulation

'
Q)

VLS! Chip
Ready for fabrication

b
@ (b)

Figure 4: (a) Translation of UAHPL model to RNL
netlist. (b) Translation of RNL netlist to Layout.

5 Layout Generation and Ver-
ification

5.1 Logic Synthesis

A hardware compiler and a functional-level simulator
were used to compile and simulate the UAHPL model
of CRC generator respectively. After the UAHPL
code is compiled by Stage-1 compiler, it is simulated
at the RTL level. The Stage-2 compiler is used for

914 IEEE Transactions on Consumer Electronics, Vol. 39, No. 4, NOVEMBER 1993

logic synthesis. It generates a logic netlist of the
hardware circuit. This netlist consists of combina-
tional logic gates and three types of D flip-flops (set,
reset and control flip-flops) with enable and asyn-
chronous set and reset inputs. A translator program
written in ‘C’, translates the UAHPL netlist to RNL
compatible netlist form which can be simulated by
RNL, a timing and logic-level simulator [14]. This
is illustrated in Figure 4(a).

5.2 Logic/Gate-level Simulation

The RNL netlist was simulated at the logic/gate-
level by performing RNL simulation and the results
were observed on SigView, a simulation (signal)
viewing program.

5.3 Translation of netlist to layout

The standard cell library of OASIS consists of scal-
able CMOS cells compatible with 2 SCMOS tech-
nology of MOSIS [9]. The layout sub-system of OA-
SIS called Vanilla Place aNd Route (VPNR) gen-
erates the standard cell layout from the RNL netlist.
VPNR uses a library of pre-designed standard cells
to make the layout. It also incorporates testability
by including scan path based testing circuitry in the
layout. It also performs consistency checking of the
routing and placement phases of the design. The pro-
cess of translation of netlist to layout is illustrated in
Figure 4(b). The layout of the CRC chip is shown in
Figure 6. The area of the chip is 2252 x 2222 um?2.
It has over 3,000 transistors.

5.4 Transistor-level Simulation

A simulation was performed to verify that the layout
works. The circuit was extracted from the layout
using MAGIC’s hierarchical circuit extractor. We
simulated the layout at the transistor (switch) level
using irsim, a switch-level simulator of MAGIC lay-
out editor for CMOS circuits [3]. The simulation
results were observed on another tool called ana, a
timing analyzer. The transistor-level simulation re-
sults were compared with the RTL/gate-level simu-
lation results and verified. The MOSIS pad frame
was included in the layout. The design rules and
technology files of MOSIS have been used. The in-
teractive routing for the I/O pins of chip was done
with MAGIC. The chip was simulated again with
trsim. The timing diagram results were compared
again to RTL/gate-level and the transistor-level sim-
ulation results performed earlier to make sure that
the chip will function properly when fabricated. It
is observed that the simulation results are in confor-
mity with the functional level simulation. This ver-
ifies the design methodology and greatly enhances

the chances that the chip will work after fabrication.
The transistor-level simulation results of the layout
obtained using irsim are shown in Figure 5. The
64-bits message consisting of all 1’s is given serially
on pin Mesin. The generator polynomial selected,
generates CRC-CCITT of the given message. The
CRC pattern generated is ‘A6E1’ (in HEX) and is
appended serially after the data message as shown
in Figure 5. The CRC chip has been simulated at a
speed of about 600 MHz.

6 Applications

The proposed programmable CRC chip can be used
in various applications. These include

o error detection and correction in data communi-
cations

* pseudo-random test pattern generation

e signature analysis

¢ adaptable to support multiple input shift regis-
ter (MISR) implementation

¢ modifiable to generate parallel CRC

The VLSI implementation of CRC chip has many
advantages. It has a very small area and high speed
coupled with flexibility. It can be easily integrated
into existing or future communication systems. Such
a highly programmable chip can be placed for data
compression in disk controllers, I/O channels and
protocol processors. The placement of VLSI chips
in protocol processors will greatly reduce the data
transmission cost. Likewise, the VLSI chip will im-
prove the access and retrieval times of disk con-
trollers. The single chip CRC is also very attrac-
tive from the stand-point of built in self test (BIST).
In a conventional method of testing, large storage
is needed to store many test responses. In BIST,
an approach called compact testing based on CRC
codes, is used to avoid this high storage requirement
by storing the compressed responses. The length of
the response data is equal to the degree of the gen-
erator polynomial.

We discuss the design of parallel CRC generator in
the next section.

7 Design of Parallel CRC Gen-

erator

The LFSR based CRC generator discussed has cer-
tain drawbacks. First of all. the size of the message
handled and the CRC pattern generated is fixed. Sec-
ondly, it can not fulfill the requirements of very high
speed (HS) data transfers. Finally, it needs a par-
allel to serial converter. With the advancement of
the transmission technology, the bandwidth of the

Sait and Tanvir: VLSI Layout Generation of a Programmable CRC Chip

transmission media has increased by several orders
of magnitude. In view of the increasing speed of
transmission links, it is very important to detect sin-
gle and burst errors of the transmitted message by
sophisticated error-detection/correction techniques.
This is true specially for HS fiber optic links and
digital systems having parallel information transfers
such as microprocessor bus, computer network inter-
faces and storage devices. To achieve error correc-
tion/detection of HS systems, we need to implement
some parallel algorithm for CRC generation in hard-
ware.

A parallel CRC generator works as follows. It takes
the first N-bits of the input message and generates an
intermediate CRC corresponding to the N-bits pro-
cessed. After this, the next N-bits of the message
alongwith the intermediate CRC pattern previously
generated will be processed. This process will con-
tinue until all the data bits of the message have been
processed. This method does not take into account
the size of the message. Infact, the message size need
not be known in advance. The correct CRC code
corresponding to the message transmitted upto any
moment of time, is always available. The VLSI re-
alization of a parallel CRC generator can work at a
very high speed and it can be used to generate CRC
for any generator polynomial and any data message.
It does not need a parallel to serial converter. The
VLSI implementation is highly attractive for HS fiber
optic links and parallel information transfers. It can
be shared by several transmission lines. Considering
simplicity and reduced design time of the approach
presented, we plan to implement the parallel CRC in
VLSL

8 Conclusion

In this paper, we presented VLSI layout generation
of a programmable CRC generator from its UAHPL
description. The design and implementation details
were discussed. Besides a small area and achieving a
high speed, the CRC chip is highly programmable. It
can be used in various data communication and data
compression applications. Simulation has been car-
ried out at various levels to verify the design process
and ensure that the chip will work after fabrication.
The chip consists of 27 I/O pins and is fully testable.
The CIF file obtained from the layout is ready to
be sent for fabrication. The approach discussed can
be used to translate any UAHPL model to a VLSI
layout corresponding to its hardware description. It
reduces the design time and enables VLSI realization
of semi-custom integrated circuits in a very simple,
efficient and straightforward manner. The chip is
being fabricated at ORBIT Semiconductor Inc.,
USA.

915

References

[1] Guido Albertengo and Riccardo Sisto. Paral-
lel CRC Generation. IEEE Micro, 10(5):63-71,
October 1990.

[2] F. Brglez, D. Bryan, J. Calhoun, and
R. Lisanke. Automated Synthesis for Testabil-
ity. IEEE Transaction on Industrial Electronics,
36(2):263-277, May 1989.

[3] Robert N. Mayo et.al. DECWRL/Livermore
Magic Release, Digital Western Research Lab-
oratory, September 1990.

[4

Fredrick J. Hill. AHPL: Then and Now. [EEE
Design and Test of Computers, pages 73-75,
June 1992.

[5

Gershon Kedem, Franc Brglez, and Krzysztof
Kozminski. ASIC Design with OASIS. Proceed-
ings IEEE/ISCAS, 4(4):2580-2583, 1990.

[6] Gershon Kedem and Krzysztof Kozminski. A
Standard Cell Based Silicon Compiler. IEEE
1986 Custom Integrated Circuit Conference,
pages 120-124, May 1986.

[7] M. Masud and Sadiq M. Sait. Universal
AHPL- a language for VLSI Design Automation.
IEEE Circuits and Devices Magazine, Septem-
ber 1986.

[8] Amar Mukherjee, M. A. Bassiouni, and N. Ran-
ganathan. Improving Bandwidth of Communi-
cation Controllers. IEEE International Confer-
ence on Communications, 3(3):1390-94, 1988.

[9] Open Architecture Silicon Implementation Soft-
ware, MCNC.

[10] A. K. Pandeya and T. J. Cassa. Parallel CRC
lets many lines use one circuit. Computer De-
sign, 14(9):87-91, September 1975.

[11] Aram Perez, Wismer, and Becker. Byte-wise
CRC Calcutations. IEEE Micro, 3(3):40-50,
June 1983.

[12] T. V. Ramabadran and S. S. Gaitonde. A tu-
torial on CRC Computations. IEEE Macro,
8(4):62-75, August 1988.

[13] William Stallings. Digital Data Communication
Techniques. Macmillan Publishing Co., 1987.

[14] VLSI Design Tools Reference Manual Release
3.1, NW Laboratory for Integrated Systems FR-
35 , University of Washington, February 1987.

916

IEEE Transactions on Consumer Electronics, Vol. 39, No. 4, NOVEMBER 1993

chipeimut Fo) Ban Aug 71748

states 100 010 . 00y :

okt

Em—
s

I

S—
o—
O—
S————
e

L
|

Figure 5: Transistor-level Simulation Results of CRC-CCITT

irmimsil

Figure 6: Layout of 16-bit programmable CRC Generator Chip

	Text1: SADIQ M. SAIT, TANVIR MSK
VLSI LAYOUT GENERATION OF A PROGRAMMABLE CRC CHIP
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 39 (4): 911-916 NOV 1993

