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Integrating UAHPL-DA Systems with VLSI
Design Tools to Support VLSI DA Courses

Sadiq M. Sait

Abstract—Because of rapid growth in areas related to digital
design automation (DA) of very large scale integration (VLSI)
systems, it has become necessary to introduce related courses
into the university curriculum. In order to support effective
teaching and laboratory courses, it is essential to have a complete
operational environment established with the help of state-of
the-art tools. In this paper, we explain the establishment of
such an environment, which is accomplished with the integration
of two systems: 1) a DA system which automatically produces
VLSI layouts of digital systems modeled in Universal Hardware
Programming Language (UAHPL); and 2) a set of VLSI tools,
which in addition to several other functions can be used for
simulation and verification of layout designs. Compared with
other approaches, the integrated DA system provides a very
simple user interface, fast turnaround time, no restriction on the
final structure of the layout, and simulation and verification of
all phases of design. The new environment, called UAHPL-based
VLSI DA, is excellent for teaching and research at universities.

I. INTRODUCTION

CIENTIFIC advancements in certain directions lead to the

creation of new disciplines. This forces the updating of
curricula, and the introduction of new courses and teaching
environments at universities. In recent years, one such area that
has seen rapid growth is related to the design automation (DA)
of digital systems and very large scale integration (VLSI).

With the increase in complexity of electronic circuits and
the tremendous advancement made in the field of VLSI, it has
become evident that DA is the exclusive viable way to handle
digital system design and VLSI implementation. The number
of components and their interconnections have been growing
exponentially. Without DA, the design effort and possibility of
errors would also grow at the same rate. Thus, the reason for
our interest in DA research arises from its direct application to
the area of labor-intensive digital integrated circuit (IC) design.

In order to support teaching and research in VLSI DA,
it is essential for universities to have a DA environment
that supports all phases of digital design from digital system
modeling to layouts for fabrication. The environment must
provide a framework in which a student learns disciplined,
structured design techniques and obtains a complete view of
the overall design process [1], [2].

The focus of this paper will be to present the Universal
Hardware Programming Language (UAHPL) [3]-based VLSI
DA environment. The basic components of the UAHPL-DA
system required for VLSI DA are discussed. A subset of
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tools from the toolkit “VLSI Design Tools, Release 3.1”
[4], distributed by the Northwest Laboratory of Integrated
Systems at the University of Washington, is also presented.
The combination of the UAHPL tools and the VLSI toolkit
will establish an environment for automatic implementation
of IC’s modeled in UAHPL.

The paper is organized as follows. Section II discusses the
salient features of the language and a sample UAHPL model
of a digital system. It also highlights the multistage UAHPL
compiler and the functions of the various stages. Section III
briefly discusses the subset of VLSI design software taken
from the toolkit that is required by the UAHPL—-DA system.
Section IV is dedicated to a general discussion pertaining
to the acquisition, installation, hardware requirements, and
use in VLSI DA courses. Some research projects that were
accomplished with the UAHPL-based VLSI DA system are
also mentioned. Section V summarizes the paper.

II. UAHPL-DA SYSTEM

DA tools primarily replace the designer in tasks that are
tedious, well understood, and where no design decisions are
to be made. They assist the designer in evaluating the merits of
various design alternatives and in verifying the correctness of
design. They also help in improving quality and productivity.

Integration of various hardware design tools into a complete
design automation system enables designers to gracefully
interact and move from one design phase to another. A fully
integrated DA system can smooth on and speed up the flow
of digital system design from specification to manufacture. It
also provides an excellent teaching environment for DA of
VLSI, a discipline that has been introduced in the undergrad-
uate/graduate curricula of several universities [1], [2].

The UAHPL-DA system uses a high-level computer hard-
ware description language (CHDL) called UAHPL to model
the complex digital system to be implemented [3]. A multi-
stage, multiapplication compiler which supports a wide spec-
trum of design and test activities has been implemented for
UAHPL [5]. The design described by the user in UAHPL is
translated automatically into internal tables by processors in
different stages. These tables are used for various activities
of the IC design process. This approach of having a single
high-level description for all activities of the design process
which include modeling, simulation, testing, implementation,
etc. reduces the possibility of design errors. The following
subsections will discuss the language UAHPL and the structure
of the UAHPL-DA system.
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A. Universal AHPL (UAHPL)

AHPL (a hardware programming language) is a register
transfer-level language (RTL) which has been used for almost
two decades [6] as an educational tool for communicating
concepts of digital systems and computer design. The language
is very simple and easy to learn, extremely powerful for
modeling, and is sufficient to express the description of both
simple and complex digital systems. Such a range spans
combinational circuits to parallel processors and data flow ma-
chines. However, AHPL lacks certain constructs and features
which have little pedagogical significance, but are necessary
for efficient realization and testing of digital systems. UAHPL,
an enhancement of AHPL, was designed after reviewing the
requirement of a wide spectrum of design and test activities in
various environments. This language gives more freedom in
the choice of register types, clocking options, and bus types.
It accommodates pass transistors, wired-OR gates, temporary
registers, and other elements which are useful for an efficient
realization of a circuit in any desired technology [5].

The UAHPL language, for the merits mentioned above and
the fact that its compiler and simulator are easily available free
of charge to all academic institutions in and out of the U.S.,
is a good candidate for the hardware description front-end.
Moveover, familiarity with one hardware description language
would enable one to migrate to another language such as
VHDL with minimal effort.

In UAHPL, sequential automata are described as MOD-
ULES. Iterative combinational networks, such as adders, de-
coders, etc., can conveniently be described as combinational
logic units (CLU’s). Circuits with memory but no sequential
control such as shift registers, counters, etc., may be described
as functional registers. This classification allows one to model
and use available digital IC’s or predesigned layouts from the
cell library in a convenient way. The module description con-
tains three parts: declaration, procedural, and nonprocedural.

In the declaration part, registers are declared as MEMORY.
INPUTS, OUTPUTS, and BUSES are communication lines
used among the modules of the same system. EXINPUTS and
EXBUSES are used for communication with other systems or
the outside world. BUSES and MEMORY elements are local
to the module. CLUNIT and FNREG are declarations of CLU
and functional registers, to be incorporated into the module.

The procedural part (describing the state machine sequence)
is divided into numbered steps. Each step takes one clock
period to execute. A step may have zero or more transfer
" <=" or connection ' =’ statements, followed optionally
by a conditional or unconditional branch ' => ’. The step
numbers and branch statements define the sequencer or the
control unit of the module. These can be implemented by
means of flip—flops and logic gates.

The nonprocedural part follows the keyword ENDSE-
QUENCE. Statements in this part are always active regardless
of the state of the control sequencer.

Only operators that have a direct hardware correspondence
such as Boolean And '&’, Or '+’, Exclusive Or ‘@', and
Complement ’ ~ ' are permitted in UAHPL. APL [7]-type
vector notation for Boolean reduction, concatenation, and bit
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MODULE SEQSEL.

MEMORY Al4];B[4];Cl4];F[4].
EXINPUTS : X[4];Y[2];P;Q;CLOCK;RESET.
BUSES : BUS1[4].

EXOUTPUTS: Z[4].

CLUNITS DCD{4]<: DCDER{4] .

CLUNITS INC{4]<: INCRE{4}.

BODY

SEQUENCE : CLOCK

1 =>(P,Q, P&"Q)/(2,4,1).
2 =>(P)/(2).

3 A<=X; B<=A; C<=B;
4

>(1).
F<=INC(BUS1) ; =>(1).
ENDSEQUENCE
CONTROLRESET (RESET) /(1) ;
Z=F;

BUS1=(A!B!C!(|1,1,1,1]))*DCD(Y).
END.

CLU: INCRE(X)
INPUTS: X[I}.
OUTPUTS: YI[1I].
BODY
FOR J=(I-1) TO O STEP -1
CONSTRUCT
IF J=I-1 THEN Y[J]="X[J].
ELSE Y[J]=X[J]@(&/X[J+1:1-1])
FI
ROF.
END.

{1}.

Fig. 1. UAHPL description of SEQSEL.

selection are used. UAHPL does not have primitive operators
for addition, subtraction, incrementing, decoding, etc. The
reason is that, depending on engineering tradeoffs, these
devices may be designed in different ways. For example, we
may have a serial adder, a ripple carry adder, or a carry
lookahead adder. Rather than restricting the choice to a few
built-in options, UAHPL provides the facility to describe such
devices as CLU'’s.

An example to illustrate modeling in UAHPL is presented
in the next subsection.

B. A Design Example

The example chosen is a sequential circuit SEQSEL. It
illustrates several basic constructs and features of the language.
Its UAHPL description is shown in Fig. 1. This is the model
of a system that receives a four-bit vector from an external
source, selects one among three such vectors or a constant
vector, and displays that one. The circuit contains four 4-bit
registers and accepts a 4-bit vector as input data. Registers A,
B, and C act as a stack to save new input. The data at the
output is selected from one of the registers or binary vector
[1,1,1,1]| by the 2-bit external input Y. The vector chosen
is stored in register F', an output holding register, until a new
selection is made. Two additional inputs, P and @, indicate
when the input vector and selecting signals are valid.

In the declaration section, delimited by keywords MODULE
and BODY (refer to Fig. 1), the size of all memory elements
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(registers) and CLU’s such as decoder (DCD) and incrementer
(INC) are given. EXINPUTS such as CLOCK and RESET,
EXOUTPUTS, and BUSES are also specified.

The numbered steps between the keywords SEQUENCE
and ENDSEQUENCE form the procedural part defining the
state of the sequential machine. In this part, a statement is
active only when the machine is in the corresponding step.
A statement may be a transfer ' <="', connection’ ="', or a
branch’ => ’. The destination of a transfer statement is always
a memory element, and that of the connection is a nonmemory
element like a bus or a set of output lines. Connection is active
throughout the corresponding control step, whereas transfer
is assumed to take place at the trailing edge of the clock in
that step.

Statements appearing after the keyword ENDSEQUENCE
are always active and form the nonprocedural part. In this
segment, the CONTROLRESET statement gives the step num-
ber to which the circuit will reset when the line RESET is
activated. The other two statements in the nonprocedural part
of the given example are for making permanent connections.

The example uses two CLU’s DCD (a 4-bit decoder)
and INC (a 4-bit incrementer). The identifier following the
delimiter ' <:’ gives the generic name of the CLU. If the
CLU has already been compiled and its layout exists in the cell
library, then it is not necessary to describe it again; otherwise,
it must be described explicitly. In this example, the generic
CLU INCRE is described but the DCDER is not. The number
enclosed in curly brackets is used as a parameter, the use of
which is explained below.

The generic CLU description is used as a template by
the compiler to generate copies of combinational circuit. The
Algol-like syntax chosen for the CLU description is convenient
for describing iterative networks. The parameter enclosed in
curly brackets allows the compiler to generate CLU’s of
varying sizes from the same template. In this example, the
parameter I is used to specify the bit size of the INCRE
unit. To do the incrementing, the least significant bit is
complemented, the other output bits are obtained by EXclusive
ORing the corresponding input bit with the logical AND of
all the lower significant input bits. FOR and IF statements are
compiler directives which are used by the compiler to generate
iterative networks.

Fig. 2 is another example of a CLU in UAHPL. The
AND '&’ symbol is used to represent a passgate in MOS.
The equivalent circuit of the model is a chain of four pass
transistors. Nesting of CLU’s is possible, and this chain can
be used to make more complex circuits such as a multiplexer.
This digital circuit is used to illustrate various applications of
the “VLSI Design Tools” that are discussed in Section III.

C. Compilation and Logic Synthesis

The block diagram of the UAHPL-DA system is given
in Fig. 3. The compilation process is divided into stages
[5]. The first stage, called Stage 1, accepts UAHPL circuit
description, performs syntax analysis and semantics checking,
and decomposes the source text into a tabular representation
of the circuit. In all, fourteen tables are produced.
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CLU: PASS4(A) {I}.
INPUTS: A[I], B[I].
OUTPUTS: Y.
BODY
FOR J=1 TO 1
CONSTRUCT
A[J+1]1=A[J]&B[J]
ROF
Y=A[I+1]
END.

Fig. 2.  UAHPL Model of CLU PASS4.

The Stage 2 compiler uses the tables generated by Stage 1 to
create the interconnection list; that is, to synthesize the circuit.
This list is the actual gate-level description of the digital circuit
expressed in UAHPL.

Figs. 4 and 5 show the internal structure of the linked
list, comprising GATELIST and its corresponding IOLIST
produced by Stage 2 for a circuit. All nodes of the circuit
are stored as records in the GATELIST. The first cell in
Fig. 4 is the gate number, and the second specifies the type
of element (for example AND, OR, NAND, D flip-flop,
etc.). ILINK, OLINK, SYMLNK, and SIGINP are pointers
to IOLIST (Fig. 5). Each node of IOLIST has four elements.
The first element is an index pointed by either ILINK, OLINK,
SYMLNK, or SIGINP. The second and third fields are infor-
mation elements, and the fourth is a pointer to the next IOLIST
record which contains similar information. The fourth field is
a zero if there is no successor record.

The pointers of the element nodes mentioned above point
to the IOLIST. For example, element 1 of Fig. 4 has gate-
type 4509, which is a D flip—flop. Its ILINK, OLINK,
SYMLNK, and SIGINP point to Entries 2, 157, 1, and 381
of the IOLIST, respectively. Following the IOLIST Record 2
and the succeeding record (7) pointed by it, one can find that
Elements 19, 8, 16, —1 (Vcc), and —1 (Vcc) are connected to
the inputs of Element 1, since it is referred to by ILINK; the
output of Element 1 is connected to Element 11, which is of
type 4201 (AND gate). The circuit for the segment explained
above is shown in Fig. 6.

D. Stage 3 Processors

The outputs of the first two stages are technology inde-
pendent, and are common to all applications of the compiler.
These are further manipulated by various Stage 3 processors,
to produce outputs pertaining to specific applications or ac-
tivities. Currently available CAD tools, marked as Stage 3
processors in Fig. 3, provide an environment for modeling,
synthesis, simulation, design, testing, and automatic layout
generation.

Stage 3A performs functional simulation at the register
transfer level [8], [9]. It uses Stage 1 tables and simulator
directives to produce simulation output. If errors are detected
in the output, then the UAHPL circuit description must be
modified. This is shown by the upward arrow in Fig. 3.

Stage 3B is a test sequence generator [10]. Heuristics of the
program are guided by the fact that UAHPL partitions a circuit
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Circuit Error
in UAHP| detected
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Fig. 3. Block diagram of a UAHPL-DA system.

GATE# GATE TYPE ILINK OLINK SYMLNK SIGINP PTR# ELEMT#1 ELEMT#2 NEXT_PTR
1 4509 2 157 1 381 1 2 0 )
2 4509 25 160 24 383
3 4509 47 158 46 355 ,27 12 _? 11
4 4509 70 161 69 360 0
5 4018 0 123 91 0 11 -1 0
K .. . .. . i 24 2 1 0
8 4018 0 6 94 0 157 11 o] 0
. . .. . 158 11 0 210

11 4201 156 163 0 202 159 2 4 0

it P ' o - ' 160 12 0 (o}

o e e a7 o 12 0

19 4229 122 126 191 238 162 11 18 0
Fig. 4. Sample of a GATELIST. Fig. 5. Sample of an IOLIST.

logically into control and data units. For a satisfactory level
of fault coverage in highly sequential circuits, it is necessary
to exercise the control section thoroughly, while the faults in
the data section may be searched in a simpler way.

Stage 3C is an interface with commercial test program gen-
eration software [11], [12]. It is an important link between the
design process and testing, which can be further strengthened
by providing a path from Stage 3B as shown by the dotted line

in Fig. 3. Stages 3B and 3C allow the designer to determine
the testability of a circuit before it is committed to hardware.
Testing and test sequence generation, thus, become an integral
part of the design process rather than a separate effort by
a group of people who were not a part of the design team,
and who have to reconstruct the circuit model often from its
imprecise description.

Stage 3D is for generating semicustom [13] VLSI layouts.
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4509 4201

EDS

AND

4229

CND

8 4018
4506

Fig. 6. Partial circuit diagram of GATELIST in Fig. 4.

The components of the Stage 3D processor are elaborated on
in the next section.

E. Stage 3D Processor

The task of this stage is to generate the layouts of
systems modeled in UAHPL. The various subtasks include
preprocessing, automatic placement, and automatic routing.
The preprocessor modifies the technology-independent and
implementation-independent interconnection list generated by
Stage 2 to another format suitable for implementation. In
addition, depending on the target technology, it takes care
of excessive fanout on pins that may cause performance
degradation. The placement software decides on locations of
cells on the layout floor corresponding to the various logic
elements of the GATELIST. The procedure for placement
of cells from the cell library on the layout consists of a
heuristic initial placement followed by iterative improvement
[14]. The iterative improvement consists of a procedure similar
to piecewise interchange with an important difference that
the dimensions of cells are taken into account. Information
about the dimensions of layout cells is obtained from the
cell library. The procedure allows a large cell, such as a
macrocell (e.g., ALU or a large flip—flop), to interchange
positions with many small cells such as two input gates.
This results in reduced interconnection wire length and chip
area, which are the objective functions. The procedure may be
automatic or may be manually intervened for refinements to
optimize timing problems in the final design. Interconnections
between cells are made by a grid router which uses a
modified Lee’s algorithm [15]. Two-layer H-V routing is
used. To achieve 100% connectivity, additional channels are
automatically added between cells.

The cell library contains layouts of all types of functions
required to implement any digital circuit described in UAHPL.
It is possible to add large macrocells by first modeling their
function in UAHPL. Then, the above-mentioned placement
and routing software are used to create new layouts.

The automatically produced fully-routed layout for the
UAHPL description of Fig. 1 is given in Fig. 7. The four
blocks on the top-most row represent the four output
lines Z[4]. Below the output lines is the register F'[4], whose
outputs are connected directly to the output lines. Register
C[4] is placed above register A[4] and next to B[4]. The
four square blocks are the control flip—flops. Ten small blocks

325

OUTPUTS z[4]
Fl4]
cl4) B{4]
Al4) W]
[ . =
INPUTS

Fig. 7.  UAHPL-DA generated layout of SEQSEL.

in the bottom row represent input lines X[4], Y[2], P, Q,
CLOCK, and RESET.

We can now summarize some of the salient features of the
UAHPL DA system. First, the level of abstraction provided
to functionally describe the digital system is adequately high.
Second, the various Stage 3 processors use the same tabular
and interconnection list representation of the circuit. In other
words, the circuit designed does not have to be expressed again
and again for the various Stage 3 applications. This saves time
and effort as well as eliminating the possibility of discrepan-
cies among various descriptions. Third, the entire DA system
is modular, open-ended, and can be easily expanded and
modified. More applications can be conveniently added as new
Stage 3 processors without making changes in the language or
existing software. Application-specific details can be directly
provided to the Stage 3 processors. Separating application-
specific tradeoffs and parameters from the language and its
compiler has enhanced the flexibility of the automation system.

The UAHPL-DA has been tested for several digital sys-
tems including multipliers, sequential circuits, the Am2911
sequencer, and a Meggit decoder with encouraging results
[13].

III. VLSI DESIGN TOOLS

The UAHPL-DA system discussed in the previous section
enables an automatic layout generation of digital systems
modeled at a high level of abstraction. It supports automatic
generation of hardware [5], functional-level simulation [8], [9],
testing [10}—[12], and automatic layout generation [13].

In the creation of layouts using the UAHPL-DA system
(like the one shown in Fig. 7), it was assumed that all
layouts in the cell library have been checked for design-
rule violations (both physical and electrical) and that there
are no timing problems. Also, no mention of input/output
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pads for interconnection of the layouts to the outside world
was mentioned. Before submitting the layout for fabrication,
several verifications have to be made using simulators to
ensure correctness of design.

For the above simulations and checks, tools available from
a comprehensive toolkit “VLSI Design Tools Release 3.1”
[4] have been obtained. In this section, we will discuss tools
that are required by the UAHPL-DA system to complete an
environment that will support automatic design of VLSI chips
and thus support teaching of VLSI DA.

A. Cell Library

The cell library is the heart of the DA system in which lay-
outs in Caltech Intermediate Form (CIF) [16] format are stored.
At the time of development of the UAHPL-DA system,
the cell library contained only the primitive cells of nMOS
layouts. These were handcrafted using a standard layout editor.
A set of design-rule-checked cells in CMOS—PW technology
is available in the toolkit; for details, see the “Standard Cell
Library Guide” in [4]. These include basic gates and flip—flops.
Large cells can be made by using the available cells, with the
help of a standard layout editor. The approach discussed in
Section II is also used for automatic layout and interconnection
for the creation of complex cells. Information about the cell
dimensions required by the placement software and about the
input/output points of cells required by the router are obtained
from the cell library. The final layout is also stored back in
CIF and can be used for other designs.

Layouts for structured devices created using “generator”
programs, and cells from other standard libraries have also
been included. The toolkit contains software that can be used
to convert between different formats (for example, CIF and
Caesar formats). This enables inclusion of designs created
under other environments. The use of layout generators is
elaborated on in the next section.

The cell library now contains the standard set of basic
logic gates such as NOR, NAND, XOR, and complex circuits
such as ADDERS, multiplexers, PLA’s (programmable logic
arrays), ALU’s, etc. It also contains input/output pads and
circuits required to translate between internal voltages and
those required off the chip.

B. VLSI Design Generators

A large portion of routine circuitry can be automatically
produced by CAD software. Programs called “generators”
can be used to create designs from input parameters. These
are suitable for the creation of layouts which have a well-
defined structure (e.g., PLA’s, multiplexers, registers, etc.).
Generator programs available with the toolkit include buffer
(generates a static buffer), decoder (generates a decoder), mult
(generates a multiplier), pads (generates pads and padframe),
plac (generates a static or dynamic PLA), ram (generates a
single/dual port register file), rom (generates a static/dynamic
ROM), rshift (generates an n-bit, m-stages shift register), and
tmux (generates a transmission gate MUX). All layouts are
in 3 1 bulk CMOS technology. More details are available in
[4, Sect. I-G].
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Coordinate Free Lap (CFL) [17] is a library of subroutines
written in C language intended to facilitate construction of
VLSI circuit layouts. The above generators are CFL-based
programs and require a number of leaf cells in Caesar format
[18], which comes with the toolkit. Layouts can be produced
by these generators and are included in the cell library.

C. Design-Rule Checker

A design rule checker (DRC) is a piece of software that is
used to verify that all design rules of a technology have been
met. A DRC software called lyra [19], available in the toolkit,
is used for checking design rules pertaining to overlaps and
separation of different rectangles in the layout. Lyra takes
as input the Caesar description of the design and produces
as output an indication of the geometrical design errors that
occur with regard to the given set of design rules. It allows
both batch hierarchical check and interactive check when used
with the Caesar layout editor [18]. Lyra currently supports two
nMOS rulesets (Berkeley nMOS rules and Mead & Conway
rules) and one CMOS ruleset (MOSIS 3 y bulk CMOS process
rules) [16], [20]. One advantage of using the lyra checker
is that it can be retargeted to a new design ruleset. This is
done by first preparing the ruleset in lyra format. The rule
specification is then compiled by the lyra rule compiler to
generate an executable file for checking the specified rules.
This executable file is invoked by the lyra front end to check
designs against the ruleset [21].

D. Circuit Extraction

A circuit extractor is a program that takes a layout descrip-
tion and produces as output an underlying electrical circuit
consisting of the list of transistors and node connectivity
information [22]. Other information such as the dimensions
of the devices, resistances, and capacitances of the connecting
wires can also be derived.

The circuit extractor available in the toolkit is called Mextra
(Manhattan circuit extractor for VLSI simulation) [4]. Mextra
reads the layout file in CIF and creates a circuit description. As
an example, for the UAHPL model in Fig. 2 (a chain of four
pass transistors), Fig. 8 shows its layout and the corresponding
CIF file. The extracted transistor circuit description is given
in Fig. 9. This extracted description provided by Mextra
can be translated using translation software available with
the toolkit to convert Mextra outputs to acceptable Spice
(a simulation program with integrated circuit emphasis) [23]
and Rnl (NetLisp, timing and logic simulator for VLSI) [24]
inputs.

E. Circuit Simulation

The output of circuit extractors is used by simulators to
verify functional correctness and for transient analysis of
MOS circuits. Depending on the type of simulation task, the
extraction of parasitic capacitance can be made optional.

Spice [23] is a general-purpose circuit simulation program.
Circuits may contain resistors, capacitors, inductors, transis-
tors, etc. Rnl [24] is a timing logic simulator for digital
MOS circuits with a lisp-like command interpreter. It is even-
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Fig. 8. Chain of four pass transistors and their CIF file.

units: 1 tech: nmos format: UCB

e 4 A(5) A(4) 500 500 4000 1000

e 3 A(4) A(3) 500 500 3000 1000

e 2 A(3) A(2) 500 500 2000 1000

e 1 A(2) A(1) 500 500 1000 1000

L1000 O 750000 4000 0 0 0 O

L 2000 0 750000 4000 0 0 O O

L 30000 750000 4000 0 O O O

L 40000 750000 4000 0 O 0 O

L A(1) 0O 0O 0 0 O 0O 249875 1997.5 0 O

L A(2) O O 0O O 0 O 249750 1997.5 0 O

L A(3) 00 00 0O 0 249750 1997.5 0 O

L A(4) O 0O 0O O 0 O 249750 1997.5 0 O

L A(5) 00 0 0 0O O 249875 1997.5 0 0
Fig. 9. Mextra output for CIF input of Fig. 8.

driven and uses a simple RC model of the circuit to estimate
node transition times and the effects of charge sharing. Spice
and Rl input files can be obtained from the layout by
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using Mextra and format translators pspice and presim,
respectively. Fig. 10 is the Spice deck created by pspice (a
preprocessor for Spice) from Mextra output.

F. Pad Frame and Pads

In order to communicate with the outside world, the EX-
INPUTS and EXBUSES declared in the UAHPL model are
to be connected to input/output pads. To facilitate this, the
toolkit consists of software called pads. This is a CFL-based
module generator program for the MOSIS 3 u bulk CMOS
padframe layout. Leaf cells derived from MIT pads received
from MOSIS are used to produce a padframe in Caesar
format. Specifications are read from standard input/output and
consist of a frame specifier and pad specifiers. Pad specifiers
(consisting of pad number and pad type) are used to determine
the location and type of circuitry to place on specific pad sites.
More details of pads, that is their dimensions, types, usage,
etc., are given in [4].

The VLSI toolkit is very comprehensive, and only a small
subset of the tools was discussed previously. The integrated
VLSI DA system is illustrated in Fig. 11. Simscope, shown
in Fig. 11, is a program used to view the timing diagrams
produced by outputs of Spice and Rnl. Vic, shown in Fig. 11,
is a program used to view layouts in Caesar format. The toolkit
also contains several supporting files such as config-files and
technology-files, which contain various parameters obtained
from device modeling. The above-discussed VLSI design tools
are available on the first of the two files that come on one tape.
The second file and its documentation, which are not discussed
in this report, also contain essential software such a Crystal
[25] for timing analysis and Magic Tools {26]. The inclusion
of tools from this second file will considerably enhance the
power of the DA system.

IV. DISCUSSION

The two preceding sections described two important soft-
ware packages that can be used for the establishment of an
integrated system to teach VLSI DA. With the recent lifting
of the ban on the export of VLSI design software from the
U.S,, it is now possible for universities and departments all
over the world to obtain the above-described software at no
cost. In this section, we briefly present the hardware and
software requirements for establishment of the VLSI DA
system depicted in Fig. 11, and outline its use in teaching
related undergraduate and graduate courses. Some of the
projects that were accomplished using the DA system are also
listed.

A. Hardware and Software Requirements

Most of the work related to UAHPL was done at the
University of Arizona and King Fahd University of Petroleum
and Minerals. The package has been successfully installed on
both an IBM 3033 mainframe and a VAX 11/780 that runs a
VMS operating system. The source code is in standard Fortran
and with little effort can be ported to run on other machines.
Some UAHPL tools like the Stage 1 compiler and functional
simulator are also available for IBM PC’s.
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*%*% SPICE DECK created from Xx.sim, tech=nmos
M1 5 4 6 7 NMOSE L=5.0U W=5.0U
M2 9 85 7 NMOSE L=5.0U W=5.0U
M3 11 10 9 7 NMOSE L=5.0U W=5.0U
M4 13 12 11 7 NMOSE L=5.0U W=5.0U
C5 12 O 0.003000PF

cCé6 10 O 0.003000PF

c7 8 0 0.003000PF

cs 4 0 0.003000PF

C9 13 0 0.004496PF

Cl10 11 O 0.004495PF

Cll 9 O 0.004495PF

Cl2 5 0O 0.004495PF

Cl13 6 0 0.004496PF

.MODEL. NMOSE NMOS LEVEL=2.00000 LD=0.211698U TOX=635.000E-10
+NSUB=3.779887E+15 VTO=1.13877 KP=4.145038E-05 GAMMA=0.494661
+PHI=0.600000 U0=300.000 UEXP=1.001000E-03 UCRIT=441843.
+DELTA=1.26380 VMAX=100000. XJ=5.27683U LAMBDA=2.385822E-02
+NFS=2.356687E+12 NEFF=1.001000E-02 NSS=0.000000E+00 TPG=1.0000
+RSH=25.4 CGSO=1.6E-10 CGDO=1.6E-10 CJ=1.1E-4 MJ=0.5 CJSW=5E-10

+MJISW=0.33
VE 7 0 DC O
.END

Fig. 10. Spice deck created by pspice from Fig. 9.

Integrated VLS| DA System

VLS| DESIGN
TOOL-KIT

library

UAHPL DA

Cotage-D
Pre

Processor,

Other
Stage-3s

Route

stage-30

Final layout

Fig. 11. Integrated UAHPL-based VLSI DA system.

“VLSI Design Tools, Release 3.1” runs on VAX 11 /780
with Berkeley’s 4.2 or 4.3 UNIX and on Sun3 under Sun
0S 3.2. Some of the tools require plotting and graphic devices.
Both Simscope and Vic are designed to display outputs on
Tektronix 4105 or GP19 graphics terminals. Simscope is used

to display timing diagrams and Vic for displaying layouts. IBM
PC’s connected to VAX through Kermit can also be used to
display using Simscope and Vic. Depending on the hardware
facilities on site, drivers and emulators can be developed in-
house. If hardware facilities like DEC workstations, etc., are
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available, then emulators can be commercially obtained.

Universities that have more than one VAX 11/780 inter-
connected, and run both the operating systems (i.e., VAX
VMS and Berkeley UNIX) can have a distributed DA system.
The UAHPL-DA can run on one VAX (VMS) and the VLSI
Design Tools on the other (UNIX). This is the current config-
uration at our school. However, the UAHPL tools written in
standard Fortran can be ported with little effort to run under
UNIX.

B. VLSI DA Courses

The toolkit offers a large number of options on how a DA
course can be conducted. The approach taken will greatly
depend on the experience and dedication of the instructor, the
support and competence of the teaching assistants, and the
composition and level of the students and their background in
electronics and VLSI.

At the undergraduate level, it is recommended that the
course be conducted with a laboratory session that meets
once a week. The theory sessions could be dedicated to
the discussion of the UAHPL-based DA, other VLSI design
methodologies, and VLSI DA tools with less emphasis on
algorithms for DA. The laboratory sessions may be dedicated
to experimentation with various packages to teach circuit
simulation, design-rule checking, and timing analysis, since
this is the best way to teach undergraduate students about real-
world engineering. Other experiments may include the creation
of tiles for structured layouts, the building of lyra rulesets for
a given set of design rules, and the design of simple generator
programs using CFL. The course could also include a project
that uses most of the tools discussed. One such undergraduate
course project was the design and implementation of a package
for automatic mapping of CLU’s in UAHPL to layouts using
Weinberger arrays [27], [28]. Inclusion of projects induces
creativity and gives a better overall view of the VLSI DA
system.

A graduate-level course that uses the VLSI DA system could
concentrate on the design of underlying DA algorithms and
their implementation. Topics of discussion could include algo-
rithms for automatic hardware synthesis, partitioning netlists,
automatic placement and routing, circuit extraction, design-
rule checking, circuit simulation, and timing analysis. Course
projects may be related to design and implementation of new
algorithms for DA, the performance of which can be compared
with those of the corresponding tools in the toolkit. Research
and graduate class projects are presented in the next section.

C. UAHPL-DA Projects

Most of the VLSI DA projects that have been implemented
thus far have been related to the automatic mapping of UAHPL
circuit descriptions to various structured layout targets. The fi-
nal implementations have been in PPLA’s (path programmable
logic arrays) [29], the SLA (storage logic array) [30], and the
Weinberger arrays [27].

Mapping netlists to new layout structures, implementation
using ULM’s (Universal logic modules) [31], investigating
transformations of hardware generated by the UAHPL com-
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piler to another form suitable for efficient implementation in
VLSI, delay modeling of layout cells in the cell library, and
investigation of new device technologies for implementation
are some research projects worth pursuing.

Several digital DA projects that are not related to VLSI have
also been completed. One of them was the automatic mapping
of UAHPL circuits to a printed circuit board (PCB) layout and
implementation using the TTL 7400 series [32]. A database to
help manage the VLSI design process was also attempted [33].
Another successful project was the implementation of a tool
for automatic microcode generation for controliers of systems
modeled in UAHPL [34].

There is no limit to the number of research projects that
can be investigated, and it is obvious that the presence of the
above DA system will definitely have a great impact on the
students of DA courses.

UAHPL tools can be obtained by writing to Prof. F.J. Hill
at the University of Arizona or to Prof. M. Masud at the
University of Petroleum and Minerals. “VLSI Design Tools”
can be obtained by writing to V. Palm at the University
of Washington or to The Industrial Liason Program at the
University of California, Berkeley.

V. CONCLUSIONS

This paper presents a powerful language-based integrated
environment for teaching DA of VLSI. Various aspects of
design, from modeling using a high-level language to final
implementation in VLSI, can best be explained with the help
of tools available in the UAHPL-based VLSI DA system. The
DA system can be used for laboratory experiments related
to modeling, simulation, and verification of different phases
of the digital design process. There is no restriction on the
structure of the final product. The presence of excellent tools
in the UAHPL-based VLSI DA system allows students to
build real designs and verify their correctness in a relatively
short time. Additional tools may be procured or developed
and attached to the modular DA system without making any
changes in the language or the existing software.
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