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الخلاصــة

الصعبة، المتطلبات من إطار ضمن تقریبیة حلولا یتطلب المجمعات الطبولوجي لشبكات التصمیم إن
الحدود ضمن وخطوط وصلھا ونوعھا وموقعھا الفعالة عدد العناصر تحدید التصمیم على یشتمل حیث
ھذه وأھم المتعارضة، المتطلبات من العدید بین تـقارب نقاط إیجاد یوجب مما والتـقـنیة، الفیزیائیة
الشبكة وموثوقیة الاتصال، نقاط بین وعدد القفزات في الشبكة، النقـل وزمن المالیة، التكلفة المتطلبات
البیانات داخل بحركة التـنبؤ صعوبة بسبب دقیق بشكل محددة غیر المتطلبات ھذه فإن ذلك إضافة إلى

المشكلة. لحل إطاراً ریاضیاً مناسباً المبھم المنطق الحالات یوفر ھذه الشبكة. وفي مثـل

خوارزم على یعتمد المجمعات لشبكات الطبولوجي للتصمیم خوارزمیة البحث ھذا في نقدم وسوف
مستـقاة للبحث  خواص باستخدام قمنا التوزیع مرحلة  في  البحث عملیة ولتـفعیل المحاكي. التطــور 
الخــوارزمیتین كلـتا مــع المقـتـــرح الخــوارزم بمقارنــة قمنــا وقــد .Tabu Search خوارزم من
اختبارھا تم  التي الحالات كل في النتائج أظھرت وقد .Esau–Williams و Simulated Annealing

الأُخریـین. على الخوارزمیتین التطور المحاكي خوارزمیة تـفـوّق
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ABSTRACT

The topology design of campus networks is a hard constrained combinatorial 
optimization problem. It consists of deciding the number, type, and location of the 
active network elements (nodes), and the links. This choice is dictated by physical and 
technological constraints and must optimize several objectives. Important objectives 
are monetary cost, network delay, hop count between communicating pairs, and 
reliability. Furthermore, due to the nondeterministic nature of network traffic and other 
design parameters, the objective criteria are imprecise. Fuzzy Logic provides a suitable 
mathematical framework in such a situation. In this paper, we present a Simulated 
Evolution algorithm for the design of campus network topology. To intensify the search, 
we have also incorporated Tabu Search-based characteristics in the allocation phase of 
the SE algorithm. The proposed fuzzy SE algorithm is compared with the Simulated 
Annealing heuristic. Comparison is also made with Esau–Williams (EW) algorithm, a 
well known constructive algorithm for the category of problems addressed in this work. 
Results show that on all test cases, the Simulated Evolution algorithm exhibits a more 
intelligent search of the solution subspace and was able to find better solutions than 
Simulated Annealing and Esau–Williams algorithm.

Keywords: Campus Networks, Combinatorial Optimization, Fuzzy Logic, Iterative 
Heuristics, Network Topology, Simulated Annealing, Simulated Evolution, 
Tabu Search.
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A FUZZY EVOLUTIONARY ALGORITHM FOR TOPOLOGY DESIGN OF
CAMPUS NETWORKS

1. INTRODUCTION

A typical campus network consists of an interconnected collection of a relatively large number of nodes. The
network nodes fall into two general categories: end-user nodes which represent network access points consisting
of workstations, personal computers, printers, mainframe computers, etc., and the network active elements
consisting of various devices such as multiplexers, hubs, switches, routers, and gateways. The active elements
and links provide the needed physical communication paths between every pair of end-user nodes.

A good network topology is governed by several constraints. Geographical constraints dictate the break-down
of such internetwork into smaller parts or groups of nodes, where each group makes up what is called a LAN. A
LAN consists of all the elements that create a networked system up to a router. A campus network is usually
made up of a collection of interconnected LANs. Further, the nodes of a LAN may be subdivided into smaller
parts, called LAN segments, to satisfy other constraints and objectives, for example, minimization of delay,
containment of broadcast traffic, and minimization of cabling and equipment cost [1]. The topology design
of the LAN itself consists of two main issues: segmentation, where LAN segments are defined, and design of
actual topology, which consists of interconnecting the individual segments. Topology design at LAN level usually
consists of interconnecting the LAN segments via bridges and layer 2 switches [2, 3].

It is recommended to structure the campus network into three layers (see Figure 1):

(1) Local Access Layer, which provides workgroup access to the network.

(2) Distribution Layer, which provides policy-based connectivity among the workgroups. This layer is im-
plemented with layer 3 switches, routers, and gateways. This is where packet manipulation takes place.

(3) Backbone Layer, which provides high speed optimal transport of data among local sites (the LANs).

Following the above three-layer hierarchy, the design of such a structured campus network can be approached in
four steps:

(1) Assignment of end-user nodes/stations to LAN segments.

(2) Assignment of LAN segments to local sites that will make up a single LAN.

(3) Design of the internal structure of each local site (i.e., in what topology the LAN segments of a local
site are connected). This step serves also to select appropriate switching equipment.

(4) Backbone design, where the local sites are connected to the backbone. This step also will dictate the
required backbone equipment.

1.1. Literature Review and Related Work

Topological design of campus networks is a hard problem [1]. Even the design of a LAN is itself an NP-hard
problem [2–4]. The state space is of exponential complexity. For example, for a network with n nodes, there can
be as many as 2

n(n−1)
2 different topologies. Even for n = 20 this number evaluates to more than 1056. Therefore,

we have to use approximation methods known as ‘heuristics’ to focus the search on feasible topologies of desirable
features in order to produce good feasible solutions in a reasonable amount of time.
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Figure 1. A typical campus network.

There are two categories of heuristics: constructive and iterative. Constructive heuristics produce a complete
solution by making deterministic moves. Constructive techniques are fast but produce in most cases solutions of
poor quality. For highly constrained problems, they may even fail to find a feasible solution. Some of the well
known constructive algorithms for the constrained minimum spanning tree problem are the Kruskal algorithm [5],
the Prim algorithm [6], and the Esau–Williams algorithm [7].

Iterative heuristics attempt to improve a complete solution by making a controlled walk through the state
space [8]. Generally we can classify iterative schemes into two subclasses: schemes which only accept good
moves, i.e., perturbations leading to better quality solutions, like local search; and schemes which can accept
bad moves, like simulated annealing [9], genetic algorithms [10], tabu search [8], and simulated evolution [8].
Such search schemes are said to possess hill-climbing property, enabling them to escape local optima and hence
discover better quality solutions.

The use of iterative heuristics for topological network design has been reported in many research papers.
The use of Genetic Algorithms (GA) for topological network design has been proposed in [2, 3, 11, 12]. Pierre
et al. [12] used a genetic algorithm to solve the topological design problem of distributed packet switched networks.
The goal was to find a topology that minimizes the communication costs by taking into account constraints such
as delay and reliability. Elbaum et al. [2] have used GA for designing LANs with the objective of minimizing the
average network delay. The constraint they considered is that the flow on any link does not exceed the capacity
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of that link. The topology design issues they addressed consist of determination of the number of segments in
the network, allocating the users to different segments, and determining the interconnections and routing among
the segments. Also, lower bounds on the average network delay have been developed. Gen et al. [3] have used
GA for topological network design with two criteria which are the network delay and cost based on the weights
of links. They have used two main entities which they call service centers (e.g., bridges) and nodes (i.e., users)
which are connected to service centers. The constraints they have considered are that the number of nodes
connected to a service center must not exceed the capacity of the center and that the traffic flowing through a
service center must not exceed its traffic capacity. Dengiz et al. [11, 13] focused on large backbone communication
network design using genetic algorithm to optimize a network topology. They used the cost and reliability as
optimization measures. They called their algorithm GA with knowledge-based steps (GAKBS). Similarly, use of
simulated annealing has been reported in [4] where Ersoy et al. used it for topological design of interconnected
LAN/MAN. The main objective was to minimize the average network delay. They have considered transparent
bridges, which are required to form a spanning tree topology. Fetterolf [14] used simulated annealing to design
LAN–WAN computer networks with transparent bridges. The simulated annealing algorithm that was proposed
generates sequences of neighboring spanning trees and evaluates design constraints based on maximum flow,
bridge capacity, and end-to-end delay. In [15], Pierre et al. used a Tabu Search algorithm for designing computer
network topologies with unreliable components. Their simulation results showed the efficiency and robustness of
their algorithm for designing backbone networks interconnecting between 12 and 30 nodes. However, in all the
aforementioned studies, realistic assumptions, such as the limitation of number of ports on a networking device,
or the hierarchy of network devices, were not considered.

In this work, a simulated evolution (SE) based heuristic [8] is used for topology design of structured campus
networks. The proposed heuristic is engineered to seek feasible tree topologies that are minimized with respect
to monetary cost, maximum number of hops between any source–destination pair, and average network delay
per packet. For assignment of segments to local sites, Augmenting Path algorithm is used [16].

For campus networks, the number of nodes is relatively small and the links are highly reliable, which justifies
the use of a tree topology. Further, according to recommended structured cabling standards, the network
topology is constrained to be a hierarchical star, i.e., a tree. Hence we target to find a constrained tree topology
of desirable quality with respect to the three design objectives. We resort to fuzzy logic to formulate the various
objectives in the form of fuzzy rules that will guide the search toward solutions of desirable quality.

2. ASSUMPTIONS AND NOTATION

The term “node” is used to refer to different objects at different levels. At the segment level, a node refers
to a network access point (end user equipment), while at the LAN level, a node refers to a segment (shared or
switched hub). At the backbone level, a node refers to a LAN, or a ‘cluster’ (actually the node represents the
switch, router, or gateway connecting the LAN to another backbone node).

In this work we assume the following.

• The backbone is assumed to consist of a single node, i.e., we assume a collapsed backbone equipped with
required interfaces. The backbone is the root of the tree.

• A LAN/cluster is constrained to consist of segments of the same technology such as Ethernet.

• The “capacity” of a network device is equal to the number of interfaces it has.

• The location of a node within a cluster can be represented by its Euclidean (x, y) coordinates with respect
to some reference point.

• Each end-user node has a LAN network interface card of a particular technology such as 10/100baseT
Ethernet or Token-Ring type [17].
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• Between two local sites, only fiber optic cable [18] is used.

• There is a user-specified limit on the number of network addresses per LAN.

• The number of segments is known a priori, i.e., users have already been assigned to segments.

• Hubs, switches, routers, and other networking devices cannot be placed in any location. They have
designated locations (equipment racks/closets in particular rooms).

• Maximum allowed utilization of any link should not exceed a desired threshold (e.g., 60%).

In the following sections, we shall use the notation given below:

n number of clusters.

T n × n local site topology matrix where,

tij = 1, if local sites i and j are connected and tij = 0 otherwise.

λi traffic in bits per second (bps) on link i.

λmax,i capacity in bps of link i.

L number of links of the proposed topology.

Dnd delay due to network devices.

bij the delay per packet.

µ reciprocal of average packet size in bits.

Bij the delay per bit due to the network device feeding the link connecting

local sites i and j, equal to µbi,j .

ni maximum number of nodes that can be connected to cluster i.

γij external traffic in bps between clusters i and j.

γ overall external traffic in bps.

3. PROBLEM STATEMENT

We seek to find a quality feasible topology. Since there is no known algorithm that produces a solution
of known quality, we rely on design principles to evaluate any network topology. Quality of a topology is
measured with respect to three objectives: monetary cost, average network delay per packet (network latency),
and maximum number of hops between any source–destination pair. A feasible topology is one that satisfies all
design principles. Three categories of constraints are considered.

(1) The first set of constraints is dictated by bandwidth limitation of the links. A good network would be
one in which links are “reasonably” utilized. High utilization levels cause delays, congestion, and packet
loss. Thus the traffic flow on any link i must never exceed a threshold value λmax,i :

λi < λmax,i i = 1, 2, ..., s (1)

where s is the total number of links present in the topology.

(2) The second set of constraints enforces that the number of clusters attached to a network device i must
not be more than the port capacity pi of that device.

n∑

j=1

tij < pi i = 1, 2, ..., n ∀i �= j. (2)
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(3) The third set of constraints are user-specified and express the designer’s desire to enforce certain design
guidelines and principles. Examples of guidelines/principles are:

(a) Only specific nodes can be interior nodes of the tree.

(b) Only specific nodes can be directly connected to the backbone.

(c) Certain nodes must be leaf/terminal nodes.

(d) Others.

The stated constraints and design principles define the set of feasible topologies. The search targets feasible
topologies which minimize three objectives: monetary cost, average network delay per packet (network packet
latency), and maximum hop count for any source–destination pair (tree diameter).

Monetary Cost

The goal is to find a topology with low cost, while meeting all the requirements and constraints. The cost of
the cables and the cost of the network devices are the two main entities affecting the monetary cost, i.e.,

cost = (l × ccable) + (cnd) (3)

where l represents the total length of cable, ccable represents the cost per unit of the cable used, and cnd i.e., the
routers, switches, and hubs used.

Average Network Delay

The second objective is to minimize the average network delay experienced by a packet to go from any source
to any destination.

To estimate the average network delay, the aggregate behavior of a link and network device is modeled by an
M/M/1 queue [2]. The delay per bit due to the network device feeding the link connecting local sites i and j is
Bi,j = µbi,j , where 1

µ is the average packet size in bits and bi,j is the delay per packet. If γij is the total traffic
through the network device between local sites i and j, then the average packet delay due to all network devices
is:

Dnd =
1
γ

d∑

i=1

d∑

j=1

γijBij (4)

where d is the total number of network devices in the network and γ is the sum of all γij . The total average
network delay is composed of delays of links and network devices and is given by the following equation [2],

D =
1
γ

L∑

i=1

λi

λmax,i − λi
+

1
γ

d∑

i=1

d∑

j=1

γijBij . (5)

Maximum Number of Hops Between any Source–Destination Pair

The maximum number of hops between any source–destination pair is another objective to be optimized.
A hop is counted as the packet crosses a network device.

4. FUZZY LOGIC

A crisp set is normally defined as a collection of elements x ∈ X, where each element can either belong to a set
or not. However, in real life situations, objects do not have crisp [0 or 1] membership criteria. Fuzzy set theory
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(FST) aims to represent vague information, like “very hot” and “quite cold”, which are difficult to represent
in classical (crisp) set theory. In fuzzy sets, an element may partially belong to a set. Formally, a fuzzy set is
characterized by a membership function which provides a measure of the degree of presence for every element in
the set [19].

Like crisp sets, set operations such as union, intersection, and complementation etc., are also defined on fuzzy
sets. There are many operators for fuzzy union and fuzzy intersection. For fuzzy union, the operators are known
as s-norm operators while fuzzy intersection operators are known as t-norm. Generally s-norm is implemented
using “max” and t-norm as “min” function. However, formulation of multi criteria decision functions do not desire
pure “anding” of t-norm nor the pure “oring” of s-norm. The reason for this is the complete lack of compensation
of t-norm for any partial fulfillment and complete submission of s-norm to fulfillment of any criteria. Also the
indifference to the individual criteria of each of these two forms of operators led to the development of Ordered
Weighted Averaging (OWA) operators [20, 21]. This category of operators allows easy adjustment of the degree
of “anding” and “oring” embedded in the aggregation. “Orlike” and “Andlike” OWA for two fuzzy sets A and
B are implemented as given in Equations (6) and (7) respectively,

µA∪B(x) = β × max(µA, µB) + (1 − β) × 1
2
(µA + µB) (6)

µA∩B(x) = β × min(µA, µB) + (1 − β) × 1
2
(µA + µB), (7)

where β is a constant parameter in the range [0,1]. It represents the degree to which OWA operator resembles
the pure “or” or pure “and” respectively.

4.1. Fuzzy Reasoning

Fuzzy reasoning is a mathematical discipline invented to express human reasoning in vigorous mathemati-
cal notation. Unlike classical reasoning in which propositions are either true or false, fuzzy logic establishes
approximate truth value of propositions based on linguistic variables and inference rules. In order to represent
imprecise ideas, Zadeh [19] introduced the concept of linguistic variable. A linguistic variable is a variable whose
values are words or sentences in natural or artificial language. The set of values a linguistic value can take is
called a term set. This set is constructed by means of primary terms and by placing modifiers known as hedges
such as “more”, “many”, “few” etc., before primary terms. The term set represents a precise syntax in order to
form a vast range of values the linguistic variable can take. The linguistic variables can be composed to form
propositions using connectors like AND, OR, and NOT.

The quality of a topology is measured against several objective criteria. None of the objectives gives sufficient
information to decide the quality of the network topology. Users would like to observe very low latencies, whereas
management prefers to have cost as low as possible. In a later section we shall describe how fuzzy logic is used to
combine these objectives into a single measure estimating the goodnesses of the movable elements of a solution
as well as the membership of a given topology into the fuzzy set of quality topologies.

5. SIMULATED EVOLUTION

Simulated Evolution (SE) is a general iterative heuristic proposed by Ralph Kling [22]. It falls in the cate-
gory of algorithms which emphasize the behavioral link between parents and offspring, or between reproductive
populations, rather than the genetic link [23]. This scheme combines iterative improvement and constructive per-
turbation and saves itself from getting trapped in local minima by following a stochastic perturbation approach.
It iteratively operates a sequence of evaluation, selection, and allocation steps on one solution (See Figure 2).
The selection and allocation steps constitute a compound move from current solution to another feasible solution
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of the state space. SE proceeds as follows. It starts with a randomly or constructively generated valid initial
solution. A solution is seen as a set of movable elements. Each element ei has an associated goodness measure
gi in the interval [0,1]. The main loop of the algorithm consists of three steps: evaluation, selection, and
allocation. These steps are carried out repetitively until some stopping condition is satisfied. In the evaluation
step, the goodness of each element is estimated. In the selection step, a subset of elements are selected and
removed from current solution. The lower the goodness of a particular element, the higher is its selection prob-
ability. A bias parameter B is used to compensate for inaccuracies of goodness measure. Finally, the allocation
step tries to assign the selected elements to better locations. Other than these three steps, some input parameters
for the algorithm are set in an earlier step known as initialization.

Simulated Evolution(B, Φinitial, StoppingCondition)

NOTATION

B= Bias Value.

Φ= Complete solution.

ei= Individual link in Φ.

gi= Goodness of ith link in Φ.

S= Queue to store the selected links.

ALLOCATE(ei, Φi)=Function to allocate ei in partial solution Φi

Begin

Repeat

EVALUATION:

ForEach ei ∈ Φ evaluate gi;

/* Only elements that were affected by moves of previous */

/* iteration get their goodnesses recalculated*/

SELECTION:

ForEach ei ∈ Φ DO

begin

IF Random > Min(gi + B, 1)

THEN

begin

S = S ∪ ei; Remove ei from Φ

end

end

Sort the elements of S

ALLOCATION:

ForEach ei ∈ S DO

begin

ALLOCATE(ei, Φi)

end

Until Stopping Condition is satisfied

Return Best solution.

(Simulated Evolution)

Figure 2. Structure of the simulated evolution algorithm.
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6. PROPOSED FUZZY SIMULATED EVOLUTION ALGORITHM FOR NETWORK
TOPOLOGY DESIGN

In this section, we provide details of each of the phases of the SE algorithm. The pseudocode of the algorithm
is given in Figure 2. We confine ourselves to tree design because they are minimal and provide unique paths
between every pair of local sites. Further, usually, the design of general network topology starts from a constrained
spanning tree.

6.1. Fuzzy Evaluation

The initial spanning tree topology is generated randomly, while taking into account all design constraints
mentioned earlier.

The goodness of each individual is computed as follows. In our case, an individual is a link interconnecting
two network devices. In the fuzzy evaluation scheme, monetary cost and optimum depth of a link (with respect
to the root) are considered fuzzy variables. Then the goodness of a link is characterized by the following rule.

Rule 1: IF a link is near optimum cost AND near optimum depth
THEN it has high goodness.

Here, near optimum cost, near optimum depth, and high goodness are linguistic values for the fuzzy variables cost,
depth, and goodness. Using and-like compensatory operator [24], Rule 1 translates to the following equation for
the fuzzy goodness measure of a link li :

gli = µe(li) = αe × min(µe
1(li), µ

e
2(li)) + (1 − αe) × 1

2

2∑

i=1

µe
i (li). (8)

The superscript e stands for evaluation and is used to distinguish similar notation in other fuzzy rules.
In Equation 8, µe(li) is the fuzzy set of high goodness links and αe is a constant. The µe

1(li) and µe
2(li) represent

memberships in the fuzzy sets near optimum monetary cost and near optimum depth.

In order to find the membership of a link with respect to near optimum monetary cost, we proceed in
the following manner. From the cost matrix, which gives the costs of each possible link, we find the min-
imum and maximum costs among all the link costs. We take these minimum and maximum costs as the
lower and upper bounds and call them “LCostMin” and “LCostMax” respectively and then find the mem-
bership of a link with respect to these bounds. Furthermore, in this work, we have normalized the mone-
tary cost with respect to “LCostMax”. The resulting function will be a straight line with a negative slope,
where the x-axis represents LCost

LCostMax , y-axis represents the membership value, minimum cost = LCostMin
LCostMax , and

maximum cost =LCostMax
LCostMax = 1.

In the same manner, we can find the membership of a link with respect to near optimum depth. The lower
limit, which we call “LDepthMin” is taken to be a depth of 1 with respect to the root. The upper bound,
which we call “LDepthMax” is taken to be 1.5 times of the maximum depth generated in the initial solution
or a maximum of a user-specified limit.∗ For example, if in the initial solution, the maximum depth turns out
to be 4, then “LDepthMax” for the depth membership function would be 6. This is done to give flexibility to
links which may have more depth than the one in the initial solution. If we take the initial solution maximum
depth as “LDepthMax”, then in the following iterations some links with higher depths will have a membership

∗This user-specified limit may be a design constraint, e.g., if each hop represents a router that uses Routing Information Protocol

(RIP) then a reasonable limit would be 7, i.e., a branch of the tree should not have more than 7 routers.
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value of zero (with respect to depth membership function) and thus they will not be able to play any role as
far as depth is concerned. However, due to technological limitations, we have limited the maximum possible
depth to 7, in the case when “LDepthMax” turns out to be more than 4. The reason for having the maximum
depth of 7 is that the hop limit for RIP is 15. This means that if a maximum depth of 7 is taken, then in the
worst case we would have a total of 14 hops from a source to a destination. The membership function with
respect to near optimum depth will have the same shape as in the case of cost membership function above; here
the x-axis represents LDepth, the y-axis represents the membership value, minimum depth = LDepthMin, and
maximum depth = LDepthMax.

6.2. Selection

In this stage of the algorithm, for each link li in current tree topology, where i = 1, 2, ..., n − 1, a random
number RANDOM ∈ [0, 1] is generated and compared with gci

+ B, where B is the selection bias.
If RANDOM > gci

+ B, then link li is selected for allocation and considered removed from the topology. Bias B

is used to control the size of the set of links selected for removal.

A bias methodology called variable bias [25] has been used in this paper. The variable bias is a function of
quality of current solution. When the overall solution quality is poor, a high value of bias is used, otherwise a
low value is used. Average link goodness is a measure of how many “good” links are present in the topology.
The bias value changes from iteration to iteration depending on the quality of solution. The variable bias is
calculated as follows:

Bk = 1 − Gk

where Bk is the bias for kth iteration and Gk is average goodness of all the links at the start of that iteration.

6.3. Fuzzy Allocation

During the allocation stage of the algorithm, the selected links are removed from the topology one at a time.
For each removed link, new links are tried in such a way that they result in overall better solution. Before the
allocation step starts, the selected links are sorted according to their goodness values, with the link with the
worst goodness being the head-of-line in the queue.

In the fuzzy allocation scheme, the three criteria to be optimized are combined using fuzzy logic to characterize
a good topology. The reason for using fuzzy logic and the membership functions for the three criteria are given
in Section 6.4 in detail. In the proposed allocation scheme, all the selected links are removed one at a time and
trial links are placed for each removed link. We start with the head-of-line link, i.e., the link with the worst
goodness. We remove this link from the topology. This divides the topology into two disjoint topologies, as
depicted in Figure 3.

Now the placing of trial links begins. In this work, the approach to place trial links is as follows. At most
ten trial moves (i.e., trial links) are evaluated for each removed link. Of these ten moves, some moves may be
invalid. However, we search for only four “valid” moves. Whenever we find four valid moves, we stop, otherwise
we continue until a total of ten moves are evaluated (whether valid or invalid). The removal of a link involves
two nodes P and Q, of which node P belongs to the subtree which contains the root node and node Q belongs
to the other subtree, as shown in Figure 3. For the ten moves we make, five of them are greedy and five are
random. For the greedy moves, we start with node Q and five nearest nodes in the other subtree are tried.
For the random moves, we select any two nodes in the two subtrees and connect them.

It may so happen that all the ten moves are invalid, in which case the original link is placed back in its
position. The valid moves are evaluated based on Equation (9) and the best move among the ten moves is made
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permanent. This procedure is repeated for all the links that are present in the set of selected links. In the
allocation phase, we have used tabu search characteristics. As mentioned above, in the allocation phase certain
number of moves are made for each link in the selection set and the best move is accepted, making the move
(i.e., link) permanent. This newly accepted link is also saved in the tabu list. Thus our attribute is the link itself.
The aspiration criterion adopted is that if the link that had been made tabu produces a higher membership
value than the current one in the membership function “good topology”, then we will override the tabu status of
the link and make it permanent. This strategy prevents the selection and allocation of a tree from repetitively
removing the same link and replacing it with a link of equal or worse goodness. For details of tabu search, refer
to [8].

Q

P

R

Figure 3. Two disjoint trees containing nodes P and Q.

6.4. Fuzzy Membership Functions

The reason for using fuzzy logic is that the characterization of a good topology with respect to several criteria is
usually based on heuristic knowledge which is acquired through experience. Such knowledge is most conveniently
expressed in linguistic terms, which constitute the basis of fuzzy logic. For the problem addressed in this paper,
a good topology is one that is characterized by a low monetary cost, low average network delay, and a small
maximum number of hops. In fuzzy logic, this can easily be stated by the following fuzzy rule:

Rule 2: IF a solution X has low monetary cost

AND low average network delay

AND low maximum number of hops between

any source–destination pair

THEN it is a good topology.
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The words “low monetary cost”, “low average network delay”, “low maximum number of hops”, and “good
topology” are linguistic values, each defining a fuzzy subset of solutions. For example, “low average network
delay” is the fuzzy subset of topologies of low average network delays. Each fuzzy subset is defined by a
membership function µ. The membership function returns a value in the interval [0,1] which describes the
degree of satisfaction with the particular objective criterion. Using the and-like ordered weighted averaging
operator [24], the above fuzzy rule reduces to the following equation:

µa(x) = βa × min(µa
1(x), µa

2(x), µa
3(x)) + (1 − βa) × 1

3

3∑

i=1

µa
i (x) (9)

where µa(x) is the membership value for solution x in the fuzzy set good topology and βa is a constant in the
range [0,1]. The superscript a stands for allocation. Here, µa

i for i = {1,2,3} represents the membership values
of solution x in the fuzzy sets low monetary cost, low average network delay, and low maximum number of
hops between any source–destination pair respectively. The solution which results in the maximum value for
Equation 9 is reported as the best solution found by the SE algorithm.

Below we will see how to get the membership functions for the three criteria we have mentioned above.

Membership Function for Monetary Cost

First, we determine two extreme values for monetary cost, i.e., the minimum and maximum values. The
minimum value, “TCostMin”, is found by using the Esau–Williams algorithm [7], with all the constraints com-
pletely relaxed. This will surely give us the minimum possible monetary cost of the topology. The maximum
value of monetary cost,“TCostMax”, is taken to be the monetary cost generated in the initial solution. The
monetary cost is normalized with respect to “TCostMax”. The membership function is again a straight line,
where x-axis represents TCost

TCostMax , y-axis represents the membership value, minimum cost = TCostMin
TCostMax , and

maximum cost =TCostMax
TCostMax = 1.

Membership Function For Average Network Delay

We determine two extreme values for average network delay. The minimum value, “TDelayMin”, is found
by connecting all the nodes to the root directly, ignoring all the constraints and then calculating the aver-
age network delay using Equation (5). The maximum value of average delay,“TDelayMax”, is taken to be the
average delay generated in the initial solution. The average delay is normalized with respect to
“TDelayMax”. In the membership function, x-axis represents TDelay

TDelayMax , y-axis represents the membership
value, minimum delay = TDelayMin

TDelayMax , and maximum delay =TDelayMax
TDelayMax = 1.

Membership Function For Maximum Number of Hops

Again, two extreme values are determined. The minimum value, “THopsMin”, is taken to be 1 hop, which
will be the minimum possible in any tree. The maximum value,“THopsMax”, is taken to be the maximum num-
ber of hops between any source–destination pair generated in the initial solution. In the membership function,
x-axis represents THops, y-axis represents the membership value, minimum hops = THopsMin, and
maximum hops =THopsMax.

6.5. Stopping Criterion

In our experiments, we have used a fixed number of iterations as a stopping criterion. We experimented with
different values of iterations and found that for all the test cases, no significant improvement in solution quality
is obtained after the 1st 4000 iterations.



Habib Youssef,  Sadiq M. Sait,  and  Salman A. Khan

The Arabian Journal for Science and Engineering, Volume 29, Number 2B. October 2004208

7. RESULTS AND DISCUSSION

The SE algorithm described in this paper has been tested on several randomly generated networks. For each
test case, the traffic generated by each local site was collected from real sites. Other characteristics, such as the
number of ports on a network device, its type, etc. were assumed. However, the costs of the network devices
and cables were collected from vendors. The characteristics of test cases are listed in Table 1. The smallest test
network has 15 local sites and the largest has 50 local sites. For each of the five test cases, ten runs were made
to validate the performance of the proposed algorithm, where each run started with a different initial solution.

Table 1. Characteristics of Test Cases Used in Our Experiments.

Name # of Local Sites LCostMin LCostMax TCostMin TDelayMin Traffic

n15 15 1100 9400 325400 2.14296 24.63

n25 25 530 8655 469790 2.15059 74.12

n33 33 600 10925 624180 2.15444 117.81

n40 40 600 11560 754445 2.08757 144.76

n50 50 600 13840 928105 2.08965 164.12

LCostMin, LCostMax, and TCostMin are in US$. TDelayMin is in Milliseconds. Traffic is in Mbps.

7.1. Comparison of Simulated Evolution and Simulated Annealing

We compared the proposed SE with simulated annealing (SA) algorithm [8]. SA has four important parameters
which need to be tuned very carefully. These are: cooling rate α, constant β, initial temperature T0, and M

which represents the time until next parameter update. After trial runs, appropriate values of these parameters
were found to be α = 0.9, β = 1.0, T0 = 10, and M = 10.

Table 2 presents the results for SA and SE. From this table, it is observed that SE performs better than SA
as far as monetary cost objective is concerned. In all the test cases, better solutions are achieved by SE. For
example, a gain of 12.6 % is achieved in case of n50. A similar behavior is seen for average network delay metric,
where SE achieves gain in all the cases, e.g. in case of n40, where a gain of 14.81% is observed. Similarly, for
maximum number of hops metric, a gain is achieved for small (n15) and medium (n33) size test cases, with a
loss of one hop for n40 and n50. However, the loss in maximum hops for n40 and n50 is compensated by the
improvement in the monetary cost and average network delay metrics. As far as the execution time is concerned,
SE has a slightly higher execution time than SA in most of the cases. It is due to the fact that SA performs one
move per iteration while SE performs multiple moves in a single iteration.

In order to compare the quality of search space of SA and SE, frequency of solutions for different membership
ranges is plotted against the membership value in Figure 4(a) for n25. In SA, only one individual (link) is
selected at a time, and only one move is allowed for that selected link. If the new link is not a feasible one or
does not pass the Metropolis criterion [8], then the original link is placed back in its position. This implies that
there may be iterations where original links are placed back and no alteration takes place to the currently existing
solution. Therefore, such iterations are not included as giving a new solution for SA. This in turn gives a total
of 2200 iterations (out of 4000 iterations) where an alteration took place in the solution. Thus, only these 2200
iterations (solutions) are plotted in Figure 4(a). In this figure, it is observed that SE has more solutions falling in
higher membership ranges than SA, suggesting that SE has investigated a better solution subspace. For example,
SA has most of the solutions in the membership range 0.2–0.25, whereas SE has most of the solutions in the
range 0.3–0.35.
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Table 3 provides the variance, maximum, and average of membership function “Good Solution” for the ten
runs for SE. From these values, we observe that the final solutions are of the same quality, even if they start
with different initial solutions.

Table 2. Comparison of SA and SE.

Case SA SE % Gain

C D H T TL C D H T C D H

n15 318000 3.469 6 1.17 2 297100 2.78 4 2.25 6.57 19.86 33.3

n25 511320 3.725 6 3 5 483210 3.537 6 4 5.497 5.047 0

n33 708135 5.189 9 5.5 6 682465 4.19 6 8 2.76 19.25 33.3

n40 903735 5.213 8 27.5 7 783970 4.441 9 26 13.25 14.81 −11.1

n50 1124720 5.943 10 57 7 983020 5.245 11 65 12.6 11.74 −9.09

C = Cost in US $, D = Delay in Milliseconds per Packet, H = hops, T = Execution Time in Minutes, TL= Tabu List Size.

The percentage gain shows the improvement achieved by SE compared to SA.

Table 3. Variance, Maximum, and Average Membership Values for Fuzzy Function “Good Solution” for

SE. The values in boldface represent the memberships for best solutions reported in Table 2.

n15 n25 n33 n40 n50

0.302105 0.351167 0.313853 0.277301 0.314923

0.318251 0.343485 0.295764 0.319078 0.30057

0.296676 0.344844 0.318207 0.329939 0.312573

0.298715 0.305375 0.352941 0.312572 0.291446

0.30452 0.349154 0.323703 0.337554 0.31793

0.28889 0.352056 0.347812 0.303501 0.32212

0.312287 0.332685 0.308764 0.337417 0.30118

0.27984 0.31270 0.338931 0.327757 0.297819

0.30562 0.3 0.310076 0.3019 0.27434

0.25557 0.34751 0.296702 0.294715 0.258745

Variance 0.00032403 0.000408 0.000402 0.000394 0.000403

Maximum 0.312851 0.352056 0.352941 0.337554 0.32212

Average 0.296247 0.333898 0.320675 0.314173 0.299165
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Figures 4(b) and (c) illustrate very interesting and desirable behavior of SE. The figures plot the cumulative
frequency of solutions found at different membership ranges after each 200 iterations for n25. In Figure 4(b),
the plot for SA shows that most of the solutions fall in the membership range of 0.2–0.25 where the solutions
in this range are few initially but with the passage of iterations, the cumulative frequency of solutions increases.
This figure also shows that there are no solutions at all in higher membership ranges. On the other hand, the
cumulative distribution of solutions in different ranges for SE in Figure 4(c) shows a pattern where solutions
with higher membership ranges are initially less. As more iterations are executed, the cumulative frequency
of solutions with higher membership ranges increases, while the cumulative frequency of solution with lower
membership ranges remains the same, suggesting that with time, the algorithm is evolving towards better
solution subspaces.
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Figure 4. Comparison of SE algorithm with SA for different membership ranges in fuzzy set “good
topology”. (a), (b), and (c) respectively compare the frequency of solutions, cumulative frequency of
solutions for SA, and cumulative frequency of solutions for SE.
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7.2. Comparison of SE and Esau–Williams Algorithm

The proposed SE algorithm was also compared with the Esau–Williams (EW) algorithm, which is one of the
most widely used constructive algorithm for centralized network design. The EW algorithm was adapted to meet
the constraints and objective requirements. Table 4 presents the results for EW algorithm and best tabu list size
SE. From this table it is quite clear that SE has far better overall performance than EW algorithm. We observe
that although SE has a little inferior performance than EW with respect to monetary cost, yet if we consider the
other two objectives, we see a significant improvement by SE. The inferiority in monetary cost and superiority
in average delay and maximum hops of SE is due to the fact that EW algorithm is considering only the cost as
the objective to be optimized, therefore it reduces only the cost, ignoring the other two objectives. We also see
that although EW algorithm is optimizing only the cost, it does not have a very significant improvement than
SE with respect to monetary cost objective. On the other hand, SE has a significant gain in delay and hops
objectives. Furthermore, EW algorithm has a local partial view of the search and always makes a move greedily,
while SE works always with complete solution and accepts bad moves to get out of local minima. The difference
in execution times of the two algorithms is due to the reason that EW algorithm is a constructive heuristic, while
SE is an iterative heuristic.

Table 4. Comparison of EW and SE TS.

Case EW SE TS % Gain

C D H T TL C D H T C D H

n15 292700 5.0012 9 0.017 2 297100 2.78 4 2.25 −1.48 44.4 55.56

n25 469790 5.002 9 0.033 5 483210 3.537 6 4 −2.78 29.29 33.3

n33 624180 5.642 10 0.033 6 682465 4.19 6 8 −8.54 25.74 40

n40 754445 13.491 14 0.033 7 783970 4.441 9 26 −3.77 67.1 35.71

n50 928105 7.167 14 0.083 7 983020 5.245 11 65 −5.58 26.82 21.42

8. CONCLUSION

In this paper we have presented a fuzzy SE for backbone topology design of campus networks. The proposed
SE algorithm was always able to find feasible topologies with desirable qualities. Comparison with SA showed
that the search performed by SE is more intelligent, that is, the solution subspace investigated by SE is of
superior quality than that of SA. Further, as time elapsed, SE progressively evolved toward better solutions, a
desirable characteristic of evolutionary heuristics. Results also suggest that fuzzy simulated evolution algorithm
performs better than the Esau–Williams algorithm which is a widely used algorithm for centralized network
design.
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