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Abstract

Evolutionary algorithms, simulated annealing (SA), and tabu search (TS) are general iterative algorithms for combinatorial
optimization. The term evolutionary algorithm is used to refer to any probabilistic algorithm whose design is inspired by
evolutionary mechanisms found in biological species. Most widely known algorithms of this category are genetic algorithms (GA).
GA, SA, and TS have been found to be very effective and robust in solving numerous problems from a wide range of application
domains. Furthermore, they are even suitable for ill-posed problems where some of the parameters are not known before hand.
These properties are lacking in all traditional optimization techniques. In this paper we perform a comparative study among GA,
SA, and TS. These algorithms have many similarities, but they also possess distinctive features, mainly in their strategies for
searching the solution state space. The three heuristics are applied on the same optimization problem and compared with respect to
(1) quality of the best solution identified by each heuristic, (2) progress of the search from initial solution(s) until stopping criteria
are met, (3) the progress of the cost of the best solution as a function of time (iteration count), and (4) the number of solutions found
at successive intervals of the cost function. The benchmark problem used is the floorplanning of very large scale integrated (VLSI)
circuits. This is a hard multi-criteria optimization problem. Fuzzy logic is used to combine all objective criteria into a single fuzzy
evaluation (cost) function, which is then used to rate competing solutions. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is concerned with one class of combina-
torial optimization algorithms: general iterative al-
gorithms, which constitute a class of approximation
algorithms. The growing interest in this class of
algorithms is attributed to their generality, ease of
implementation, and mainly, their robustness in solving
a wide variety of problems from a range of application
domains. We shall limit ourselves to three popular
iterative algorithms, (1) genetic algorithm, (2) simulated
annealing, and, (3) tabu search. All three optimization
heuristics have several similarities, namely (Sait and
Youssef, 1999a):

1. They are approximation (heuristic) algorithms, i.e.,
they do not guarantee finding an optimal solution.

*Corresponding author. Tel.: +966-3-860-4286; fax: +966-3-860-
3059.
E-mail address: youssef@ccse.kfupm.edu.sa (H. Youssef).

2. They are blind, in that they do not know when they
reached an optimal solution. Therefore they must be
told when to stop.

3. They have “hill climbing” property, i.e., they
occasionally accept uphill (bad) moves.

4. They are general, i.e., they can easily be engineered to
implement any combinatorial optimization problem;
all that is required is to have a suitable solution
representation, a cost function, and a mechanism to
traverse the search space.

5. Under certain conditions, they asymptotically con-
verge to an optimal solution.

The question of how to compare two constructive
algorithms has long been settled. Two measures are
typically used: (1) the time complexity of the algorithm,
and, (2) the quality of solution, i.e., how far would the
solution be from optimal in the worst or best case. In
most cases, the time complexity of a constructive
algorithm is usually easy to derive; however, determin-
ing the quality of solution relative to the optimum is
usually very difficult, and in some cases not possible.
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For iterative approximation algorithms, the time
complexity is mostly a function of the number of
iterations allowed for the algorithm as well as the
complexity of the evaluation function. The various
operators of the algorithm as well as the problem to be
solved can also have determining effect on the time
complexity of the algorithm. However, typically, all
implementations of approximation iterative algorithms
have polynomial time complexity. Thus the time
complexity is not of concern when comparing heuristics
in this category. Of major importance however is the
quality of solution(s) found by a particular heuristic for
the problem class at hand. That is, if for example, a
given iterative approximation algorithm A1 performs on
average better than a second algorithm A2 over a
number of problem instances, we then conclude that Al
implementation is better than that of A2. Another
legitimate comparison would be with respect to the
quality of the solution subspace examined by each
algorithm. That is, if the number of solutions obtained
with algorithm A1l with a cost lower than a particular
value C is higher than that of algorithm A2, we then
conclude that Al exhibits superior performance than
A2. Yet another comparison would be with respect to
the progress of the best solution versus the number of
iterations. In this paper we report a number of
experiments performed to compare the performance of
three well-known approximation iterative algorithms
with respect to criteria such as those described above.
The test problem used is floorplanning, a hard problem
encountered during the physical design of VLSI circuits.
It is encountered in several other areas of engineering as
well. In VLSI design, a floorplanning tool helps decide
several important questions such as dimensions, orien-
tations and location of cells (or blocks), overall required
area of the circuit, and speed performance requirements
(Sait and Youssef, 1995).

The paper is organized as follows. Section 2
formulates floorplanning as a combinatorial optimiza-
tion problem. In Section 3 we describe how a floor-
planning solution is encoded and evaluated. The same
solution encoding and evaluation function are used with
all three approximation algorithms. Section 4 briefly
discusses the main features and operators of each of
GA, SA, and TS algorithms. In Section 5, experimental
results are presented and the performance of the three
heuristics are compared. We conclude in Section 6.

2. Floorplanning
A possible formulation of the floorplanning problem
of VLSI circuits is as follows (Sait and Youssef, 1995):

Given:

l. A set of n rectangular blocks B = {by,b,,...,
biy...,b,}; for each b; € B we have

e w;,h;: width and height of b;, which are
constants for rigid blocks and variable for
flexible blocks.

e p;: desirable aspect ratio about each variable-
shape block where 1/p,<h;/w;<p;; p; =1 if
block i is rigid.

e «;: area of b; (i.e., a; = w; X h;), a; is constant.

2. A set of nets N ={ny,ny,...,n;,...,n;} describ-
ing the connectivity information.

3. Desirable floorplan aspect ratio p such that
1/p<H/W <p; where H and W are the height
and width of the floorplan, respectively.

4. Timing information.

Output: A legal floorplan is a floorplan satisfying the
following constraints and objectives:

Each block b; is assigned to a location (x;, y;);
no two blocks overlap;

for each flexible block b;, a; = w; X h;;

meet aspect ratio constraints, for each flexible
block b; and for the overall floorplan; and

5. minimize floorplan area, wire length and circuit
delay.

bl o

Fig. 3(a) is a floorplan with 7 blocks.
3. Solution encoding and cost evaluation
3.1. Solution encoding

To have a simple and efficient encoding scheme the
floorplanner constrains the structure to be slicing, but
allows the circuit modules to have flexible shapes and
free orientations. The layout is represented as a
repetitive division into basic rectangles by horizontal
and vertical cut-lines. Such a layout is called a slicing
structure. A slicing structure can be modeled by a binary
tree with n leaves and n — 1 nodes, where each node
represents a vertical cut-line or horizontal cut-line, and
each leaf a basic rectangle. This binary tree is called
slicing tree, and the corresponding floorplan is a slicing
floorplan. Letters H and V refer to horizontal and
vertical cut operators, respectively. A postorder traver-
sal of a slicing tree produces a Polish expression with
operators H and V, and with operands the basic
rectangles 1,2,...,n (Wong and Liu, 1986). Fig. 3 gives
a rectangular dissection, two possible slicing trees, and
the corresponding Polish expressions. Since there is only
one way of performing a postorder traversal of a binary
tree, there is one-to-one correspondence between floor-
plan trees and their corresponding Polish expressions.
The operators H and V carry the following meanings:
ifH means rectangle j on-top-of rectangle 7; ijJ” means
rectangle i to-the-left-of rectangle j. In this work each
solution is encoded as a Polish expression as in Wong
and Liu (1986).
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3.2. Cost evaluation

Unlike constructive algorithms for physical design,
which produce a solution only at the end of the design
process, iterative algorithms operate with design solu-
tions defined at each iteration. An evaluation function is
used to compare results of consecutive iterations and to
select a solution based on the maximal (minimal) value
of the objective function.

The cost function is a measure of how good is a
particular floorplan. For floorplanning, three criteria are
of prime importance: area, wire length, and timing. Area
is estimated by the size of the smallest bounding
rectangle of the floorplan. Wire length is set equal to
the length of all the nets (or interconnects of the blocks)
of the circuit. The length of an individual net or
interconnect is estimated using the Steiner tree approx-
imation of Youssef et al. (1995). The delay along the
longest path of the circuit, taking into consideration the
estimated interconnect length, is used as a measure of
the timing performance of the floorplan (Youssef et al.,
1995).

The cost function should reflect all objectives.
Traditionally, multiple objectives have been combined
into a scalar objective function, usually through a linear
combination (weighted sum) of the multiple attributes,
or by turning objectives into constraints. One way is to
assign a constant weight to each of the multiple
objective functions whose value will depend on the
importance of that objective. Assuming that all objec-
tives are to be maximized, the cost of a floorplan
solution x can be expressed as follows:

cost(x) = wy - fi(x) +wa - fo(x) + -+ wy - fulx), (1)

where n is the number of objective functions, and w; is
the weight of the ith objective f;. The problem with this
weighted sum approach is the difficulty in determining
suitable weights. Adhoc methods are sometimes em-
ployed.

Fuzzy logic. The logic used to infer a crisp outcome
from fuzzy input values is called fuzzy logic (Zadeh,
1965; Zimmermann, 1996; Kartalopoulos, 1996). Using
fuzzy logic approach, optimization of a vector-valued
function is replaced by the optimization of a scalar
function, which is constructed from the levels of
satisfaction of decision-makers by values of the compo-
nents of a vector function. Below, we present a brief
introduction to fuzzy logic, and then show how it can be
applied in optimization problems with multiple objec-
tives.

Fuzzy set theory: Unlike in ordinary set theory where
an element is either in a set or not in a set, in fuzzy set
theory, an element may partially belong to a set. Lotfi
Zadeh defined a fuzzy set as a class of objects with a
continuum of grades of membership. Formally, a fuzzy
set A of a universe of discourse X = {x} is defined as

A={(x,u (x))all xe€ X}, where X is a space of
points and u,(x) is a membership function of x € X
being an element of 4. In general the membership
function p4(.) is a mapping from X to the interval [0,1].
If py(x) =1, or 0, for all x € X, the fuzzy set A becomes
an ordinary set (Zadeh, 1965).

Example. As an example, let /& refer to height of an
athlete, and ““tall”” considered as a particular value of the
fuzzy variable “height”. Then for each / in the range
from 0 to /imax, (k) € [0, 1] indicates the extent to
which /i is considered to be tall; p,,(#) is called the
membership function.

Example. As another example, consider the possible
heights of sportsmen in feet to be H=
{3.5,4.0,4.5,5.0,5.5,6.0,6.5}. Heights around 4.5 feet
are considered short (.S), around 5.5 feet are considered
moderate (M), and heights around 6.0 feet are
considered tall (7). Thus, short, moderate, and tall are
not crisply defined. Fuzzy sets for short, moderate, and
tall may be expressed as sets of ordered pairs
{(x,p4(x)) |all x € X}, where the first element of the
pair is the height and the second is its membership in
that set. From our previous knowledge we can define the
fuzzy sets S, M and T as follows:

S ={(3.5,1.0), (4.0,1.0), (4.5,1.0), (5.0,0.3),
(5.5,0.3), (6.0,0.0), (6.5,0.0)}

M ={(3.5,0.0), (4.0,0.0), (4.5,0.1), (5.0,0.5),
(5.5,1.0), (6.0,0.5), (6.5,0.1)}

T ={(3.5,0.0), (4.0,0.0), (4.5,0.0), (5.0,0.1),
(5.5,0.4), (6.0,1.0), (6.5,1.0)}

Fig. 1 illustrates the three membership functions. For
simplicity we have used piecewise linear membership
functions. Membership functions can also be continuous
curves of many different shapes. For example, Fig. 2
illustrates a continuous membership function of a fuzzy
set: An individual’s weight around 50 kg.

Fuzzy operators: As seen above, in fuzzy logic, the
values are not crisp, and their fuzziness exhibits a
distribution described by the membership function. In
ordinary set theory, operations such as union (U),
intersection (N), and complementation (—) are used.
What is the result of these operations on fuzzy sets? This
question has been addressed by various fuzzy logics.
These are logics that have been defined for operations
on fuzzy sets. One such logic defined by Zadeh is
called the min—-max logic (Zadeh, 1965). There are other
fuzzy logics, one of which we used is discussed later. In
min—max logic, the ‘“union”, “intersection” and
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Fig. 1. Membership functions for short, moderate, and tall.
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Fig. 2. Continuous membership function for the fuzzy set: individual’s
weight around 50 Kg.

“complementation’ are defined as follows:

tang(x) = min(p, (x), pp(x)),
taup(x) = max(uy(x), pp(x)),

poa(x) = 1.0 = (p4(x)).

Fuzzy rules: Approximate reasoning can be made
based on linguistic variables and their values. Rules can
be generated based on previous experience. These rules
can then be expressed with If ... Then statements.
Connectives such as AND and OR can be used in
approximate reasoning to join two or more linguistic
values.

As mentioned above, in min—-max logic, the fuzzy
AND is realized by the function min. If more than one
rule is used to perform decision-making, each rule can
be evaluated to generate a numerical value. Then, these
numerical values from various evaluations of different
rules can be combined to generate a crisp value on a
higher level of hierarchy.

Fuzzification. In this work, we rely on the expressive
power of fuzzy logic (Zadeh, 1965, 1975, 1973) to
express the designer objectives in the form of fuzzy logic
rules. The evaluation of a floorplanning solution
consists of the evaluation of the fuzzy rules which
return a value representing the degree of membership of
that solution in the fuzzy subset of good floorplans. The
fuzzy logic rules are expressed on linguistic variables of
the problem domain.

For floorplanning, the designer seeks to find floor-
plans optimized with respect to the area occupied by the
floorplan (area occupied by the cells and wires), wire
length required to interconnet all the cells, and delay
along the longest path of the corresponding circuit
(delays due to the cells and wires). Therefore, the
objective function is not a scalar, but a vector function

F(x) = (Area(x), Length(x), Delay(x)),

where x is a particular floorplan solution with area
Area(x), wire length Length(x), and delay performance
Delay(x) (Fig. 3).

To obtain a fuzzy logic definition of the above
multicriteria objective function, three linguistic variables
area, length, and delay are defined Shragowitz et al.,
1997). In this implementation, only one linguistic value
i1s defined for each variable. That is, small area, short
length, and low delay. These linguistic values character-
ize the degree of satisfaction of the designer with the
values of objectives Area, Length, and Delay of the
floorplan. These degrees of satisfaction are described by
membership functions p,, g, and up on fuzzy sets of
linguistic values small area, short length, and low delay.

Membership functions for small area, short length
and low delay are easy to build. They are non-increasing
functions, since the smaller the area, the length, and the
delay, the higher is the degree of satisfaction p,, 4; , and
up of the expert and vice versa (see Fig. 4).

To make the membership functions applicable to
different designs, the base variables floorplan area,
length and delay are normalized to the interval [0,1]
(see Fig. 4). The values Amin, Lmin, and Dy, are lower
bounds on the area, total length and clock period of the
circuit. Ay, is the sum of areas of all cells; Ly;, is the
smallest possible length, computed assuming all con-
nected cells are placed adjacent to each other; Dy, is the
smallest possible delay of the circuit, which is the delay
of the longest path due to cells and assuming minimum
interconnect delay for the nets. The values of Apax,
Liax, and Dy are values corresponding to the initial
solution.

The most desirable floorplan is the one with the
highest membership in the fuzzy subsets small area,

N PN
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Fig. 3. (a) Slicing floorplan. (b) Slicing tree with Polish expression
VH21HHV67V453. (c) Another possible slicing tree with Polish
expression VH21HV67HV453.
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Fig. 4. Normalized membership functions for area, length and delay.

short length and low delay. Such a solution most likely
does not exist since some of the criteria conflict with
each other. Therefore, one has to tradeoff these
individual criteria against each other. This tradeoff is
conveniently specified in linguistic terms in the form of
one or several fuzzy logic rules.

As mentioned earlier, a fuzzy logic rule is an If-Then
rule. The If part (antecedent) is a fuzzy predicate defined
in terms of linguistic values and fuzzy operators (AND
and OR). The Then part is called the consequent. In our
case, the linguistic value used in the consequent part
identifies the fuzzy subset of good solutions. Therefore,
the result of evaluation of the antecedent part identifies
the degree of membership in the fuzzy subset of good
floorplan solutions according to the fuzzy rule in
question (Shragowitz et al., 1997).

The fuzzy subset of good floorplan solutions is
characterized by the following fuzzy rule:

R.0 If (small area) OR (short length) OR (low delay)

Then good solution.

According to the traditional min—-max fuzzy logic, the
above rule R.0 evaluates to the following:

ts)(X) = max(pa, Ue, ip )

where pi5) is the membership function of the fuzzy
subset of good solutions, and u,, yy, and pp are the
membership functions in the fuzzy subsets of small-area
solutions, short wire-length solutions, and small delay
solutions, respectively. The min and max operators are
non-compensatory, i.e., the weaker elements cannot
compensate for the stronger element. Such property is
undesirable in the case of multi-criteria optimiza-
tion/decision problems. For this category of problems
it is important to make use of all the information
sources. In this case it is recommended to use a
compensatory interpretation of the fuzzy OR operator,
which allows all the criteria elements to influence the
outcome of the operator. One such interpretation is the
orlike ordered weighted averaging (OWA) operator
suggested by Yager in Yager (1994); Yager and Filev
(1994) in the context of the softening of the rule

aggregation technique. According to this orlike opera-
tion, the fuzzy logic rule R.0 evaluates to the following:

3
b () = B max(au, po ) + (1= ) x5 5 ),
i=1
)

where ps) is the membership function of the fuzzy
subset of good solutions, and f is a parameter between 0
and 1 indicating the degree of nearness of this orlike
operator to the strict meaning of the logical OR
operator. When f = 1, the orlike operator behaves like
a regular max operator, and for f = 0 it behaves like a
weighted averaging operator.

Individual objective criteria can be given relative
ranking to reflect their importance. This can be achieved
by assigning weights as exponents to individual mem-
bership functions. When the membership function of a
particular criterion is assigned a positive exponent less
than 1, we say that the corresponding fuzzy subset is
dilated. This corresponds to giving more empha-
sis/importance to that criterion. Concentration corre-
sponds to the case of assigning an exponent greater than
I (Mendel, 1995). For example, in the case of floor-
planning problem, Area is a more significant criterion,
whereas Length and Delay are of equal but less
importance. Such preferences can be conveniently
expressed by using dilation and concentration operators.
With these preferences, Eq. (2) becomes

ts)(x) = B x max(uy*, i, 1d) + (1 — )

1/2

< A + 1 + ). (3)
In the above equation, the fuzzy subset representing

solutions with small area is dilated, whereas the fuzzy

subset of solutions with short length and the fuzzy

subset of solutions with small delay are concentrated.

4. GA, SA, AND TS algorithms

Any iterative approximation algorithm, be it GA, SA,
or TS, requires decisions with respect to the following
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elements:

® a solution encoding,

® a mechanism to generate initial solutions from where
the iterative search will proceed,

® an evaluation function to rate solutions encountered
during the search,

® perturbation operators to create new solutions from a
given current solution,

® assignment to the parameters of the algorithm, and

® stopping criteria.

Below, we provide a brief description of each of GA,
SA, and TS, and illustrate how each algorithm is
adapted to the floorplanning problem.

4.1. Genetic algorithms

Genetic algorithms (GAs) are robust and effective
optimization techniques inspired by the mechanism of
evolution and natural genetics Goldberg, 1989; Holland,
1975. They are characterized by a parallel search of the
state space as against a point-by-point search by the
conventional optimization techniques. The parallel
search is achieved by keeping a set of possible solutions
to the optimization problem, called population. An
individual in the population is a string of symbols and
is an abstract representation of the solution. The
symbols are called genes and each string of genes is
termed a chromosome. The individuals in the population
are evaluated by some fitness measure. The population
of chromosomes evolves from generation to the next
through the use of two types of genetic operators: (1)
unary operators such as mutation and inversion which
alter the genetic structure of a single chromosome, and
(2) higher-order operator, referred to as crossover which
consists of obtaining new individual by combining
genetic material from two selected parent chromosomes.
Then the new population is selected out of the indi-
viduals of the current population and its offsprings.
Based on the fitness value, two individuals (parents) are
selected at a time from the population. The genetic
operators (crossover and mutation) are applied on the
selected parents to generate new possible solutions called
offsprings. The structure of basic GA is given in Fig. 5.

The application of genetic algorithm for any problem
requires a representation of the solution to the problem
as a string of symbols, a choice of genetic operators, an
evaluation function, a selection mechanism, and deter-
mination of genetic parameters (population size and
probabilities of crossover, mutation, and inversion).
Each of these greatly influences the performance of the
genetic algorithm.

In this work, a chromosome in the population
(solution) is a Polish expression representing a particular
slicing floorplan (see Section 3.1, Fig. 3). The initial
population consists of randomly generated Polish

expressions with n operands and n — 1 operators. The
fitness function is a measure of how good each
individual of current generation is with respect to the
desired features. For each chromosome x, fitness
(x) = psy(x), where ) is as defined in Eq. (3). The
choice of parents from the set of individuals that
comprise the population (also known as the mating
pool) is probabilistic. In keeping with the ideas of
natural selection, we assume that stronger individuals,
that is, those with higher fitness values, are more likely
to mate than the weaker ones. One way to simulate this
is to select parents with a probability that is directly
proportional to their fitness values. This method is
called the roulette-wheel method (Goldberg, 1989).

Crossover. Crossover is a mechanism for probabilistic
inheritance of useful information from two fit indi-
viduals to offsprings. The main idea is that the genetic
information of a good solution is spread over the entire
population. Thus, the best solution can be obtained by
thoroughly combining the chromosomes in the popula-
tion. Crossover operation achieves recombination of the
genetic material. The recombination process includes
domain specific knowledge to enforce the inheritance of
desirable features from individuals of current popula-
tion. The following three crossover operators have been
used in this work (Cohoon et al., 1991).

In the first crossover scheme, the operands from
parent P; are copied into the offspring O. Then, the
operators from parent P, are copied by making a left-to-
right scan to complete the chromosome. Hence, each
offspring inherits the block structure of one of the
parents. For example, if Py = VH21HHV67V453 and
P, = VH12HV4THV 653, then, according to this cross-
over, the offspring would be VH21HVHG67V453.

The second crossover operates by copying the
operators from parent P; into the corresponding
positions in offspring O. Then, it completes the
construction of O by copying the operands from parent
P, by making a left-to-right scan. By propagating
the groups of operators from P; to O, this cros-
sover produces an offspring having the same overall
slicing structure as that of P;. We call this crossover
“slicing inheritance crossover”. For example, if
P, = VH21HHV67V453 and P, = VHI2HV4THV 653,
then, according to this crossover, the offspring would be
VHI12HHV47V653. Both the above crossovers produce
valid Polish expressions.

The third crossover employed in this work is the PMX
crossover (partially mapped crossover) which has been
widely used in other genetic implementations for
combinatorial optimization problems (Shahookar and
Mazumder, 1991). PMX is applied only on the modules
(operands), the operators and the positions from one of
the parents are used in the offspring (see Figs. 6 and 7).

Mutation. Mutation is a means of introducing new
information into the population. Three simple mutation
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Procedure (Genetic_Algorithm)

Begin

Np= Population size.

Ng= Number of generations.

No= Number of offsprings.
P,= Mutation probability.

P;= Inversion probability.

P « Construct(Np) (* Construct initial population *)

For j=1to N,

Evaluate Fitness(p[J])

EndFor
Fori=1to N,
Forj=1to N,

(* Select parents proportional to their fitness using

roulette wheel, then generate offsprings by crossover. *)
(z,y) + Select_Cross (P)
offspring[j] ¢ Cross_Over(z,y)

Evaluate Fitness(offspring[j])

EndFor

Forj=1to N,

(* With probability P, select chromosome y

and apply mutation using one of the three schemes *)
mutated[j] + Mutate(y)
Evaluate Fitness(mutated[5])

EndFor

Forj=1to N,

(* With probability P; select chromosome y

and apply inversion, that is, laterally invert operands *)

Evaluate Fitness(inverted[s])

EndFor

(* Select from offsprings and parents, new

parents for next generation *)
P « Select_for_Nezt_Gen(P, offsprings)

EndFor

Return highest scoring configuration in P.

End

Fig. 5. Structure of genetic algorithm for floorplanning.

operators are used in this work (Wong and Liu, 1986):
(1) inversion of a randomly selected chain of operators,
(2) swapping of two randomly selected operands, and (3)
swapping an operand with an adjacent operator
(provided it results in a valid Polish expression).

Inversion. This operator consists of randomly select-
ing two positions within the string (a chromosome) and
then laterally inverting the string between them. In this
work, it is implemented so as to make a full right-to-left
or left-to-right lateral inversion on the entire string of
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operands (only). For example, if the chromosome before
inversion is 268 HHTHS5V4H13VV, then after inversion
the new solution generated will be: 314HHSHTVSHO2VV .

A number of methods have been proposed to select
individuals that can survive and be used in the next
generation (Goldberg, 1989). In this work, among the
parents and their offsprings, the chromosomes for the
next generation are chosen based on their fitness values

(higher fitness translates to higher survival). The
probability of mutation is set to 5%, and the prob-
ability of crossover to 80%. Inversion is applied
with a probability of 30%. Population size chosen is
10, and in each generation the number of offsprings
produced is the same as the number of parents. Stopping
criterion in this case was set to a fixed number of
generations.
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4.2. Simulated annealing

Simulated annealing (SA) is an iterative search
method inspired by the annealing of metals (Kirkpatrick
et al.,, 1983; Cerny, 1985). Starting with an initial
solution and armed with adequate perturbation and
evaluation functions, the algorithm performs a stochas-
tic partial search of the state space. Uphill moves are
occasionally accepted with a probability controlled by a
parameter called temperature (7). The probability of
acceptance of uphill moves decreases as 7" decreases. At
high temperature, the search is almost random, while at
low temperature the search becomes almost greedy. At
zero temperature, the search becomes totally greedy, i.e.,
only good moves are accepted (Kirkpatrick et al., 1983;
Cerny, 1985).

The basic SA algorithm is shown in Fig. 8. The core of
the algorithm is the Metropolis procedure, which
simulates the annealing process at a given temperature
T (Fig. 9) Metropolis et al., 1953. This procedure is
named after the scientist who devised a similar scheme
to simulate a collection of atoms in equilibrium at a
given temperature. The Metropolis procedure receives as
input the current temperature 7', and the current
solution CurS which it improves through local search.
Metropolis must also be provided with the value M,
which is the amount of time for which annealing must be
applied at temperature 7'. The procedure Simulated_an-
nealing simply invokes Metropolis at decreasing tem-

peratures. Temperature is initialized to a value Ty at the
beginning of the procedure (explained below), and is
slowly reduced (in a geometric progression); the par-
ameter « is used to achieve this cooling. The amount of
time spent in annealing at a temperature is gradually
increased as temperature is lowered. This is done using
the parameter f§ > 1. The variable Time keeps track of
the time being expended in each call to the Metropolis.
The annealing procedure halts when Time exceeds the
allowed time.

The Metropolis procedure is shown in Fig. 9. It uses
the procedure Neighbor to generate a local neighbor
NewsS of any given solution S. The function Fitness
returns the fitness of a given solution S. If the fitness of
the new solution NewsS is better than the fitness of the
current solution S, then the new solution is accepted,
and we do so by setting CurS = NewsS. If the fitness of
the new solution is better than the best solution (BestS)
seen thus far, then we also replace BestS by NewsS. If
the new solution has a lower fitness in comparison to the
original solution CurS, Metropolis will accept the new
solution on a probabilistic basis. A random number is
generated in the range 0 to 1. If this random number is
smaller than eAfiness/T  where  Afitness = fitness
(NewS) — Fitness(curS), and T is the current tempera-
ture, the inferior solution is accepted. This criterion for
accepting the new solution is known as the Metropolis
criterion. The Metropolis procedure generates and
examines M solutions.

Algorithm Simulated_annealing(So, To, o, 8, M, Maztime);

(*So is the initial solution *)
*BestS is the best solution *)
*To is the initial temperature *)

(
(
(*a is the cooling rate *)
(*B a constant *)

(

(

*
*
Begin
T =To;
C'urS=>Sp;

Maztime is the total allowed time for the annealing process *)

M represents the time until the next parameter update *)

BestS=CurS;/* BestS is the best solution seen so far */

CurFitness=Fitness(CurS);
BestFitness=Fitness(BestS);
Time = 0;

Repeat

Call Metropolis(CurS, CurFitness, BestS, BestFitness, T, M);
Time = Time + M;

T=axT,
M=38xM

Until (Time > MazTime);

Return(BestS)
End. (*of Simulated_annealing*)

)

Fig. 8. Procedure for simulated annealing algorithm.
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Algorithm Metropolis(CurS, CurFitness, BestS, BestFitness, T, M);
Begin
Repeat
NewS= Neighbor(CurS);
NewFitness=Fitness(NewS);
AFitness=(NewFitness—CurFitness);
If (AFitness> 0) Then
CurS=NewS;
If NewFitness> BestFitness Then
BestS= NewS
EndIf
Else
If (RANDOM < eAFitness/T) Then
CurS=NewS;
EndIf
EndIf
M=M-1
Until (M =0)
End. (*of Metropolis*)

Fig. 9. The Metropolis procedure.

Initial temperature. The SA algorithm needs to start
from a high temperature (7). However, if this initial
value of T is too high, it causes a waste of processing
time. The initial temperature value should be such that it
allows virtually all proposed uphill or down hill moves
to be accepted. The temperature parameter is initialized
using the procedure described in Wong and Liu (1986).
The idea is basically to use the Metropolis function
(eAFimess/Ty o determine the initial value of the
temperature parameter. Before the start of actual SA
procedure, a constant number of moves, say M, in the
neighborhood of the current solution are made, and the
respective fitness values of these moves are determined.
The fitness difference for each move i, AFitness; is given
by AFitness; = Fitness; — Fitness;_;. Let M, and M, be
the number of uphill and downhill moves, respectively
(downhill refers to inferior moves) (M = M, + My).
The average AFitnessq is then given by

S
AFitnessy = — AFitness;.

Since we wish to keep the probability, say P,, of
accepting uphill moves high in the initial stage of SA, we
estimate the value of the temperature parameter by
substituting the value of Py in the following expression
derived from the Metropolis function:

AFitnessqg
In(Py) ’

0=

where Py ~ 1 (Py = 0.999).

Parameters, stopping criterion. The parameter o for
updating the temperature is user specified. In our
implementation o takes on the value of 0.85, and f is
set equal to 1. At each updated value of the temperature,

a number of state transitions are made so as to reach the
probabilistic steady state.

The perturb mechanisms employed are similar to the
mutation operators in GA. The stopping criterion is
when the final 7<0.001 or 4,/ M <0.05, where A is the
total number of all accepted moves (both good and bad)
and M, is the number of all moves made at a given
temperature.

4.3. Tabu search

Tabu search is a higher-level method or meta strat-
egy for solving combinatorial optimization problems
(Glover, 1989, 1990). It is an iterative procedure that
starts from some initial feasible solution and attempts to
determine a better solution. TS makes several neighbor-
hood moves and selects the move producing the best
solution among all candidate moves for current itera-
tion. This best candidate solution may not improve the
current solution.

Selecting the best move (which may or may not
improve the current solution) is based on the suppo-
sition that good moves are more likely to reach the
optimal or near-optimal solutions. The set of admissible
solutions attempted at a particular iteration forms a
candidate list. TS selects the best solution from the
candidate list. Candidate list size is a trade-off between
quality and performance.

To avoid move reversals, a device called tabu
restriction is used that makes selected attributes of these
moves tabu (forbidden). Tabu restrictions allow the
search to go beyond the points of local optimality while
still making the best possible move in each iteration.
Tabu restrictions are enforced by a tabu list which stores
the move attributes to avoid move reversals. Tabu list
has an associated size and can be visualized as a window
on accepted moves. The moves which tend to undo
moves within this window are forbidden.

Aspiration level component is used to temporarily
override the tabu status if the move is sufficiently good.
If a move is made tabu in iteration i and its reversal
comes in iteration j, where j<i+ ¢, (where c is the size
of the tabu list), then it is possible that the reverse move
may take the search into a new region because of the
effects of ¢ intermediate moves. The simplest aspiration
criterion, also known as the ‘“best cost aspiration
criterion”, consists of overriding the tabu status if the
reversal produces a solution better than the best
obtained thus far. Another approach is to use the same
attribute of the move which is used to identify the tabu
status and associate an aspiration level value with it. The
reversal has to do better than this historical aspiration
level. Fig. 10 illustrates the flow of the short-term tabu
search algorithm.

Only short-term tabu search was implemented in this
work. The program is executed for 250 iterations. The
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Fig. 10. Flowchart of the short-term Tabu search algorithm.

size of the candidate list was 20. Three perturbation
schemes similar to the mutation scheme of GA (and also
used in our implementation of SA) were used to
generate neighborhood solutions. The size of the tabu
list was set to N /4, where N is the number of blocks in
the floorplan. For each of the perturbation schemes a
separate tabu list is used. The attributes stored in the
tabu lists are related to the perturbation scheme. In the
case where perturbation consists of inverting a chain of
operators, the attribute stored is the position of the first
operator of the chain. For the case of swapping two
randomly selected operands, the attribute consists of
one of the operands (the left operand) involved in the
swap. The attribute related to the case of swapping an
operand with an operator, is the operand. For all test

cases, the three tabu lists have the same size, and best
cost aspiration criterion was used.

5. Experiments and results

The algorithms described in this paper were im-
plemented and tested on five different VLSI circuits. The
circuits range in sizes between 15 and 141 blocks. The
characteristics of these circuits are summarized in Table 1.

All three approximation algorithms GA, SA, and TS,
make use of quite a bit of heuristic knowledge about the
problem domain. The existence of several alternative
decisions with respect to each aspect of a particular
algorithm (e.g., initial solution, operators, evaluation
functions, etc.) strongly suggests that some implementa-
tion of the same algorithm may perform better than
other implementations. In this work, we compare the
performance of the three algorithms with respect to the
following aspects:

1. quality of the best solution identified by each
heuristic,

2. progress of the search from initial solution (s) until
stopping criteria are met,

3. the progress of the cost of the best solution as a
function of time (iteration count), and

4. the number of solutions found at successive intervals
of the cost function.

Fig. 11 is a plot of the fuzzy cost function (membership
in the fuzzy subset of good floorplans) of the best
floorplan versus the number of calls to the evaluation
functions (number of solutions searched). With respect
to this measure, tabu search ranked first, genetic
algorithm second, and simulated annealing third. The
same ranking was obtained with all five circuits. Fig. 11
shows results for two of the circuits, Ckt-3 (39 blocks)
and Ckt-4 (45 blocks). Recall that the GA, SA, and TS
floorplanners are seeking floorplan solutions with the
largest membership function in the fuzzy subset of good
floorplans.

The experimental results reported in this section are
based on a GA implementation identical to that
reported in Shragowitz et al. (1997). The SA implemen-
tation is based on the work reported in Wong and Liu

Table 1

Characteristics of circuits used

Ckt name No. of cells Amin Linin Tnin
Ckt-1 15 34800 960.16 34.04
Ckt-2 30 40832 2325.76 28.95
Ckt-3 39 90480 4283.86 11.60
Ckt-4 45 88160 4430.31 16.57
Ckt-5 141 211120 10415.84 20.42
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(1986). For all experiments, the algorithm was forced to
stop after 5000 evaluations.

Fig. 12 illustrates another performance aspect of the
three heuristics. For GA algorithm, Fig. 12(a) and (d)
show the variation of the population fitness versus the
number of generations. For the SA algorithms, Fig.
12(b) and (e) show the cost of the current floorplan
solution after every twenty iterations. For the TS
heuristic, Fig. 12(c) and (f) show the cost of the solution
selected at each iteration (the best floorplan in a

neighborhood of 20 floorplans). The reader should
observe that TS quickly finds a good floorplan with a
high membership value in the fuzzy subset of good
solutions, and once there, the magnitude of uphill moves
is always very small. In contrast, SA exhibits the most
probabilistic behavior since relatively large uphill moves
continue to be accepted even at relatively low tempera-
tures. This undesirable behavior is partly due to the fact
that the cost function is normalized to the range (0,1).
Hence, though a decrease in the membership function
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Hs) say from 0.6 to 0.4 is considered large in the fuzzy
domain, may still produce a large acceptance probability
according to the Metropolis function. For example, at
T =0.1, ¢ 9%/01 = 0.14. This suggests that the fuzzy
cost difference in the exponent of the Metropolis
function be multiplied by an inflation factor. The
inflation factor should be such that, in the cold regime,
the probability of accepting large and even medium
uphill moves be very near zero. We have conducted such
experiment and used an inflation factor of 100. Hence,
floorplan cost will no longer be in the range of (0,1) but
in the range of (0,100). Fig. 13 illustrates the effect of
using such an inflation factor on the performance of SA

Simuiated Annealing

Simulated Annealing

179

algorithms. Fig. 13(a) compares the cost of the best
floorplan as a function of the number of iterations, with
and without the use of inflation factor in the Metropolis
function. As the reader can see, results have significantly
improved. Figs. 13(c) and 14(b) show that the quality of
the searched subspace has also improved. Furthermore,
a decrease in the magnitude of the accepted bad moves
has also been observed; the reader is referred to the plots
of Figs. 12(b) and 13(b).

For GA, the population fitness improves quickly in
the first 200 iterations and then it hits a plateau. Further,
in the first 50 generations the population fitness is
steadily increasing; in the following generations the
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population fitness occasionally decreases, however the
magnitude of the decrease is relatively small (<0.05).
Similar plots were obtained for all circuits. These
experiments confirm the fact that, although all three
heuristics have hill climbing property, TS is the most
greedy and SA is the least greedy.

A final series of experiments consists of comparing the
three heuristics with respect to the searched solution
subspaces. The results are summarized in Fig. 14 in the
form of bar charts. Here again, TS exhibited the best
performance and SA the worst. These bar charts are
very informative as to where each algorithm spent its
time. Both GA and TS concentrated their search efforts
in good subspaces, that is, evaluating solutions with
high membership in the fuzzy subset of good solutions.
In contrast, SA spent most of its time evaluating poor
quality solutions. This behavior was observed with all
test cases.

6. Discussion & conclusion

In this paper, an experimental comparative study of
three popular approximation algorithms is presented,
viz., GA, SA, and TS for the floorplanning problem. All
three heuristics assume and exploit regularities present
within the search space, i.e., search spaces where good
solutions have higher probabilities of leading to better
solutions. All three have been found to be effective and
robust on problems where some measure of progress can
be shown. All or nothing types of search spaces where
one either has a perfect solution or no solution are better
attacked by exhaustive search or even by random walk.

The three algorithms discussed incorporate domain
specific knowledge to dictate the search strategy. They
also tolerate some element of non-determinism that
helps the search escape out of local minima. They rely
on the use of a suitable cost function which provides
feedback to the algorithm as the search progresses. The
principle difference among them is how and where
domain-specific knowledge is used. For example, in
simulated annealing such knowledge is mainly included
in the cost function. Elements involved in a perturbation
are selected randomly, and perturbations are accepted
or rejected according to the Metropolis criterion which
is a function of the cost. The cooling schedule has also a
major impact on the algorithm performance and must
be carefully crafted to the problem domain as well as the
particular problem instance.

In the case of genetic algorithms, domain specific
knowledge is exploited in all phases. The fitness of
individual solutions incorporates domain-specific
knowledge. Selection for reproduction, the genetic
operations, as well as generation of the new population
also incorporate a great deal of heuristic knowledge
about the problem domain.

Tabu search is different from the above heuristics in
that it has an explicit memory component. At each
iteration the neighborhood of the current solution is
partially explored, and a move is made to the best non-
tabu solution in that neighborhood. The neighborhood
function as well as tabu list size and content are problem
specific. The direction of the search is also influenced by
the memory structures.

In this work our intention has been to study the
behavior of the three heuristics in solving a hard
engineering problem, and not to demonstrate the
superiority of one algorithm over the other over all
problem domains. Each one of them has its merits.
Actually it would be unwise to generalize the results
reported here over all classes of problems. We believe
that some heuristics are easier to engineer to solve a
particular problem than others. For the benchmark
problem used in this work tabu search exhibited better
overall behavior than GA and SA.

Recently, an interesting theoretical study has been
reported by Wolpert and Macready in which they
proved a number of theorems stating that the average
performance of any pair of iterative (deterministic or
non-deterministic) algorithms across all problems is
identical. That is, if an algorithm performs well on a
certain class of problems then it necessarily pays for that
with degraded performance on the remaining set of
problems (Wolpert and Macready, 1997). However, it
should be noted that the reported theorems assume that
the algorithms do not include domain-specific knowl-
edge of the problems being solved. Obviously, it would
be expected that a well-engineered algorithm would
exhibit superior performance to that of a poorly
engineered one. Further, they do not assume any
knowledge about the problems themselves. However
the problem maybe trivially stated that any algorithm
would be able to find a solution to the problem.

Of the three heuristics experimented with in this work,
TS exhibited the best performance with respect to
solution quality as well as the quality of the solution
subspace searched. Furthermore, with respect to the
complexity of implementation and tuning of the
algorithms parameters, GA required the most effort.
SA and TS required similar and lesser efforts than GA.
On the basis of experiments performed, and for the
target problem category (floorplanning), TS is the better
of the three heuristics, with GA a close second, and SA a
distant third. Would the same verdict hold over other
problem categories? To answer such question would
require at least that similar experiments on other
category of problems be performed. Such experiments
are the subject of future work. Also, similar study of
other iterative approximation algorithms such as simu-
lated evolution and stochastic evolution are being
conducted (Sait and Youssef, 1999b; Kling and Ban-
erjee, 1989; Saab and Rao, 1991).
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