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Abstract

The topology design of switched enterprise networks (SENs) is a hard constrained combinatorial optimization problem. The

problem consists of deciding the number, types, and locations of the network active elements (hubs, switches, and routers), as well as

the links and their capacities. Several conflicting objectives such as monetary cost, network delay, and maximum number of hops

have to be optimized to achieve a desirable solution. Further, many of the desirable features of a network topology can best be

expressed in linguistic terms, which is the basis of fuzzy logic. In this paper, we present an approach based on Simulated Evolution

algorithm for the design of SEN topology. The overall cost function has been developed using fuzzy logic. Several variants of the

algorithm are proposed and compared together via simulation and experimental results are provided.
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1. Introduction

In an enterprise network, a large number of nodes are
interconnected together through a computer network.
These nodes are divided into two classes: end-user nodes

and network active elements. End-user nodes represent
access points such as workstations, personal computers,
printers, mainframe computers, etc. Network active
elements consist of devices such as multiplexers, hubs,
switches, routers, and gateways. The active elements and
links provide the needed physical communication paths
between every pair of end-user nodes. Several con-
straints dictate the network topology. The internetworks
can be broken down into smaller parts or group of
nodes, as governed by geographical constraints. Each
group makes up a local area network (LAN) (Ersoy and
Panwar, 1993). According to Open System Interconnec-
tion (OSI) Reference Model, there are seven ‘‘layers’’
which are used in communication between two nodes.
Each layer has certain functions to perform and has its
own characteristics. A LAN consists of all network
elements which do not include routers or layer 3
switches. Routers delineate the boundaries of LANs.

Communication services of a modern organization are
centered around a structured enterprise network, which
consists of a backbone interconnecting a number of
LANs via routers or layer 3 switches (see Fig. 1).
Further, the nodes of a LAN may be subdivided into
smaller parts, called LAN segments. The hierarchical
structuring of the network into a backbone, intercon-
necting a number of LANs via routers/layer 3 switches,
where each LAN is an interconnected collection of LAN
segments, achieves several desirable effects:

1. It confines broadcast traffic to a single LAN, thus
avoiding the problem of having broadcast storms
sweeping across the entire network.

2. Switched structured topologies ensure highest net-
work availability, lowest latency, and provide the
most appropriate connectivity to users.

3. Reduces cost of administration. Equipment moves
and changes are carried out in a more orderly
fashion. Further, diagnosis and correction of network
problems are easier.

The topology design of LAN itself consists of two main
issues: segmentation, where LAN segments are found,
and design of actual topology, which consists of
interconnecting the individual segments. In recent years,
Switched LANs have gained popularity since they follow
modern recommended structured cabling standard.

*Corresponding author. Tel.: +966-3-860-4268; fax: +966-3-860-

3059.

E-mail address: youssef@ccse.kfupm.edu.sa (H. Youssef).

0952-1976/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 9 5 2 - 1 9 7 6 ( 0 2 ) 0 0 0 6 6 - 0



These LANs follow a hierarchical star topology and use
switching technology to facilitate increased bandwidth
at the desktop and backbone necessary for network-
hungry applications (Black, 1998). Traffic segmentation
becomes easy by switching. This provides discrete LAN
interfaces that are connected to form a bigger LAN
(Black, 1998). Switches can switch all the current
technologies: Ethernet, Fast Ethernet, Gigabit Ethernet,
Token Ring, ATM, and FDDI. A big advantage of
switched networks is that central switch upgrades can be
done easily. This is done to increase performance and is
transparent to the user. For example, if a user has 10/
100Mbps NIC and Category 5 cabling, a central change
from a 10Mbps port to a 100Mbps port will increase
the user’s bandwidth by a factor of 10 without even
going to the user’s office (Black, 1998).
Switched LANs consist of the following general

hierarchy of components (in order of power and price,
from highest to lowest) (Black, 1998):

* Routers: Provide most effective isolation among
LANs. Most often, routing technology is integrated
into backbone or workgroup switches.

* Backbone switches: These high-end switches are
deployed at the core of a network and use switching
technology. These switches aggregate data from hubs
and workgroup switches providing interconnection
among these devices. Backbone switches typically
accept various cards with different technologies.

* Workgroup switches: These lower-end network de-
vices aggregate multiple shared segments by using
switching technology. Often a workgroup switch
switches onto a high-speed backbone connection
such as Fast Ethernet, FDDI, Gigabit Ethernet, or
even ATM.

* Hubs: These can be subdivided into two types: chassis

hubs and stackable hubs. Chassis hubs contain a
variety of network modules and high-speed back-

plane capable of housing repeaters, bridges, switches,
or concentrators. Stackable hubs provide shared
media access by logically extending the backplane.
The backplane is a shared bus across the stackable
units over which data can be transmitted.

Thus, the design of such a switched enterprise
network can be approached in four steps:

1. Assignment of users/stations to LAN segments.
2. Assignment of LAN segments to local sites that will

make up a single LAN.
3. Design of the internal structure of each local site (i.e.,

in what topology the LAN segments of a local site are
connected).

4. Backbone design, where the local sites are connected
to the backbone.

Topological design of SENs is a hard problem
(Youssef et al., 1997). A class of heuristics that have
been found effective for this category of problems are
iterative heuristics such as simulated annealing (SA),
simulated evolution (SE), genetic algorithm (GA), and
tabu search (TS). These heuristics, when properly
engineered, are always able to find near optimal
solutions, regardless of the initial solution at which they
start the search from. In this work, we propose a hybrid
meta-heuristic for the topology design problem which
follows the search strategy of SE algorithm.

1.1. Literature review and related work

Topological design of enterprise networks is a hard
problem (Youssef et al., 1997). Even the design of a
LAN is itself an NP-hard problem (Ersoy and Panwar,
1993; Elbaum and Sidi, 1996; Gen et al., 1998). The state
space is of exponential complexity. For example, for a
network with n nodes, there can be as many as 2nðn�1Þ=2

different topologies. Even for n ¼ 20 this number
evaluates to more than 1056: Therefore, in order to
produce good feasible solutions in a reasonable amount
of time, approximation methods known as ‘heuristics’
are used to focus the search on feasible topologies of
desirable characteristics.
There are two categories of heuristics: constructive

and iterative. Constructive schemes build a topology in a
piecewise manner. These schemes join two nodes
together at a time, until the topology is complete. Such
schemes are fast but fall short of good topology. This is
due to the fact that these schemes make decision about
joining two nodes on the basis of partial topology only.
Secondly, once a decision is made, no matter how bad it
is, there is no mechanism to reverse it. Therefore, these
schemes may remain trapped in local minima. Some of
the well known constructive algorithms for the con-
strained minimum spanning tree problem are Kruskal
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algorithm (Bertsekas and Gallager, 1992), Prim algo-
rithm (Prim 1957), and Esau and Williams (1966)
algorithm.
In contrast to constructive techniques, iterative

schemes require larger computational time to generate
good network topologies. Iterative heuristics attempt to
improve a complete solution by making controlled walk
through the state space (Sait and Youssef, 1999).
Iterative techniques start with an initial solution and
repeatedly modify the solution in each iteration until no
more improvement occurs. The modification in solution
is intended to reduce the cost of the solution. Iterative
schemes can be further classified on the basis of whether
they can accept bad solutions probabilistically or not.
Those iterative algorithms which allow acceptance of
bad moves probabilistically fall in the sub-category of
‘‘stochastic iterative algorithms’’. This property is called
‘‘hill climbing property’’. It saves algorithms from
getting trapped in local minima. However, it is required
that acceptance of bad moves be controlled to avoid
random traversal of search space. Examples of such
probabilistic iterative schemes are SA (Kirkpatrick et al.,
1983), GA (Goldberg, 1989). SE and TS (Sait and
Youssef, 1999).
The use of iterative heuristics for topological network

design has been reported in many research papers.
Simulated annealing for network topology design has
been reported in (Ersoy and Panwar (1993)) where Ersoy
et al. used it for topological design of interconnected
LAN/MAN. The main objective was to minimize the
average network delay. They have considered transpar-
ent bridges, which are required to form a spanning tree
topology. Fetterolf (1990) used simulated annealing to
design LAN–WAN computer networks with transparent
bridges. He developed mathematical models of LAN–
WAN networks and formulated an optimization pro-
blem. A simulated annealing algorithm was proposed
which generates sequences of neighboring spanning trees
and evaluates design constraints based on maximum
flow, bridge capacity, and end-to-end delay. As the
annealing temperature is lowered, the algorithm moves
towards the global optimal solution. Experimental
results showed that LAN–WAN designs using simulated
annealing were better than 99.99% of all feasible designs.
Similarly, GA for topological network design has

been proposed in Elbaum and Sidi (1996); Gen et al.
(1998); Dengiz et al. (1997a,b); and Pierre and Legault
(1998). Pierre and Legault (1998) used genetic algorithm
to solve the topological design problem of distributed
packet switched networks. The goal was to find a
topology that minimizes the communication costs by
taking into account constraints such as delay and
reliability. Elbaum and Sidi (1996) have used GA for
designing LANs with the objective of minimizing the
average network delay. The constraints they considered
is that the flow on any link does not exceed the capacity

of that link. The topology design issues they addressed
consists of determination of the number of segments in
the network, allocating the users to different segments,
and determining the interconnections and routing
among the segments. Also, lower bounds on the average
network delay have been developed. Gen et al. (1998)
have used GA for topological network design with two
criteria which are the network delay and cost based on
the weights of links. They have used two main entities
which they call service centers (e.g., bridges) and nodes
(i.e., users) which are connected to service centers. The
constraints they have considered are that the number of
nodes connected to a service center must not exceed the
capacity of the center and that the traffic flowing
through a service center must not exceed its traffic
capacity. Dengiz et al. (1997a,b) focused on large
backbone communication network design using genetic
algorithm to optimize a network topology. They used
the cost and reliability as optimization measures. They
called their algorithm GA with knowledge-based steps
(GAKBS).
Many combinatorial optimization problems can be

formulated as follows: Given a finite set E of distinct

movable elements and a finite set L of locations, a state is

defined as an assignment function S : M-L satisfying

certain constraints. The topology design problem fits
this generic model. For this problem, given a set of links
E ¼ fe1; e2;y; eng and a set of locations L ¼ f0; 1g;
where LðeiÞ ¼ 1 if link ei belongs to the topology and
LðeiÞ ¼ 0 otherwise.
In this work, a SE-based heuristic (Sait and Youssef,

1999) is used for topology design of structured
enterprise networks. The proposed heuristic is engi-
neered to seek feasible tree topologies that are mini-
mized with respect to monetary cost, maximum number
of hops between any source–destination pair, and
average network delay per packet. For assignment of
segments to local sites, Augmenting Path algorithm is
used (Khan, 1999).
For enterprise networks, the number of nodes is

relatively small and the links are highly reliable, which
justifies the use of a tree topology. Further, according to
recommended structured cabling standards, the network
topology is constrained to be a hierarchical star, i.e., a
tree. Hence we target to find a constrained tree topology
of desirable quality with respect to the three design
objectives. We resort to fuzzy logic to formulate the
various objectives in the form of fuzzy rules that will
guide the search toward solutions of desirable quality.
Unlike constructive algorithms, which produce a

solution only at the end of the design process, iterative
algorithms produce numerous solutions during the
course of their search. In order to compare alternative
topologies, the cost of each topology is estimated for the
objectives under consideration. Important objectives are
the minimization of monetary cost, network latency,
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and maximum number of hops between any source–
destination pair. Most of the objectives and constraints
depend on several aspects such as network flow
dynamics, technology trends, strategic commercial
golas, etc., that can best be expressed in linguistic terms,
which is the basis of fuzzy logic. In this work, the cost
function, constraints, as well as some of the SE
algorithm are implemented using fuzzy algebra (Zadeh,
1965).

1.2. SE algorithm

Simulated evolution is a stochastic evolutionary
search strategy that falls in the general category of
meta-heuristics. It was first proposed by Kling and
Banerjee (1989). SE adopts the generic state model
described above, where a solution is seen as a popula-
tion of movable elements. Each element i is character-
ized by a goodness measure giA½0; 1� where gi ¼ Oi=Ci:
Ci is the estimated real cost of element ei in its position
in current state, and Oi is a lower bound on the cost of
ei: For example, in the case of network optimization
problem, the cost of a given link ei could be taken as the
utilization of that link. For each link ei; gi can be
estimated by taking the ratio of the current utilization of
the link to the optimum utilization of the link, which
could be found through some mathematical approach.
Starting from a given initial solution, SE repetitively

executes the following three steps in sequence: evalua-
tion, selection, and allocation, until certain stopping
conditions are met. The pseudocode of the SE algorithm
is given in Fig. 2. The evaluation step estimates the
goodness of each element in its current location. The
goodness of an element is a ratio of its optimum cost to
its actual cost estimate, and therefore belongs to the
interval [0, 1]. It is a measure of how near each element
is to its optimum position. The higher the goodness of
an element, the closer is that element to its optimum
location with respect to the current configuration. In
selection step, the algorithm probabilistically selects
elements for relocation. Elements with low goodness
values have higher probabilities of getting selected. A
selection bias (B) is used to compensate for errors made
in the estimation of goodness. Its objective is to inflate
or deflate the goodness of elements. A high positive
value of bias decreases the probability of selection and
vice versa. Large selection sets also degrade the solution
quality due to uncertainties created by large perturba-
tions. Similarly, for high bias values the size of the
selection set is small, which degrades the quality of
solution due to limitations of the algorithm to escape
local minima. A carefully tuned bias value results in
good solution quality and reduced execution time Kling
and Banerjee (1989).
Elements selected during the selection step are

assigned to new locations in the allocation step with

the hope of improving their goodness values, and
thereby reducing the overall cost of the solution.
Allocation is the step that has most impact on the
quality of the search performed by the SE algorithm. A
completely random allocation makes the SE algorithm
behave like a random walk. Therefore, this operator
should be carefully engineered to the problem instance
and must include domain-specific knowledge. Different
constructive allocation schemes are proposed in Kling
and Banerjee (1989).
Though SE falls in the category of meta-heuristics

such as simulated annealing and genetic algorithm GA,
there are significant differences between these heuristics
(see Sait and Youssef, 1999). A classification of meta-
heuristics proposed by Glover and Laguna (1997) is
based on three basic features: (1) the use of adaptive
memory where the letter A is used if the meta-heuristic
employs adaptive memory and the letter M is used if it is
memoryless; (2) the kind of neighborhood exploration,
where the letter N is used if the meta-heuristic performs
a systematic neighborhood search and the letter S is
used if stochastic sampling is followed; and (3) the
number of current solutions carried from one iteration
to the next, where the digit 1 is used if the meta-heuristic
maintains a single solution, and the letter P is used if a
parallel search is performed with a population of
solutions of cardinality P: For example, according to
this classification, Genetic algorithm is M=S=P; tabu

Fig. 2. Structure of the simulated evolution algorithm.
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search is A=N=1; and both simulated annealing and
simulated evolution are M=S=1: The heuristic proposed
in this work is A=S=1: Since SE is a memoryless meta-
heuristic, the walk through the state space is heavily
influenced by the allocation operator. The memoryless
nature of the search usually results in partial revisiting
of areas of the state space. To minimize the effect of
such undesirable behavior, the allocation step of SE is
implemented while following TS approach.

1.3. Fuzzy logic

Fuzzy logic is a mathematical discipline invented to
express human reasoning in rigorous mathematical
notation. Unlike classical reasoning in which a proposi-
tion is either true or false, fuzzy logic establishes
approximate truth value of proposition based on
linguistic variables and inference rules. A linguistic

variable is a variable whose values are words or
sentences in natural or artificial language (Zadeh,
1965). By using hedges like ‘more’, ‘many’, ‘few’, etc.,
and connectors like AND, OR, and NOT with linguistic
variables, an expert can form rules, which will govern
the approximate reasoning.
During the topology design process, some desirable

objectives, such as the delay, can only be imprecisely
estimated. Fuzzy logic provides a rigorous algebra for
dealing with imprecise information. Furthermore, it is a
convenient method of combining conflicting objectives
and expert human knowledge. From the pseudocode of
the SE algorithm given in Fig. 2, it is clear that there are
two phases of the algorithm which could be modelled to
include multiple objectives. These phases are evaluation
and allocation. We have used fuzzy logic-based reason-
ing in these two phases, details of which are covered in
the following section.

2. Assumptions and notation

In this work, we have assumed the following:

* The ðx; yÞ location of each host is given.
* All hosts have either Ethernet (10 or 100Mbps) or

Token Ring (4 or 16Mbps) interfaces.
* The traffic rates generated among pairs of hosts are

assumed known.
* Vertical cabling (interconnection of local sites to

backbone switches) is implemented with fiber optic
cables.

* Horizontal cabling portion (cabling within the work
area/local site) is implemented with Category 5 UTP
(or STP for Token-Ring).

* The root node is a switch acting as a collapsed
backbone with given required interfaces.

* There is a user specified limit on the number of
network addresses per subnet.

* Maximum allowed utilization of any link should not
exceed a desired threshold (e.g. 60%).

For the following section we shall use the notation
given below:

n number of clusters/local sites
m number of LAN segments in a cluster
T n 	 n local site topology matrix where tij = 1,

if local sites i and j are connected and tij = 0
otherwise

li traffic on link i

lmax;i capacity of link i

L number of links of the proposed topology
Dnd average delay between any source–destination

pair
Pi maximum number of clusters which can be

connected to device i

gij external traffic between clusters i and j

g overall external traffic

3. Problem statement

Our objective is to find the feasible topology of near
optimum overall cost. A feasible topology is one that
satisfies design constraints. Optimality of a topology is
measured with respect to three objectives: monetary
cost, average network delay per packet (network
latency), and maximum number of hops between any
source–destination pair. However, it is important to
mention that increasing the number of conflicting
objectives will not have influence on the effectiveness
on the proposed SE algorithm.
Three important constraints are considered.

1. The first set of constraints is dictated by bandwidth
limitation of the links. A good network would be one
in which links are ‘‘reasonably’’ utilized, otherwise
this would cause delays, congestion, and packet loss.
Thus the traffic flow on any link i must never exceed a
threshold value:

liolmax;i i ¼ 1; 2;y; s; ð1Þ

where s is the total number of links present in the
topology.

2. The second constraint is that the number of clusters
attached to a network device i must not be more than
the port capacity Pi of that device.

Xn

j¼1

tijoPi i ¼ 1; 2;y; n 8iaj ð2Þ

3. The third set of constraints express the designer’s
desire to enforce certain hierarchies on the network
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devices. For example, one might not allow a hub to
be the parent of a router or backbone device.

Below, we describe the objective criteria used to
measure the goodness of a given topology.

3.1. Monetary cost

The goal is to find the topology with minimum
possible cost, while meeting all the requirements and
constraints. The cost of the cable and the cost of the
network devices are the two main entities affecting the
monetary cost, therefore

cost ¼ ðl 	 ccableÞ þ ðcndÞ; ð3Þ

where l represents the total length of cable, ccable
represents the cost per unit of the cable used, and cnd
represents the combined costs of all the routers,
switches, and hubs used.

3.2. Average network delay

The second objective is to minimize the average
network delay, while considering the constraints and
requirements. To devise a suitable function for average
network delay, we approximate the behavior of a link
and network device by an M=M=1 queue Elbaum and
Sidi (1996). The delay per bit due to the network device
between local sites i and j is Bi;j ¼ mbi;j ; where 1=m is the
average packet size in bits and bi;j is the delay per
packet. If gij is the total traffic through the network
device between local sites i and j, then the average delay
due to all network devices is

Dnd ¼
1

g

Xd

i¼1

Xd

j¼1

gijBij ; ð4Þ

where d is the total number of network devices in the
network. Thus, the total average network delay is
composed of delays of links and network devices and
is given by (Elbaum and Sidi, 1996)

D ¼
1

g

XL

i¼1

li

lmax;i � li

þ
1

g

Xd

i¼1

Xd

j¼1

gijBij : ð5Þ

3.3. Maximum number of hops between any source–

destination pair

The maximum number of hops between any source–
destination pair is also another objective to be opti-
mized. A hop is counted as the packet crosses a network
device.

4. Proposed algorithm and implementation details

This section describes our proposals of fuzzification of
different stages of the SE algorithm. We confine
ourselves to tree design. Trees are minimal and provide
unique path between every pair of local sites. Further,
the design of a general mesh topology usually starts
from a near optimal constrained spanning tree.

4.1. Initialization

The initial spanning tree topology is generated
randomly, while keeping into account the feasibility
constraints mentioned earlier.

4.2. Proposed fuzzy evaluation scheme

The goodness of each individual is computed as
follows. In our case, an individual is a link which
interconnects the devices of two local sites (at the
backbone level) or two network devices (at the local site
level). In the fuzzy evaluation scheme, monetary cost and
optimum depth of a link (with respect to the root) are
considered fuzzy variables. Then the goodness of a link
is characterized by the following rule.

Rule 1: IF a link is near optimum cost AND near

optimum depth THEN it has high goodness.

Here, near optimum cost, near optimum depth, and high

goodness are linguistic values for the fuzzy variables
cost, depth, and goodness. Using and-like compensatory
operator (Yager, 1998), Rule 1 translates to the
following equation for the fuzzy goodness measure of
a link li:

gli ¼ meðliÞ ¼ ae 	minðme1ðliÞ; m
e
2ðliÞÞ

þ ð1� aeÞ 	
1

2

X2

i¼1

mei ðliÞ: ð6Þ

The superscript e stands for evaluation and is used to
distinguish similar notation in other fuzzy rules. In (6),
meðliÞ is the membership in the fuzzy set of high goodness

links and ae is a constant. The me1ðliÞ and me
2ðliÞ represent

memberships in the fuzzy sets near optimum monetary

cost and near optimum depth.
In order to find the membership of a link with respect

to near optimum monetary cost, we proceed in following
manner. From the cost matrix, which gives the costs of
each possible link, we find the minimum and maximum
costs among all the link costs. We take these minimum
and maximum costs as the lower and upper bounds and
call them ‘‘LCostMin’’ and ‘‘LCostMax’’, respectively,
and then find the membership of a link with respect to
these bounds. Furthermore, in this work, we have
normalized the monetary cost with respect to ‘‘LCost-
Max’’. The required membership function is represented
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as depicted in Fig. 3, where x-axis represents
LCost/LCostMax, y-axis represents the membership
value, A=LCostMin/LCostMax, and B=LCostMax/
LCostMax=1. This normalization enables us to use the
same membership function for all topology design
instances.
In the same manner, we can find the membership of a

link with respect to near optimum depth. The lower limit,
which we call ‘‘LDepthMin’’ is taken to be a depth of 1
with respect to the root. The upper bound, which we call
‘‘LDepthMax’’ is taken to be 1.5 times that of the
maximum depth generated in the initial solution or a
maximum of a user specified limit.1 For example, if in
the initial solution, the maximum depth turns out to be
4, then ‘‘LDepthMax’’ for the depth membership
function would be 6. This is done to give chance to
links which may have more depth than the one in the
initial solution. If we take the initial solution maximum
depth as ‘‘LDepthMax’’, then in the following iterations
some links with higher depths will have a membership
value of zero (with respect to depth membership
function) and thus they will not be able to play any
role as far as depth is concerned. However, due to
technological limitations, we have limited the maximum
possible depth to 7, in the case when ‘‘LDepthMax’’
turns out to be more than 4. The reason for having the
maximum depth of 7 is that the hop limit for RIP is 15.
This means that if a maximum depth of 7 is taken, then
in the worst case we would have a total of 14 hops from
a source to a destination. The membership function with
respect to near optimum depth can be represented as
illustrated in Fig. 3, where x-axis represents LDepth, y-
axis represents the membership value, A=LDepthMin,
and B=LDepthMax.

4.3. Selection

In this stage of the algorithm, for each link li in
current tree topology, where i ¼ 1; 2;y; n � 1; a ran-
dom number RANDOM A½0; 1� is generated and
compared with gi + B, where B is the selection bias.
If RANDOM> gi þ B; then link li is selected for
allocation and considered removed from the topology.
Bias B is used to control the size of the set of links
selected for removal. A bias methodology called variable

bias (Youssef et al., 2001) has been used in this paper.
The variable bias is a function of quality of current

solution. When the overall solution quality is poor, a
high value of bias is used, otherwise a low value is used.
Average link goodness gi is a measure of how many
‘‘good’’ links are present in the topology. The bias value
changes from iteration to iteration depending on the
quality of solution. The variable bias is calculated as
follows:

Bk ¼ 1� Gk�1;

where Bk is the bias for kth iteration and Gk�1 is average
goodness of all the links at the end of ðk � 1Þst iteration.

4.3.1. Proposed fuzzy allocation scheme

During the allocation stage of the algorithm, the
selected links are removed from the topology one at a
time. For each removed link, new links are tried in such
a way that they result in overall better solution. Before
the allocation step starts, the selected links are sorted
according to their goodness values in ascending order.
In the fuzzy allocation scheme, the three criteria to be

optimized are combined using fuzzy logic to characterize
a good topology, as depicted in Fig. 4.
The reason for using fuzzy logic is that the

characterization of a good topology with respect to
several criteria is usually based on heuristic knowledge
which is acquired through experience. Such knowledge
is most conveniently expressed in linguistic terms, which
constitute the basis of fuzzy logic. For the problem
addressed in this paper, a good topology is one that is
characterized by a low monetary cost, low average
network delay, and a small maximum number of hops.

1.0

0.8

0.6

0.4

0.2

0

µ

A B

Fig. 3. Membership function for the objective to be optimized.

Good Topology

Low average
network delay

Low  Monetary
        Cost

Low maximum
number of hops
between s-d pair

Fig. 4. Basic components for a good topology.

1This user specified limit may be a design constraint, e.g., if each hop

represents a router that uses Routing Information Protocol (RIP) then

a limit would be 7, i.e., a branch of the tree should not have more than

seven routers.
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In fuzzy logic, this can easily be stated by the following
fuzzy rule:

Rule 2: IF a solution X has low monetary cost AND
low average network delay AND low maximum

number of hops between any source–destination pair

THEN it is a good topology.

The words ‘‘low monetary cost’’, ‘‘low average
network delay’’, ‘‘low maximum number of hops’’, and
‘‘good topology’’ are linguistic values, each defining a
fuzzy subset of solutions. For example, ‘‘low average
network delay’’ is the fuzzy subset of topologies of low
average network delays. Each fuzzy subset is defined by
a membership function m: The membership function
returns a value in the interval [0,1] which describes the
degree of satisfaction with the particular objective
criterion. Using the and-like ordered weighted averaging
operator (Yager, 1998), the above fuzzy rule reduces to
the following equation.

maðxÞ ¼ ba 	minðma1ðxÞ;m
a
2ðxÞ;m

a
3ðxÞÞ

þ ð1� baÞ 	
1

3

X3

i¼1

mai ðxÞ; ð7Þ

where maðxÞ is the membership value for solution x in the
fuzzy set good topology and ba is a constant in the range
[0,1]. The superscript a stands for allocation. Here, mai
for i = {1,2,3} represents the membership values of
solution x in the fuzzy sets low monetary cost, low

average network delay, and low maximum number of hops

between any source–destination pair, respectively. The
solution which results in the maximum value for Eq. (7)
is reported as the best solution found by the SE
algorithm.
Below we will see how to get the membership

functions for the three criteria mentioned above.

4.3.2. Membership function for monetary cost

First, we determine two extreme values for monetary
cost, i.e., the minimum and maximum values. The
minimum value, ‘‘TCostMin’’, is found by using the
Esau–Williams algorithm (1966), with all the constraints
completely relaxed. This will surely give us the minimum
possible monetary cost of the topology. The maximum
value of monetary cost, ‘‘TCostMax’’, is taken to be the
monetary cost generated in the initial solution. The
monetary cost is normalized with respect to ‘‘TCost-
Max’’. The corresponding membership function is
shown in Fig. 3, where x-axis represents TCost/TCost-
Max, y-axis represents the membership value,
A=TCostMin/TCostMax, and B=TCostMax/TCost-
Max=1.

4.3.3. Membership function for average network delay

We determine two extreme values for average network
delay. The minimum value, ‘‘TDelayMin’’, is found by

connecting all the nodes to the root directly, ignoring all
the constraints and then calculating the average network
delay using Eq. (5). The maximum value of average
delay, ‘‘TDelayMax’’, is taken to be the average delay
generated in the initial solution. The average delay is
normalized with respect to ‘‘TDelayMax’’. The member-
ship function is shown in Fig. 3, where x-axis represents
TDelay/TDelayMax, y-axis represents the membership
value, A=TDelayMin/TDelayMax, and B=TDelay-
Max/TDelayMax=1.

4.3.4. Membership function for maximum number of hops

Again, two extreme values are determined. The
minimum value, ‘‘THopsMin’’, is taken to be 1 hop,
which will be the minimum possible in any tree. The
maximum value, ‘‘THopsMax’’, is taken to be the
maximum number of hops between any source–destina-
tion pair generated in the initial solution. The member-
ship function is shown in Fig. 3, where x-axis represents
THops, y-axis represents the membership value,
A=THopsMin, and B=THopsMax.
In the proposed allocation scheme, all the selected

links are removed one at a time and trial links are placed
for each removed link. We start with the head-of-line
link, i.e. the link with the worst goodness. We remove
this link from the topology. This divides the topology
into two disjoint topologies, as depicted in Fig. 5.
Now the placing of trial links begins. In this work, the

approach to place trial links is as follows. At most 10
trial moves (i.e., trial links) are evaluated for each
removed link. One point to mention is that for the 10
moves, some moves may be invalid. However, we search
for only four ‘‘valid’’ moves. Whenever we find four
valid moves, we stop, otherwise we continue until a total
of 10 moves are evaluated (whether valid or invalid).
The removal of a link involves two nodes P and Q, of
which node P belongs to the subtree which contains the
root node and node Q belongs to the other subtree. For
the 10 moves we make, five of them are greedy and five
are random. For the greedy moves, we start with node Q

and five nearest nodes in the other subtree are tried. For

Q

P

R

Fig. 5. Two disjoint trees containing nodes P and Q:
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the random moves, we select any two nodes in the two
subtrees and connect them.
It may so happen that all the 10 moves are invalid, in

which case the original link is placed back in its position.
The valid moves are evaluated based on Eq. (7) and the
best move among the 10 moves is made permanent. This
procedure is repeated for all the links that are present in
the set of selected links.
We have implemented two variations of allocation

schemes in this paper. The first one is the same as has
been described above, which we call SE. In the second
variation, TS characteristics have been introduced,
details of which follow.

4.4. TS based Allocation

Tabu search (TS) is a general iterative heuristic that is
used for solving combinatorial optimization problems.
The algorithm was first presented by Glover and Laguna
(1997). A key feature of TS is that it imposes restrictions
on the search process, preventing it from moving in
certain directions to drive the process through regions
desired for investigation (Glover and Laguna, 1997). It
searches for the best move in the neighborhood of the
current solution. As opposed to local search, TS does
not get trapped in local optima because it accepts
bad moves if they are expected to lead to unvisited
solutions.
In its very basic operation, TS works as follows. It

starts with an initial solution s that is selected randomly
or using any constructive algorithm. It defines a subset
V * ðsÞ of its neighborhood NðsÞ: The algorithm evalu-
ates the solution in V * ðsÞ and finds the best (in terms of
evaluation function) among them, call it s* to be
considered as the next solution. The algorithm main-
tains a list of attributes of accepted moves for the
purpose of preventing cycling back to recently visited
solutions. This list is called Tabu List. The size of tabu
list specifies the number of coming iterations for which
the move remains tabu. An attribute is some character-
istic of a move which is saved in the tabu list, since it is
not feasible to store the whole solution when the
solution representation is large or complex. If the tabu
list does not define the move leading to s* as tabu, it is
accepted as the new solution even if it is worse than the
current solution in terms of the evaluation function.
However, if the move leading to s* is defined as tabu by
the tabu list, the solution is not accepted until it has one
or more features that makes the algorithm override its
tabu status to accept it. Aspiration criterion is used to
check whether the tabu solution is to be accepted or not.
For more details, interested readers are referred to (Sait
and Youssef, 1999; Glover and Laguna, 1997).
In this work, we have modified the SE algorithm by

introducing TS characteristics in the allocation phase.
Recall that in the allocation phase, certain number of

moves are made for each link in the selection set and the
best move is accepted, making the move (i.e., link)
permanent. This newly accepted link is saved in the tabu

list. Thus our attribute is the link itself. The aspiration

criterion adopted is that if the link that had been made
tabu produces a higher membership value than the
current one in the membership function ‘‘good topol-
ogy’’, then we will override the tabu status of the link
and make it permanent. This strategy prevents the
selection and allocation of a tree from repetitively
removing the same link and replacing it with a link of
equal or worse goodness.

4.5. Stopping criterion

In our experiments, we have used a fixed number of
iterations as a stopping criterion. We experimented with
different values of iterations and found that for all the
test cases, the SE algorithm converges within 4000
iterations or less.

5. Results and discussion

This section summarizes the experimental study of
variations of SE algorithms implemented in this work,
namely

1. Fuzzy evaluation and fuzzy allocation based simu-
lated evolution algorithm implementation with fixed
bias controlled selection. This implementation is
labelled as SE FF.

2. Fuzzy evaluation and fuzzy allocation based simu-
lated evolution algorithm implementation with

Table 1

Classification of our SE implementations

Algorithm Evaluation Selection Allocation

SE FF Fuzzy

(link cost, depth)

Fixed

bias

Fuzzy

(cost, delay, hops)

SE VB Fuzzy

(link cost, depth)

Variable

bias

Fuzzy

(cost, delay, hops)

SE TS Fuzzy

(link cost, depth)

Variable

bias

Fuzzy

(cost, delay, hops) with

tabu search approach

Table 2

Parameter values for different stages of the SE algorithm

Stage Parameters

Fuzzy allocation ba ¼ 0:5
Fuzzy evaluation be ¼ 0:5
Stopping condition Fixed 4000 iterations

Initial solution Random

Bias (B) Fixed, variable

H. Youssef et al. / Engineering Applications of Artificial Intelligence 15 (2002) 327–340 335



variable bias controlled selection. This implementa-
tion is labelled as SE VB.

3. Fuzzy evaluation and fuzzy allocation based simu-
lated evolution algorithm implementation where the
allocation scheme incorporates tabu search charac-
teristics. This implementation has variable bias
controlled selection and is identified as SE TS.

The characteristics of above listed algorithm varia-
tions are summarized in Table 1. The parameter values
for different stages of the SE algorithm are summarized
in Table 2. For example, the values of ae and ba were
chosen after several trials of combinations of these.
We tested our implementations of the simulated

evolution algorithm on five arbitrary test cases. Ten
experiments were run for each test case to validate and
compare the performance of each SE implementation
method described above. For each test case, the traffic
generated by each local site was collected from real sites.
Other characteristics, such as the number of ports on a
network device, its type, etc., were assumed. However,
the costs of the network devices and links were obtained
from vendors. The characteristics of test cases are listed
in Table 3. The smallest test network has 15 local sites
and the largest has 50 local sites. Also, Table 4 lists the
characteristics of the equipment used in our experi-
ments.

Following sets of experiments were carried out.

1. Analyzing the effect of TS approach based allocation
in SE TS and understanding the effect of tabu list
size.

2. Comparing SE FF, SE VB, and SE TS.

5.1. Effect of TS based allocation and tabu list size

Table 5 shows the results obtained for the test cases
using different tabu list sizes. In this table, monetary
cost, average delay, and maximum hops of best
solutions are reported along with the respective tabu
list size. In the table we notice that as the test case size

Table 3

Characteristics of test cases used in our experiments. LCostMin, LCostMax, and TCostMin are in dollars. TDelayMin is in milliseconds. Traffic is in

Mbps

Name No. of Local sites LCostMin LCostMax TCostMin TDelayMin Traffic

n15 15 1100 9400 325,400 2.14296 24.63

n25 25 530 8655 469,790 2.15059 74.12

n33 33 600 10,925 624,180 2.15444 117.81

n40 40 600 11,560 754,445 2.08757 144.76

n50 50 600 13,840 928,105 2.08965 164.12

Table 4

Equipment parameters and their characteristics assumed in our

experiments

Parameter Characteristic

Cost of backbone switch with FO interface

(eight ports)

$ 30,000

Cost of router with FO interface

(four ports)

$ 20,000

Cost of switch with FO interface

(eight ports)

$ 15,000

Cost of hub or MAU with FO interface

(12 ports)

$ 5,000

Cost of fiber optic cable $ 5/m

Cost of Category 5 UTP $ 0.5/m

Delay per bit due to forwarding device 250 m=s:
Maximum traffic on a link allowed 60%
Average packet size 500 bytes

Table 5

Best solution for different tabu list sizes. Monetary cost is in dollars,

delay is in milli seconds per packet, and execution time is in minutes

Test case Tabu list

size

Monetary

cost

Avg.

delay

Max.

hops

1 298,200 2.935 4

2 297,100 2.78 4

n15 3 294,350 3.448 6

4 298,100 3.037 5

5 296,900 3.278 6

3 481,745 4.219 8

4 478,690 4.189 9

n25 5 483,210 3.537 6

6 479,915 4.275 9

7 488,400 4.608 9

3 655,715 5.772 11

5 652,785 4.77 8

n33 6 682,465 4.19 6

7 652,310 5.95 10

9 667,100 5.087 7

5 785,795 4.746 10

6 798,695 8.019 12

n40 7 783,970 4.441 9

8 786,950 5.478 9

9 790,645 5.136 8

4 958,995 6.739 14

5 967,110 9.279 14

n50 7 983,020 5.245 11

8 1075,450 5.725 9

9 971,965 7.13 12
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increases, the tabu list that gives the best solution also
increases. For example, in n15, tabu list size of 2 gives
the best solution. Similarly, best solutions are achieved
by tabu list sizes of 5, 6, 7, and 7 in n25, n33, n40, and
n50, respectively.
In order to see the behavior of our SE TS algorithm,

we plot different parameters versus iteration count for
the test case n50 (tabu list size=7). Fig. 6(a) shows the
best monetary cost of solutions found. A similar
behavior is seen in Fig. 6(b) and (c) which, respectively,
plot the best values of average network delay and
maximum number of hops. The stability of the
algorithm becomes more obvious in Fig. 6(d) where
the best membership in fuzzy function ‘‘good topology’’
is plotted against iterations. The figure shows small
moves with constant convergence towards the optimum.
Fig. 6(e) shows the frequency of solutions having
membership values in different ranges. According to
this figure, out of 4000 solutions (since we run the
algorithm for 4000 iterations), most of the solutions are

falling in higher membership ranges, suggesting that the
algorithm is concentrating in good solutions subspace.
The convergence of the algorithm towards better
solution is dependent on the average goodness of links.
A high average goodness of links suggests that better
links have been found and that there is a little room for
further improvement. This is seen from Fig. 6(f), where
we see that the average goodness of links is increasing
with each iteration. This improvement slows down
towards the end, suggesting that better links have been
found throughout the topology.
Table 6 gives the results for different test cases

considering the frequency of tabu moves, and the
respective tabu list size that gave the best solutions with
their execution times. By frequency of tabu moves we
mean the number of times a link was found tabu. We
record this through a counter called tabu counter. The
tabu counter only includes the number of tabu links
which could not pass the aspiration criteria. It does not
count the frequency of links which were actually tabu
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Fig. 6. Plots for different parameters for n50; tabu list size=7: (a) best monetary cost; (b) best average network delay; (c) best maximum number of

hops; (d) best membership value in ‘‘Good Topology’’; (e) frequency of solutions in different membership ranges and (f) average goodness of links.
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but managed to pass the aspiration criteria. From this
figure, it can be seen that the percentage of tabu moves
varies between 1% and 10%.

5.2. Comparison of SE FF, SE VB, and SE TS

The proposed SE algorithms have been tested on
several randomly generated networks. For each test
case, the traffic generated by each local site was collected
from real sites. Other characteristics, such as the number
of ports on a network device, its type, etc. were assumed.
However, the costs of network devices and links were
collected from vendors. The characteristics of test cases
are listed in Table 3. The smallest test network has 15
local sites and the largest has 50 local sites.
Tables 7–9, respectively, show the best solutions

generated by best fixed bias SE FF, SE VB, and SE TS,
while Table 10 compares them. It is clear from these
tables that, in general, SE VB produces comparable
results with SE FF as far as ‘‘monetary cost’’ objective is
concerned. For ‘‘average network delay’’ and ‘‘max-
imum hops’’ objectives, a general trend is that
SE FF performs better than SE VB. As far as execution
time is concerned, SE VB has lower execution time
than best fixed bias SE FF for smaller cases (such
as n15, n25; and n33), while for bigger cases (n40
and n50Þ; SE VB has higher execution time than
SE FF. However, if we consider the time spent in trial
runs of SE FF algorithm to find the best fixed bias, then
SE VB can be considered better than the fixed bias
SE FF. There were at least three trial runs with different
bias values to identify the best value for each test case
for SE FF. For SE VB, there is no need to run several
trials. Figs. 7(a)–(c) show the progression of the two
algorithms with respect to the three optimization
objectives.
Table 10 also shows the percentage improvement

achieved by best tabu list size SE TS when compared to
SE FF. From these tables, it is seen that SE TS
performs better than SE FF for monetary cost objective.
For all test cases, a gain is achieved by SE TS. Similarly,
for average network delay metric, SE TS achieves gain
in all cases. For maximum number of hops metric, a
gain is achieved for all the cases except n50. However,

the loss in maximum hops for n50 is compensated by the
improvement in the monetary cost and delay metrics. As
far as the execution time is concerned, it is also
comparable. Fig. 7(d)–(f) show the progression of

Table 6

Results for best tabu list size. Execution time is in minutes

Test

case

Tabu list size

for best solution

Total

moves

Tabu

moves

% of Tabu

moves

Exec.

time

n15 2 1241 45 3.62 2.25

n25 5 2496 39 1.56 4

n33 6 1352 93 6.878 8

n40 7 4223 233 5.51 26

n50 7 3995 328 8.21 65

Table 7

Best results for SE FF. B=best bias, C=cost in US $, D=delay in ms/

packet, H=hops, T=execution time (min)

Case SE FF

B C D H T

n15 0.2 314,400 3.282 5 4

n25 0.2 509,050 4.26 7 5

n33 0.0 687,760 4.729 8 40

n40 0.3 866,900 4.126 8 12

n50 0.3 1061,900 5.32 9 8

Table 8

Best results for SE VB. C=cost in US$, D=delay in ms/packet,

H=hops, T=execution time (min)

Case SE VB

C D H T

n15 305,500 4.135 7 1

n25 512,415 4.37 7 4.4

n33 702,815 5.319 7 17

n40 800,580 6.637 10 42

n50 1042,080 8.236 10 62

Table 9

Best results for SE TS. TL=Tabu list size, C=Cost in US $,

D=Delay in ms/packet, H=hops, T=execution time (min)

Case SE TS

TL C D H T

n15 2 297100 2.78 4 2.25

n25 5 483210 3.537 6 4

n33 6 682465 4.19 6 8

n40 7 783970 4.441 9 26

n50 7 983020 5.245 11 65

Table 10

Percentage improvement achieved by SE VB compared to SE FF and

SE TS compared to SE FF. C = Cost in US $, D=Delay in ms/

packet, H=hops

Case SE VB vs. SE FF SE TS vs. SE FF

C D H C D H

n15 2.83 �25.99 �40 5.5 15.29 20

n25 �0.657 �2.51 0 5.07 16.97 14.29

n33 �2.19 �12.48 12.5 0.755 11.4 25

n40 7.65 �60.85 25 9.57 �7.63 �12.5
n50 1.87 �54.8 �11.1 7.43 1.41 �22.2
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SE FF and SE TS for the three optimization objectives.
The reason SE TS has better performance than SE FF is
the following. In SE FF, since the search space for valid
solutions is limited, it happens that after some iterations,
same moves are repeated and the algorithm keeps
searching in the same search space most of the time,
while in SE TS, more search space is covered because
previous moves remain tabu for some time, causing
the algorithm to diversify the search into another
subarea.

6. Conclusion

In this paper, we have presented a novel approach for
topology design of enterprise networks based on fuzzy
simulated evolution algorithm with three variations.
Results obtained for the test cases suggest that fuzzy
simulated evolution algorithm with tabu search alloca-
tion is a better approach to this problem. Moreover,
comparison among the variations showed that the
search performed by SE TS is more intelligent, that is,
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Fig. 7. Progression of objective values with iterations for SE FF and SE VB for (a) monetary cost, (b) delay, (c) hops. (d), (e), (f) compare the same

objectives, respectively, for SE FF and SE TS.
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the solution subspace investigated by SE TS is of
superior quality than that of SE FF and SE VB.
Further, as time elapsed, SE TS progressively evolved
toward better solutions, a desirable characteristic of
evolutionary heuristics.
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