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Figure 1: Sample Application of the Travelling Salesman Problem.  The travelling
salesman problem could be used to find the shortest roundtrip path through a several
cities across the globe.  Created by Dan Ignat and Justin Turner, March 1998.
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Glossary of Terms

Crossover - The combining of two individuals to form a third with combined traits from
both parents

Epoch - A period of time during which a population evolves without outside influence
Fitness - A measure of the quality of an individual
Genetic Algorithm - A problem solving approach that mimics evolution by treating

solutions as individuals and combining them to form new solutions
Genetic Algorithms with Punctuated Equilibra - An extension of genetic algorithms

where individuals are grouped into populations, which evolve separately and
occasionally exchange individuals.

Genotype - The hidden, inner representation of an individual’s traits
Hypercube - An n-dimensional cube consisting of 2n nodes, where each node is

connected to n other nodes.
Individual - A solution to the problem being analyzed, which can be combined with

other individuals to generate new ones
Interconnection Matrix  - An array that describes the interconnections between

populations in a GAPE run.
Legion - A system that can link several computer of various architectures into a

distributed network, and can execute parallel programs on them
Mentat Programming Language - A language for writing parallel programs for the

Legion system
Minimum Spanning Tree - The graph with the smallest total length that traverses all

points and has no cycles
Mutation - A random change in one element of an individual
NP-Complete  - A set of problems that have been shown to be very difficult to solve

exactly for large instances
Phenotype - The physical manifestation of a genotype
Population - An isolated set of individuals that evolve over time
Reduction - Choosing the individuals that will survive to the next generation based on

fitness
Selection  - Choosing the individuals that will mate based on fitness
Traveling Salesman Problem  - The problem of finding the shortest roundtrip distance
through a set of points



Abstract

This paper describes the creation of a parallel implementation of a genetic

algorithms with punctuated equilibria (GAPE) application for the travelling salesman

problem (TSP).  It also investigates two aspects of GAPE by using the results from the

software.  These aspects are the relationship between the number of populations used and

the solution quality over time, and the relationship between the number of generations per

epoch and the solution quality over time.  The analysis of these variables is meant to shed

light on their role in GAPE algorithms in general.

We believe that a parallel implementation of GAPE run over a large network will

provide a significant speedup over sequential implementations.  Further, we feel that the

results described within indicate that the number of populations have relatively little

effect on the solution quality of GAPE, especially for small problem sizes, and that

isolating populations for extended periods of time produces better long-term results than

those obtained with frequent communication.



1.0 Introduction

Genetic Algorithms with Punctuated Equilibria (GAPE) is a nontraditional way of

solving problems that are too complex to be solved exactly in a reasonable amount of

time.  Due to the distinct populations that are the defining characteristic of GAPE

algorithms, GAPE software lends itself very well to parallelization.  This paper describes

the implementation of a parallel GAPE algorithm, and investigates two aspects of GAPE

using the results of the software.  The results should be extendable to GAPE algorithms

in general.

1.1 Travelling Salesman Problem

In its simplest form, the Travelling Salesman Problem (TSP) is the following:

Given a set of n cities, what is the shortest path that a salesman can take in which he

visits each city once and returns to his original starting point?  This problem has a wide

array of applications.  These include any problems where one wishes to find the route

through a set of points that has the minimum possible distance.  Some problems that the

TSP applies to include oil exploration, computer chip design, telephone line routing, and

protein modeling [17].  The frontispiece illustrates a possible TSP application.  It shows a

set of paths traversing various cities across the globe.  Minimizing the distance of these

paths might be important for delivery routes or telephone line connections.

This seemingly simple problem has been studied for over two centuries by

mathematicians, but the efficiency of the solutions developed is still not satisfactory for

many modern applications.  The reason behind this relies on the concept of NP-

completeness.



1.2 NP-Completeness

NP-complete is the name that scientists have given to a set of problems that is

very difficult to solve precisely.  The concept divides problems into two classes: those

whose solution is a polynomial-time algorithm, and those whose best-known algorithms

are nonpolynomial.  Polynomial-time problems are those for which the time to arrive at a

solution is related to the size of the problem by a polynomial.  For instance, the minimum

time required to multiply two random square matrices of numbers together is directly

proportional to the square of the size of the matrix.  This means that if a computer took

four seconds to multiply two matrices of size 10x10 together, it might take 16 seconds to

multiply two matrices of size 20x20 together and about a minute to multiply a 40x40

matrix.

On the other hand, nonpolynomial-time algorithms are those for which the

solution cannot be related to the size of the problem by a polynomial.  For instance, the

relationship may be on the order of 2n or nn where n is the size of the problem.  As a

result, the time necessary to solve a problem tends to increase dramatically with the

problem size.  If a problem of size 100 takes a minute to solve, a problem of size 200

might take a day, and a problem of size 300 might take a lifetime.  Problems that fall into

this latter class are termed "NP-complete" by computer scientists.  They include the

travelling salesman problem, to which this project is being applied.

It is often infeasible to solve large instances of NP-complete problems exactly.

Since it is potentially impractical to find the best solution to the travelling salesman

problem when large numbers of cities are involved, researchers have looked to other

methods.  These include techniques that do not attempt to find the best solution to a given



problem, but instead find an approximate solution.  Ideally, this solution will be very

close to the optimal solution in quality, but can be found in a small fraction of the time

that it would take to find the best solution.  One method that is commonly used for NP-

complete problems is genetic algorithms, which is the topic of this paper.

1.3 Genetic Algorithms

Genetic algorithms are a method of solving problems based on sexual

reproduction and genetics.  In sexual reproduction, two individuals contribute traits that

combine to form a new individual, who carries those traits from both parents onto the

next generation.  Sometimes the offspring is better suited to its environment than its

parents, and sometimes it is worse suited.  The better the individual, the greater chance it

has of surviving to mate with other individuals and thus contribute its genetic material to

the next generation [19].

Similarly, with genetic algorithms, a population of individuals evolves over time.

However, the individuals in this case are solutions to the problem at hand.  The algorithm

begins with a pool of random solutions.  Each solution is treated like an individual, and

combines with other solutions to produce new ones.  Some of these solutions will be

superior to their parents, and others will be inferior.

The chance a solution has to reproduce is determined by its fitness, which is a

function of how good the solution is.  Over time, good solutions combine to produce

better and better solutions and, ideally, an answer that is close to the optimal one is

produced in a relatively short period of time.



1.4 GAPE

In nature, mating is also influenced by the location of individuals.  For instance, a

cockroach in England has a much higher probability of mating with another English

cockroach than with one in China.  Biologists often discuss this concept in terms of

populations, which are isolated groups of individuals evolving separately and adapting to

their particular environments.  Over time, if there are not major environmental changes,

evolution within a population reaches equilibrium, where relatively little overall change

occurs.  Occasionally, some geological incident will occur, allowing individuals from

populations to intermingle.  When this intermingling happens, new genetic material is

introduced, resulting in a surge in evolution.  Paleontologists refer to this as the theory of

punctuated equilibria [8].

A variation on genetic algorithms called genetic algorithms with punctuated

equilibria (GAPE) has been developed based on this theory.  The algorithm’s solutions

are partitioned into several populations that are isolated from each other.  These

populations are allowed to evolve separately, gradually moving towards a stasis.  After a

set amount of time referred to as an epoch has elapsed, the populations exchange some

solutions, resulting in a burst of evolution.

An interconnection matrix governs communication between populations.  The

matrix defines the populations to which each population sends individuals after the end of

each epoch.  At one extreme, an interconnection matrix with no connections would be

equivalent to all populations evolving separately with no interaction.  At the other

extreme, a matrix with all connections filled would be similar to a traditional genetic

algorithm with one population.



There is a variety of popular interconnection matrices, including grids and

toruses.  For all experiments contained within this document, we used a structure called a

hypercube.  A hypercube is, in effect, a cube of n dimensions.  Its most notable property

is that each of the 2n nodes, which are populations in this case, has exactly n nodes

connected to it.  As illustrated in figure 2, a hypercube of one dimension would be a line.

Each of the two nodes thus has one connection.  A hypercube of two dimensions would

be a square, with each of the four nodes having two connections.  A hypercube of three

dimensions would be a cube.  A hypercube of four dimensions can be visualized as two

(a)

(b)
(c)

(d)

Figure 2: Hypercubes of n dimensions.  (a) n = 1  (b) n
= 2  (c) n = 3  (d) n = 4   Created by Dan Ignat and
Justin Turner, March 1998.



cubes, with each node on the first cube connected to the corresponding node on the

second cube.

The software described within this report applies GAPE to the travelling salesman

problem.  In this case, the individuals will be actual tours, since they are solutions to the

problem.  The method by which individuals reproduce is somewhat complicated and will

be explained in detail within.

1.5 Literature Review

The concepts of modern genetic algorithms were first developed by John Holland

in the 1960s.  His goal was to develop the theory and procedures necessary for the

creation of general progams and machines with unlimited capability to adapt to arbitrary

environments [15].  Before him, a handful of biologists had introduced concepts related

to those involved in modern genetic algorithms.  Among them were N.A. Barricelli and

A.S. Fraser, who were attempting to understand natural phenomena [8].

Srinivas and Patnaik provided a fairly comprehensive analysis of the basic

characteristics and issues surrounding the development of GAs [16].  Some of the issues

that they discussed were influential in the formulation of the genetic algorithms with

punctuated equilibria (GAPE) method.

GAPE is a somewhat new concept, developed by Cohoon, Hedge, Martin, and

Richards in 1987 [1].  They defined the algorithm and the characteristics which

differentiated it from the sequential GA as an alternative to traditional genetic algorithms

at the University of Virginia in April of 1991.

It was originally applied to the Floorplan Design Problem [2], which is an

important step in the VLSI design cycle.  It involves arranging a given set of modules in



the plane to minimize the weighted sum of area and wirelength measures [5].  The GAPE

results exceeded those of the simulated annealing method, which is a more widely

accepted form of search, in both average cost and optimal solution.  GAPE has the

potential for success in many other aspects and is well thought of in the field, although it

has not enjoyed the popularity that other methods have [6].

The next application of GAPE was VLSI routing [3].  On this example, GAPE

once again outperformed the traditional sequential implementations.  Similar results were

obtained for other problem instances, including the VLSI channel and switchbox routing

problems, which used a parallel implementation over a distributed network of

workstations [11].  Some research has also been done to understand why some

evolutionary algorithms succeed when applied to the VLSI field and why others fail [12].

In 1997, Riccardo Poli introduced the concept of Parallel Distributed Genetic

Programming, whereby he produced a new form of genetic programming with a high

degree of parallelism.  His analysis indicated that parallelism provided significantly

increased performance, which suggests that GAPE might also perform quite well over

multiple processors, as it is highly parallelizable [7].

In February of 1996, William Niebel applied the GAPE method to the travelling

salesman problem on a single processor.  During his testing, he found that the method

performed well, on average coming within 1% of the known best solution while the

standard GA solution only came within 2% [9].

1.6 Rationale and Scope

My partner Daniel Ignat and I have expanded on the work done by William

Niebel in 1996.  We have rewritten the genetic algorithm code to run over a Legion



system.  This allows the software to run in parallel over several computers.  If a large

network of computers is used, this should result in a significant speedup over the single

processor algorithm, especially for runs with large numbers of populations.

In addition, we have analyzed the GAPE algorithm as applied to the Travelling

Salesman Problem in two respects.  The first objective was to examine the effects of

varying the total number of populations while keeping the number of individuals and

migration rates constant.  This involves looking at the effect of spreading the individuals

among a number of populations on the quality of the final solution and the speed at which

a good solution is obtained.  The second aspect we looked at was the effect of varying the

number of generations per epoch, while holding the total number of generations constant.

This highlights the effect of letting populations evolve on their own to reach local

minima, as opposed to having frequent communication to bring in higher quality

individuals from outside.

Two objectives that were proposed were not completed in time to be included in

this report.  These were the effects of varying interconnection matrix of populations, thus

changing which populations are allowed to intermingle with which others, and the effects

of varying the fitness function among different populations, thus putting different

selective pressures on different populations.  These will be included in a later version of

this document.

1.7 Overview of Remainder of Report

The body of this report will first explain the implementation of the parallel GAPE

software.  It will then relate our hypotheses pertaining to the effectiveness of parallelizing

the GAPE algorithm and to the results from testing.  Next, the data collected from the



experimental software runs will be presented, along with an analysis of this data, and an

interpretation of the data relative to the project’s objectives.  Finally, some

recommendations for future research will be presented.



2.0 Methodology

This section contains a description of the methods we used to carry out the software

development and to obtain the results.  The work performed on this thesis consisted of

writing the software to distribute GAPE across a Legion system, and analyzing two major

variables of the GAPE method:  the number of populations and the number of

generations per epoch.

2.1 Parallel Objects and Legion

The analyses to be performed in this research project would require a

cumbersome amount of time using existing GAPE software.  Therefore, the first major

research task was the development of a parallel equivalent of the sequential GAPE

implementation written by William Niebel.  To do so, we chose to use the Legion system,

which is an object-based software package designed to allow distributed computing.

The Legion system allows the programmer to define objects as Mentat classes,

which indicates that they are to be distributed across the network.  As a result, member

functions of several instances of that class can do their work in parallel, with

interruptions occurring only when data needs to be given to another process, or received

from another process.  Therefore, a significant speedup can result if many objects are able

to run independently for extended periods of time.

There are also major drawbacks to running objects in parallel.  There is a large

overhead when parallel objects are created, due to the fact that an entire new process

needs to be created on another machine, and all the information that allows it to

communicate with other processes must be established.  Additionally, memory references



outside a given class are generally costly, since they require the process to communicate

over the network.  If large packets of data are transferred from one parallel object to

another, the slowdown can be very costly.  This is because data from all arrays and

pointers must be extracted, packaged, and sent over the network due to the disjoint

memory spaces of the computers on the network.

As a result of these factors, we decided to use the population class as our only

distributed class.  This choice was made because each population spends the vast

majority of its time evolving, which requires no communication between populations.

Communication is only necessary at the end of each epoch, when individuals are

exchanged.

2.2 Software Implementation

William Niebel wrote a sequential version of GAPE for the travelling salesman

problem in 1996.  In writing a parallel version of the algorithm, we were able to reuse

the majority of Niebel’s low-level algorithms.  However, major modifications were made

to the way in which objects are handled and to the high level execution of the software.

These aspects, along with the basic theory behind the software, will be described below.

A more detailed description of the software is included as Appendix A.

2.2.1 Instantiation

After completing some preliminary initialization, the software begins by creating

the various population instances.  Each population receives its own process and is moved

to one of the computers on the Legion network.  We allow the Legion system to manage

which computer each process is sent to.  Legion is in a developmental stage and at this



point randomly chooses a computer to send each process to, so the code would run faster

if we were to force an equal number of populations to go to each machine.  However,

when Legion is completed, it will decide where to send processes more intelligently; and

therefore, we have allowed the system to control process distribution with the hopes that

this will be the best decision in the long term.

Next, a signal is sent to each of the populations from the main process telling

them to begin the evolution process.  After this point, the only communication between

processes will occur between epochs.

2.2.2 Evolution and Niebel’s Algorithms

During an epoch, each population evolves without influence from the other

populations.  Each generation consists of selection for mating, reproduction, reduction,

and mutation.  In order to understand these processes, one must first understand the

underlying representation of individuals as implemented by Mr. Niebel.

2.2.2.1 Niebel’s Algorithms

As stated earlier, an individual in the case of the travelling salesman problem is a

tour of the city.  Its fitness is therefore related to the length of the tour, with a lower tour

length resulting in better fitness.  The immediate problem with this implementation of an

individual is that there is not an obvious way to cross two tours, since a tour is simply a

list of the cities in a particular order.  One could try to place the cities in a location that is

near to the average of its location in the two parents, but this would result in many cities

wishing to be placed near to the middle, and thus would probably not retain the

characteristics of its parents.



In order to remedy this, the software represents the genotype of individuals by

problem maps.  A genotype is an underlying representation, as opposed to a phenotype

which is the manifestation of the genotype.  For example, in genetics, a genotype might

be a string of a certain four amino acids in an allele, and the phenotype might be brown

eyes.  Different genotypes are generated by actually "perturbing" the cities on the map, or

shifting them slightly based on the standard deviation of the population.  This allows for

an easy implementation of crossover.

Another benefit of the perturbed map representation is that a perturbed map may

translate into a tour that would be very difficult to find using a normal tour representation

because it is not similar to other good tours.  This could be very beneficial because the

optimal tour for a map is often not one that is easily generated through crossover.

When two perturbed maps reproduce, each city in their offspring will be the

average of the locations of the same city in the two parents.  Thus, the offspring will be a

blend of its parents, which is what is desired.  The offspring is then perturbed so that the

cities do not all converge on the center.  Figure 3 part (a) shows a plot of a 51 city map.

Part (d) shows a perturbed version of the map.

Now that we have a genotype that is easy to mate, we must have a way to

translate it into a phenotype, or a tour.  This is done by using a minimum spanning tree

(MST) as an intermediate structure.  A spanning tree is a connected graph without cycles

that touches all vertices of the map.  In other words, it is a set of edges connected all

cities in the map without creating any loops.  When the sum of the edges of a spanning



 Figure 3: Changing from Genotype to Phenotype
Created by Dan Ignat and Justin Turner, March 1998.
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tree has the smallest possible distance, it is a minimum spanning tree.  There is an

efficient algorithm that finds an MST for a set of points, which is explained in the

function Individual::mstify() in appendix A.  Figure 3 part (b) shows the minimum

spanning tree generated from the 51 city map.  Part (e) shows the MST generated from

the perturbed version.

Finally, a phenotype (tour) must be developed from the intermediate MST

structure.  The algorithm Niebel employs to do this is also described in detail in

Appendix A.  Figure 3 part (c) shows the tour generated from the original problem map.

Part (f) shows the tour generated from the perturbed map.

2.2.2.2 Selection

During any given generation, a population goes through the processes of selection

for mating, reproduction, reduction, and mutation.  Selection involves picking individuals

that will be used for mating.  The selection is a random process weighted by the fitness of

the individual.  Thus, individuals whose tours have a short length will have a greater

probability of being selected to mate.

2.2.2.3 Reproduction

Once two individuals are selected, they mate to form a third individual which is

added to the population.  The new individual’s city coordinates are generated by

averaging the coordinates of each of the cities in both parents and then perturbing them.

This results in an offspring that shares traits from both parents.



2.2.2.4 Reduction

After reproduction there is a surplus of individuals due to the new individuals that

were generated.  Thus, some must be eliminated in order to return the population to its

original size.  Individuals are selected for survival based on their fitness in a manner

similar to the selection for mating.

2.2.2.5 Mutation

Finally, random individuals are mutated.  Mutation involves changing the location

of a random city in the selected individual, guaranteeing that there are no individuals that

cannot be seen.

These five stages are performed during each generation of every population.

Since none of the steps involve communication with other populations, the entire

evolution step is run in parallel.  The main process waits for all of the population

processes to signal that they are complete before moving on to the migration stage.

2.2.3 Migration

The migration stage involves transferring individuals between populations as

governed by the interconnection matrix.  A signal to each population that needs to send

individuals by the main process, and the populations respond by packaging an array of

the individuals and sending them to the main process.  The main process then reroutes the

package to the population that is to receive the individuals, without unpackaging them.

No reduction is done until all individuals have been transferred.  This allows all of

the transfers to be done in parallel, since it does not matter in which order the individuals

are received at a given population.



The main process waits until all exchanges have completed, and then sends a

signal to each population to recalculate the total fitness, which is necessary to do the

reduction.  It then sends a signal to each population to reduce to the original number of

individuals as explained in the previous section.  It then sends a signal for each

population to print its current best individual to a file.  Since all of these are done

independently of other populations, they can all be executed in parallel.  All of the

processes append to the same file.  As a result, since the results will come in out of order

due to the parallelization, the populations must write an integer identifying themselves

each time they write to a file.  The data can be sorted into a more usable order after the

program has finished executing.

These steps of evolution, migration, and reduction are carried out for each epoch

until the program has completed.  The results are then sorted out and compiled by helper

programs.  It should be easy to modify this software to test several aspects of genetic

algorithms.

2.3 Testing

Two major aspects of GAPE were analyzed using the software.  First, we

analyzed the effect of varying the number of populations on the quality of results

produced.  We ran a series of tests on the 51 city map displayed in figure 3.  The number

of epochs was 16 and the number of generations per epoch was 50 for all runs.  We

varied the number of populations from 2 to 64 by powers of two, keeping the total

number of individuals constant.  In other words, the number of populations multiplied by

the individuals per population remained the same.  We also kept the percentage of a

population migrating as constant as possible while still maintaining the hypercube



structure. The following table shows all six runs. Each run was executed five times to

ensure consistency.

Number of Populations Number of Migrants Individuals per Population
2 576 1280
4 144 640
8 48 320
16 18 160
32 7 80
64 3 40

Table 1: Varying the Number of Populations

A second aspect of gape that was tested was the effect of varying the number of

generations per epoch on the solution quality.  The number of populations was kept

constant at 8, the base population was held at 320, and the number of migrants was held

at 48 for all runs.  The number of epochs was varied from 1 to 512 by powers of 2, and

the total number of generations was held constant at 512.  In other words, the product of

the number of epochs and number of generations was held constant. The following table

shows all 10 runs. Each run was executed five times to ensure consistency.



Number of Epochs Number of Generations
1 512
2 256
4 128
8 64
16 32
32 16
64 8
128 4
256 2
512 1

Table 2: Varying the Generations per Epoch

Finally, we looked at the execution time of the parallel version of GAPE in

comparison to the sequential version.  We timed the two most time consuming portions

of the program, the evolution with an epoch and the communication between populations,

and compared the results.

2.4 Equipment

The equipment used in this project was the stonesoup UNIX cluster.  It consists of

four networked PCs running the Redhat Linux operating system.  Future computation and

testing will be performed on a larger network allowing further distribution of objects.



3.0 Hypotheses

 We hypothesize that small and large numbers of populations may generate better

solutions at first, but that the best quality solutions will be generated by more moderate

numbers of populations.  Further, we feel that runs with few generations per epoch will

perform well at first, but that those with moderate numbers of generations per epoch will

produce the best solutions in the end.  Finally, we feel that the parallelization of the code

will produce a moderate speedup running over a four computer network.

3.1 Varying the Number of Populations

The first set of tests involved varying the number of populations while keeping the

total number of individuals constant, and keeping the influx of individuals at a set

percentage of the population size.  At the one extreme, if there were only one population,

we would have a traditional genetic algorithm.  In this case, we would expect the best

individuals to take over the population relatively quickly, and thus for the best solution to

be better at than GAPE runs with more populations at the beginning of the run.  However,

we would anticipate that the GAPE runs, due to their superior diversity, would win out in

the end and find the better solution.

At the other extreme, if there were a large number of populations with very few

individuals in them, there would be very little diversity within the populations.  We

would expect that the populations would have more difficulty reaching local minima and

that good solutions from other populations could easily take over a population and

severely decrease diversity.  Although small populations might have the effect of



generating better solutions in the short term, we feel that it will hurt the final solution

quality.

Therefore, in the case of varying the number of populations, we expect that the runs

with very small numbers of populations will perform best at the beginning, and that the

runs with moderate amounts of populations will run the poorest at the start.  However, by

the end of the run, we feel that the runs with moderate amounts of populations will have

generated the best solutions.

3.2 Varying the Generations per Epoch

The second set of tests involved varying the number of generations per epoch

while keeping population size, migrants, and total number of generations constant.  When

there was only one epoch, the run was the equivalent of several one-population GAs

running concurrently.  We would expect that, even though the results will show the best

individual out of all the populations, the separate small GAs will not generate as good

results as the GAPE algorithms with moderate number of generations per epoch.

On the other hand, when there is one generation per epoch, there would be

communication after every generation.  We would expect that the constant

communication would allow good individuals to take over many populations, and thus

limit diversity.  This would cause good tours to be generated at first, but would end up

being harmful in the long run.  The constant communication would also inhibit

populations from moving towards local minima.

Therefore, in the case of varying the number of generations per epoch, we expect

that the runs with very few generations per epoch will generate good results at the

beginning of the run, but will not end up with the best solution.  We expect the runs with



very few epochs to perform poorly throughout.  Finally, we expect the runs with a

moderate number of generations per epoch to produce the best solutions.

3.3 Parallelizing the Code

We expect that paralellizing the code will produce a substantial speedup for the

evolution portion of the code.  This is because there is no communication necessary

between epochs, and therefore the code should be able to run completely in parallel.  We

expect that the time to complete the rest of the program will increase slightly, and that all

function calls will take somewhat longer due to the added overhead of the Legion system.

Finally, we feel that the communication portion of the code will take significantly longer

because it now has to send data across a network.  Overall, we feel that there will be a

moderate speedup even though we are only running on a network of four computers, and

that there will be a significant speedup once the new Legion network is installed.



4.0 Results

The experiment with various numbers of populations resulted in very similar results

for all numbers of populations.  The experiment involving various numbers of

generations per epoch showed that those with a large number of epochs did very well at

the beginning, but ended up finding worse solutions than those with small numbers of

epochs.  The parallel code was shown to run in approximately the same time on a four

computer network, but with a significant speedup on the evolution.

4.1 Variable Number of Populations

Figure 4 shows the results from the experiments involving a variable number of

populations.  In these experiments, the number of total individuals was held constant.

Thus, as the number of populations increases, the number of individuals per population

decreases.  All other variables were also held constant, including the percentage of the

population that is immigrated at any given epoch.

The results show that the larger number of populations find the best solutions, but

the difference between them is very slight.  Please note that the y axis represents the tour

length, and thus lower values are preferable.  The optimal length for this map is known to

be 426.

4.2 Variable Number of Generations per Epoch

Figure 5 shows the results from the experiments involving a variable number of

generations per epoch.  In these experiments, the total number of generations was held



constant, so that as the number of generations per epoch increases, the number of epochs

decreases.  All other variables were held constant.

Figure 5b shows that there is a clear difference at the beginning of the

experiments.  The runs with the greatest numbers of epochs, 128 and 256, perform

significantly better than the rest of the runs.  Figure 5c, however, illustrates that there is a

swap, and that the epochs with the least number of epochs end up finding the best

solutions in the end.

4.3 Timing of Parallel and Sequential Code

We timed the two most significant portions of the parallel and sequential code

against each other on the Appnet cluster of the Department of Computer Science, namely

the evolution and the migration.  In the original sequential version, almost all of the time

was taken up in the evolution stage.  We found that the parallel code, when running on a

network of four computers, produced a speedup of 2.1 on the evolution portion.

However, the migration ended up taking significantly longer than the original, and the

code ended up running in approximately the same time.



 Figure 4: Runs of Various Numbers of Populations                                                  
Created by Dan Ignat and Justin Turner, March 1998.

 Figure 5a: Runs of Various Numbers of Epochs                                                  
Created by Dan Ignat and Justin Turner, March 1998.
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 Figure 5b: Closeup of First Half                                                          
Created by Dan Ignat and Justin Turner, March 1998.

 Figure 5c: Closeup of Second Half                                                          
Created by Dan Ignat and Justin Turner, March 1998.
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5.0 Conclusions

The results explained within this paper indicate that a parallel implementation of

GAPE is only somewhat helpful with the current version of Legion, but that it has the

potential to produce a very high speedup as Legion improves and better networks are

installed.  Varying the number of populations had little effect, but this may be because of

the small number of cities in the problem instance.  The results obtained from varying the

number of generations per epoch seem to indicate that intermingling should be done

infrequently in order to preserve diversity and allow populations to seek out local

minima.

5.1 Summary

Genetic Algorithms with Punctuated Equilibria provide a means of generating

approximate solutions to problems.  This can be valuable because there are many

problems for which a perfect solution cannot be found in a reasonable amount of time

once the problem instance grows to a large size.

One aspect of GAPE that is highly appealing is that it is parallelizable, due to the

fact that its populations run independently of each other for extended periods of time.

Using a network of four computers, a speedup of 2.1 was obtained on the evolution,

which is the most time consuming aspect of the sequential version.  The slow down in

communication speed canceled out the benefit of this, but some reasons why this

happened will be explained below.

The results from the test in which the number of populations varied showed no

noticeable correlation between the number of populations and solution quality.  The

results from the experiment where the generations per epoch varied, however, showed a



clear pattern of the runs with the largest number of epochs starting off best, and the runs

with the smallest number of populations producing the best final results.

5.2 Interpretation

Using a network of four computers, we obtained a speedup of 2.1 on the evolution

portion of the software.  The maximum we could have theoretically obtained was 4, if the

processes were distributed perfectly and there were no overhead.  The major reason that

the speedup is low is that Legion has not yet implemented an algorithm for distributing

processes among computers.  At present, it randomly selects the computer to which to

send each process.  As a result, we have some processes finishing evolution much faster

than others.

The other major problem with the parallel code was the communication speed,

which is partially due to a bug in the Legion system.  During communication, when

immigrants are transferred from one population to another, the system does not recognize

the direct transfer from population to population and instead sends the individuals

through the main process, doubling the time it takes.  As Legion improves, and as larger

networks are set up, we predict that the performance of this parallel implementation will

improve dramatically, especially for runs with large numbers of populations.

The results from varying the number of populations showed no correlation

between the number of populations and solution quality.  We believe, however, that this

may change for a map of a larger size.  The problem we see is that the runs are all getting

very close to the optimal solution, and thus there is not much room to distinguish between

them.  Further tests will be done to determine whether this assessment is accurate.



The results from varying the number of generations per epoch show that the

populations with large numbers of epochs, and thus small numbers of generations, do

very well at the beginning of the run.  These results are what we expected, because the

massive amount of communication causes the best individuals to get spread out over

many of the populations, which causes the algorithm to find their local minima very

quickly.  However, the communication also lessens the diversity of the populations

significantly.  This results in them performing poorly in the long run.  The results show

that the populations with 512 and 256 epochs clearly start off best, end up among the

worst, while the runs with long epochs start out mediocre but end up finding the best

solutions.  These findings indicate that it is important to let populations evolve and reach

their local minima.

5.3 Recommendations

The work that will be done in the immediate future on this project includes

analyzing the effects of modifying the interconnection matrix and rerunning the tests

contained within this document using problem maps of a larger size to try to obtain better

defined results.

Several other aspects of GAPE might be interesting to test.  These include

experimenting with interconnection matrices that are well-suited to a parallel distribution.

For instance, having populations communicate mainly with other populations which are

on the same computer as them, or are close by, might produce better results.  Other

possible tests include modifying the mutation rate and varying the fitness function across

populations.
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Appendix A: Annotated Reference Manual

class Runparms

void Runparms::read()
À Reads and processes the parameter file specified as the second argument in the

executable’s command line
À Stores constants specified in parameter file into the class’ member variables

char *Runparms::optTourFileName()
À Returns a string containing the name of the file describing the “best” published tour

for the current TSP instance

char *Runparms::mapFileName()
À Returns a string containing the name of the file describing the map of the current TSP

instance

char *Runparms::connectionFileName()
À Returns a string containing the name of the file describing the interconnection

topology matrix for the current GAPE run
________________________________________________________________________

class Net

Net::Net()
À Allocates and initializes an array of populations

Net::~Net()
À Deallocates the array of populations

void Net::read()
À Reads interconnection topology matrix file into an array and verifies its integrity

void Net::run()
À For each epoch

À If in epoch 0
À calls Population::show() on each population

À Else
À calls Population::selfSource() on each population
À exchanges individuals between populations based on interconnection array
À calls Population::recalcFitness() on each population (required by

migration)
À calls Population::reduce() on each population
À calls Population::recalcFitness() on each population once again



À calls Population::show() on each population
À Calls Population::newEpoch() on each population

________________________________________________________________________

stateful mentat class Population

Population::Population()
À Opens various output files for parallel writing across all Population instances
À Creates a local copy of the TSP instance
À Allocates and initializes an array of individuals
À Initializes member variables with values from parameters
À Calls Population::recalcFitness() on itself

int Population::selectToMate()
À Randomly selects a first parent using prowess as a weight

int Population::selectToMate2()
À Randomly selects a second parent using prowess as a weight and making sure not to

duplicate first parent

int Population::selectToSurvive()
À Randomly selects an individual to survive using longevity as a weight

int Population::reproduce()
À Reproduces individuals

À Selects parents
À Generates offspring
À Keeps count on offspring improving over neither parent, one parent, or both

parents

int Population::mutate()
À Mutates individuals

À Selects mutant
À Calls Individual::mutate() on mutant individual
À Calls Individual::develop() on mutant individual
À Keeps count on mutants improving, worsening, or remaining the same

int Population::newGen()
À Processes a new generation

À Calls Population::selfSource() on itself
À If Population::totalProwess > 0

À calls Population::reproduce() on itself
À calls Population::recalcFitness() on itself

À If the population has swelled beyond its maximum size
À calls Population::reduce() on itself
À calls Population::recalcFitness() on itself



int Population::newEpoch()
À Processes a new epoch

À For each generation
À calls Population::newGen() on itself
À calls Population::show() on itself

int Population::reduce()
À Uses Population::selectToSurvive() to select individuals for survival

into the next generation
À Rearranges array of individuals so that the scattered survivors are all at the beginning

int Population::selfSource()
À Marks all individuals in the base population as being carried over from the previous

generation, as opposed to being the result of crossover, mutation, or migration

int Population::recalcFitness()
À Calculates various population statistics
À Calculates fitness and longevity for each individual

IndividualArray Population::sendEmmigrants()
À Returns an array of individuals selected from the population to be emmigrants

int Population::receiveImmigrants()
À Takes an array of individuals (immigrants) as a parameter
À Adds the immigrants to the populations array of individuals
À Calls Individual::develop() on each immigrant

int Population::show()
À Prints out various population statistics
________________________________________________________________________

class Individual

Individual::Individual()
À Initializes various member variables
À Calls Individual::reset() on itself

void Individual::reset()
À Resets the individual’s map
À Calls Individual::develop() on itself

void Individual::scatter()
À Calls City::scatter() on each of the cities on the individual’s map
À Sets its source to INITIAL (i.e., individual is not the result of crossover, mutation,

or migration)



void Individual::mutate()
À Calls City::mutate() on a random city on the individual’s map
À Sets its source to MUTATION
À Calls Individual::develop() on itself
À Creates graph of and prints the mutation vector

void Individual::mstify()
À Creates an mst (the intermediate structure used in the conversion from genotype to

phenotype) from the individual’s map

void Individual::opt2()
À Creates a tour from the individual’s mst (the intermediate structure used in the

conversion from genotype to phenotype)
À For each vertex in the individual’s mst, create a list of vertices connected to it
À Start with origin city and traverse first edge of mst
À From each new node visited, traverse the untraversed edge at greatest clockwise

angle relative to the previously traversed edge
À If current node is a leaf or no untraversed edges remain, backtrack to previous

node
À The tour is constructed by connecting each newly visited node and then

connecting the last node back to the origin

void Individual::develop()
À Calls Individual::mstify() on itself
À Sets the origin of the individual’s map to the first leaf
À Calls Individual::opt2() on itself
À Sets its objective to the length of the newly-generated tour

void Individual::xover()
À Calls City::xover() on each city in the individual’s map
À Sets its source to XOVER
À Calls Individual::develop() on itself
À Creates graph of and prints the crossover vectors
________________________________________________________________________

class CitySet

double CitySet::floatDistance()
À Returns the distance between two cities passed as parameters

int CitySet::distance()
À Returns the distance between two cities passed as parameters rounded off to the

nearest integer



void CitySet::add()
À Adds to itself the city whose characteristics are passed as parameters

int CitySet::label()
À Returns the label of the city passed as a parameter

void CitySet::read()
À Reads in the original TSP map from a file

À Reads in preamble, which contains information about the rest of the map file
À Reads in the city coordinates

À Calculates standard deviation of inter-city distances
________________________________________________________________________

class City

void City::perturb()
À Perturbs its x and y coordinates using the StdDev passed as a parameter

void City::scatter()
À Calls City::perturb() with city_scatterStdDev

void City::mutate()
À Calls City::perturb() with city_mutationStdDev

void City::xover()
À Sets its x and y coordinates based on the corresponding means of the x and y

coordinates of the two cities passed in as parameters, and then offset using
city_xoverStdDev

________________________________________________________________________

class Tour

void Tour::reset()
À Resets member variables

int Tour::visited()
À Returns whether or not the city passed in as a parameter has been visited

void Tour::visit()
À Visits the city passed in as a parameter and adds it to the tour

int Tour::findObjective()
À Returns the length of the tour

void Tour::read()
À Reads in a tour from a file



À Reads in preamble, which contains information about the rest of the tour file
À Reads in the cities and visits each one as it is read in

________________________________________________________________________

class EdgeSet

EdgeSet::EdgeSet()
À Calls EdgeSet::reset() on the EdgeSet

void EdgeSet::reset()
À Reinitializes member variables

void EdgeSet::add()
À Adds the edge passed in as a parameter to the EdgeSet

Edge EdgeSet::remove()
À Returns the edge specified by the parameter

À Swaps the edge specified by the parameter with the last edge in the EdgeSet in
order to keep it around for later display

int EdgeSet::firstLeaf()
À Returns the first vertex of degree 1 (i.e., the first leaf)

void EdgeSet::iterator()
À Reinitializes the iterator of the EdgeSet

À Fills EdgeSet::sequence[] with randomly ordered vertices from the
EdgeSet

À Reinitializes EdgeSet::sequencer

int EdgeSet::nextEdge()
À Returns the next edge from the iterator
________________________________________________________________________

class EdgeNode

void EdgeNode::refresh()
À Sets the vertices of EdgeNode::edge to the two cities passed in as parameters
À Sets EdgeNode::cost to the distance between the two cities passed in as

parameters
________________________________________________________________________

class EdgeQueue

EdgeQueue::EdgeQueue()
À Creates an EdgeNode for each edge from one city to any other city and adds it to

EdgeQueue::edgenodes



À Heapifies EdgeQueue::edgenodes

void EdgeQueue::heapify()
À Recursively converts EdgeQueue::edgenodes into a heap sorted by cost

Edge EdgeQueue::remove()
À Returns an Edge removed from EdgeQueue::edgenodes and reheapifies the

rest of the heap
________________________________________________________________________

class Edge
________________________________________________________________________

class IncidentNode

IncidentNode *IncidentNode::checkout()
À Returns the first removed IncidentNode from the linked list pointed to by

IncidentNode::first

void IncidentNode::checkin()
À Adds the IncidentNode passed in as a parameter to the top of the linked list

pointed to by IncidentNode::first
________________________________________________________________________

class Range
________________________________________________________________________

class StdDev

void StdDev::load()
À Sets StdDev::x and StdDev::y to the two parameters passed in, respectively
________________________________________________________________________

class VertexPartition

void VertexPartition::VertexPartition()
À Sets VertexPartition::nVertices to the parameter passed in
À Fills VertexPartition::sets[] with numbers from 0 to

VertexPartition::nVertices - 1 (i.e., each vertex belongs only to its own
set in the partition at first)

À Sets VertexPartition::kard to VertexPartition::nVertices

int VertexPartition::card()
À Returns VertexPartition::kard

int VertexPartition::setContaining()



À Returns the number of the set which contains the vertex passed in as a parameter

void VertexPartition::combine()
À Combines the first vertex set passed in as a parameter and the second vertex set

passed in as a parameter
À Replaces all occurrences of the first vertex set passed in as a parameter in

VertexPartition::set[] with the second vertex set passed in as a
parameter

À Decrements VertexPartition::kard
________________________________________________________________________

class IndividualArray

IndividualArray::IndividualArray()
À Sets IndividualArray::length to 0

int IndividualArray::add()
À Adds the Individual passed in as a parameter to the IndividualArray
________________________________________________________________________

class GapeString

GapeString::GapeString()
À Copies the string passed in as a parameter to GapeString::string

char *GapeString::getString()
À Returns GapeString::string


