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Title: Hardware Specific Optimization on RTL Descriptions
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High-level Synthesis (HLS) refers to the process of translating a high-level specification
of the behavior of a digital system into a structural design. The outcome is a netlist of

Register Transfer Level (RTL) components, such as AL Us, registers, multiplezers and their
interconnections.

Because of its complezity, HLS is broken into several steps, where a subset of the
overall problem is solved in each step. The steps move the source specification into a
target specification, through several intermediate forms (IFs).

Eristing HLS systems incorporate IFs that are used in programming language compil-
ers. In this work we present the stack intermediate form. Stacks are used in language
interpreters. We refer to this IF as Blocked Reverse Polish Notation (BRPN). It is
the first time in the field of HLS to use stack representation. The behavioral specification
of a digital system is first interpreted into BRPN. Due to the complication involved, BRPN
is translated into a graph based IF. We refer to this IF as the Canonical RTL (CRTL).

Due to the ample code gencrated from BRPN, optimization techniques are exercised
diligently on CRTL code. Unlike the traditional compilers optimization techniques used

in HLS systems, hardware specific optimization techniques are applied. These techniques
utilize hardware specific traits.

The major contributions of this work are the introduction of the stack IF in HLS and
the ezploitation of the hardware specific features in optimizing RTL descriptions.

Master of Science Degree
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia
1994

ix



Wyl da¥s
JONTUFTS IR TSN 1% O
+ A oIl Sl gt 5 TS I Slemanly Lol YY) UL le
B POWITR TN |
P VAL oy sl b

M s prmal N A 5l S ) Talad] Mo 1y s g ol g
003 (pasS 3 Gl g 530u0) Sl (5ptums (e Thaard! polial] pn 2Kt Zukol 00 g5y « Sl
o N Lz Solims gy Tpill b Uadl Soliassy cMonadl : rliall 0 2hae]

IS Gagy St e au‘,lli.,l.dlihmisrqﬁp i Ldas oLl eranadl Ldae SOl U
oM pladl ol 5t b ] Sliolyn S5 0 W3 a Sl mamadd] o o 52 52D H oo
o Thaangzll IS gyn sty Digpo € (goa 0 ol (g ) ¥l gy 5 Tyl il M

+ Lot (Al AL (5 Tatinzaad| Loyl SISV iy I (] rmncatll Gl L

il olen 41 S il (a8 LS aia ol o ay S Jauy2d 81 oo o3 ol a3

Ll oliolll zar 5 o2 Co « ol praall Slles 3 by SA plasiaal U o2 3 53131 S,

O Tl P VI PP PEVPUF UYL N NWCT [ LY BT CT I PR P IE AW
c Olda g S ol aggy U sy cdamnd] oS 3 ol (G g7amny Tp5le

o sl 2B G M o il T3] G Gees (5 A W1 (e 3 ol ok (s
o Aol LS A Sloaatl 3 330l Zold] Slinall Gl ada Jizad S Tuawa 1 Sl

PO L U TE W ORI 1 5 F S PY PO WS N (P P A b JIBLYL
¢ LS, Olapanatll Lol Sliall e Was (6 dazes 21355 5,1 + Ly pla] esanall

piall g pezanlll Zmy
oolally Jozll ag elll Zaals
oenadl Zppall IS o ol el
AL Iy




Voo

Chapter 1

Introduction

Digital circuits can be described at different levels of abstraction: behavioral, struc-
tural, or physical. Digital systems described at the physical level are ready for fab-
rication. Structural descriptions are at the next higher level of the hierarchy. In the
structural domain, the components of the digital system (gates, flip-flops, registers,
functional units...etc), and their interconnections are described as a netlist. Phys-
ical design has been a topic of research for over three decades and several efficient
physical synthesis CAD tools are available that translate structural descriptions to

layouts [Sai92).

Digital systems can also be described in the behavioral domain. The concern at
this level, is on how the digital system interacts with its environment. Usually, the

digital system structure is hidden. The actions or behavior of the system outputs in
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(HLS) Synthesis
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CAD Synthesis

Figure 1.1: Different levels of abstraction.

response to different inputs is the only required information to describe the systems
functionality. Basically, this is the merit of describing digital systems behaviorally.
Figure 1.1 shows the different levels of abstraction. The scope of this work is to
synthesize structural level descriptions from behavioral models. This process is

called High-level Synthesis (HLS).

1.1 High-level Synthesis

High-level Synthesis (HLS) is the process of translating an input behavioral descrip-
tion of a digital system into a structural description. Behavioral specifications of dig-
ital systems can be described using high level programming languages (HLLs), Hard-
ware Description Languages (HDL), Algorithmic pseudo codes, etc [TKIK89, Tri87].
Among the different ways available for describing digital circuits, HLL provides the
most abstract level. In addition, simplicity and conciseness in the description of the

circuit functions characterize modeling in HLL.



The synthesis process requires different tasks to be accomplished. The main
issue here is to preserve the functionality of the digital system while generating its
hardware. This process is complex and consists of analysis, transformation, and
manipulation. Due to this complexity, the process is divided into tasks. In each
task, a partial refinement towards the target structure is introduced. The behavioral
description is first translated to an intermediate form (IF) from which other IFs can
be generated if necessary. This structure should be functionally equivalent to the
system behavioral model. Most commonly used IFs are graph-based such as data

flow graphs (DAG) and control flow graphs (CFG) [PG87].

1.2 Objectives

The objective of this thesis is to develop a HLS system that accepts an input descrip-
tion in a HLL and generates the appropriate structural description. The behavioral
language selected is a subset of the C programming language; and we will refer
to as C-like. The structural description is in A Hardware Programming Language

(AHPL). This work has two distinctive features:
1. A stack data structure is used as the primary intermediate form. To our

knowledge this is the first time that techniques and data structures used by

programming language interpreters are employed in the HLS of hardware.
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Transformation
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Figure 1.2: Main tasks in the HLS system.

2. The input behavioral specification is interpreted as a hardware description.
Thus, besides the usual software optimization techniques applied during the

synthesis tasks, hardware specific optimization is also performed.

Figure 1.2 gives the main steps followed by the HLS system. First, the behav-
ioral description of the digital system modeled in C-like language is interpreted into
a stack representation. Second, a graph-based IF is generated from this stack rep-

resentation. The structure is then extracted from the graph-based model. Finally,

the extracted structure is optimized.

Stacks are commonly used in interpreters. They are efficient data structures in
evaluating arithmetic expressions. In stack machines, expressions are simplified into

a group of basic operations. These basic operations are executed sequentially.



The advantages of using a stack representation as an IF are:

1. Simple, yet powerful data structure,
2. Easy to generate and manipulate, and

3. Flexibility of grouping stack operations.

In this stack IF representation, we will use the notion of blocking. By blocking
we mean that a set of consecutive stack operations are grouped .in a labeled block.
This blocking is useful in interpreting behavioral control structures into a stack

representation.

1.3 Organization

Details on the implementation of the various tasks described above are covered in
six chapters. Following the introduction, Chapter 2 presents some background on
High-level Synthesis (HLS), a brief review of Intermediate Forms (IFs) and some
literature review on scheduling and target design hardware. In Chapter 3, the C-
like models of digital circuits are translated into a stack representation. Complex
control structures such as if-then-else and case are also converted into the stack rep-
resentation. In Chapter 4, we describe the procedure used to transform a primary

intermediate form (stack) into another internal representation more suitable for the



remaining tasks of HLS. This secondary IF is a Control-Data Flow Graph (CDFG)
where each node holds a stack operation and edges represents the flow of control
between the nodes. The generated IF is a Canonical Register Transfer Language
(CRTL). The algorithm to do this transformation and its complexity are also dis-
cussed in Chapter 4. From CRTL the target structure of the digital system in a
known RTL description is extracted. The target RTL descriptions in this work is A
Hardware Programming Language (AHPL). Hardware specific optimization is dis-
cussed in Chapter 5. Initially software optimization techniques are used to eliminate
redundant code and unconditional branching. The algorithms to perform software
optimization and their complexities are described. In the remaining part of the
chapter, hardware specific optimization techniques are presented. Switch transfor-
mation and loop transformation are the two techniques discussed. The algorithms
used to implement these optimization techniques are also presented and explained.
The complexity of these algorithms is analyzed. Different examples on applying

these techniques are illustrated.

Analysis of the developed HLS system and comparison of obtained results with
other systems using some benchmark test cases and other circuits are given in Chap-

ter 6. Finally, conclusions and future work are found in Chapter 7.



Chapter 2

Literature review

Intensive effort has been put on the synthesis of digital systems. The development
of methodologies for automating the synthesis process has been a research topic for

the last 20 years [TS86].

There are several tasks in the automatic synthesis of digital systems [Par84):
definition of the circuit function, translation into an intermediate form, operation
scheduling, hardware module allocation, and data path synthesis. High level pro-
gramming languages (HLL) which are behavioral descriptors, are used to define the
functionality of digital systems. Structural descriptions are hard to generate from
HLL. Therefore, intermediate forms (IFs) are used to translate the input specifica-
tion from behavioral level down to structural level. Transformations and optimiza-

tion techniques are applied on these IFs. Scheduling of operations to control steps



and allocation of operators to functional units make the next tasks. Finally, the

data path is synthesized corresponding to the required digital system.

2.1 Behavioral description

An important issue is the choice of a behavioral description language. The main ad-
vantages of designing systems using a behavioral level description [CR89] are: reduc-
tion in design time, correctness, semantic check, and availability of IC technology to
non-experts. Moreover, as much parallelism as possible can be identified from behav-
ioral descriptions [KM91]. Several high level synthesis (HLS) systems are reported
using a wide variety of input specification languages which range from PASCAL-like
to ISPS [CR89, MPC90]. ISPS is a hardware description language which stands
for Instruction Set Processor Specification. The proposed languages are classified
into three categories: programming languages, special programming languages, and
hardware description languages. In the first category, existing programming lan-
guages are used to describe the behavior of digital systems. Using programming
languages in HLS is characterized by having a huge implementation space as a single
behavioral description can have many structural descriptions [Par84]. On the other
hand, hardware description languages are among the first languages used in design-
ing digital systems [MPC90]. Digital system specification language (DSL) [CRa9),

structured function description language (SFL) [NON91], HardwareC [KM91], and




A Hardware Programming Language (AHPL) [SBK93] are some proposed hardware

description languages that are in the third category.

Defining a special programming language rather than using an existing program-
ming language offers the advantage that it can be designed according to the special
needs of the application [CR89]. One reported language is Architectural Behavioral

Description Language (ABDL) which is a C-like language that falls in this category.

PUBSS is a HLS system developed at Princeton University. The intended hard-
ware is described as a set of communicating behavior finite state machines (BF-
SMs) [WTLO1]. Each BFSM is an automaton whose inputs and outputs are only
partially scheduled [WTL91]. The BFSM network model combines scheduling in-

formation with a state-based description of control [WTL91].

2.2 Intermediate forms

The behavioral description of digital systems is compiled into an intermediate form [TS86].
This intermediate form (IF) abstracts the input behavioral description specification.
Two generally used types of IFs [Par84] are: parse trees and graphs. The most
common IFs are graph-based models [PG87, TS86). The behavioral description is
compiled into a graph which is broken into directed acyclic graphs (DAGs). These

DAGs are attractive IFs because many compiler optimization techniques can be ap-
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plied on them [PG87]. Data flow and control flow graphs are the most widely used

types of DAGs.

One reported HLS called HARP translates Fortran programs into data flow
graphs [TS86]. In DFG, the data dependencies of the input specification is trans-
lated into operation ordering. High-level IBM synthesis System (HIS) is another
HLS that uses control flow graphs (CFG) as IF where nodes holds operations and
edges presents the precedence relation [CBH*91]. In CFG, the execution depen-
dencies among the statements of the input specification is translated into states
ordering. In another HLS called STAR [TH86], relation networks are used. A rela-
tion network is a weighted graph where nodes represent objects and edges represent

correlation between objects [TH86].

Another type of DAGs used as an IF, is control-data flow graph (CDFG). CDFG
which is a graph representation that captures both data flow and control depen-
dencies among the operators, is used in THEDA [PIK89b]. Flamel is another HLS
that translates Pascal programs into dacon (the data flow/control flow). Dacon is a
block graph whose nodes represent blocks and edges represent the “transfer-control-

to” relation [Tri87). Value trace (VT) is an intermediate form used in the facet

HLS [TS86]. In VT, DFG and CFG are intcgrated into one structure.

A tree-structured control flow graph (tCFG) which is an implementation inde-

pendent description of hardware representation in tree structured diagrams is used
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as an IF in Cyber [Wak91]. tCFG, which results from compiling Behavioral De-

scription Language (BDL) [Wak91], is transformed into CDFG.

Hercules/Hebe [KM91] generates an implementation independent description of
behavior in a graph-based representation called Sequence Intermediate Form (SIF).
SIF which is modeled as a polar DAG, is a sequencing graph that preserves the

partial order among a set of operations [IKM91].

2.3 Tasks in HLS

The two major tasks in HLS are scheduling and allocation. In scheduling, operations
are assigned to control steps which are fundamental sequencing units in synchronous
systems [Par84]. While assigning operators to hardware is called allocation. Several
scheduling and allocation approaches have been reported [CR89): direct compilation,
graph transformation, data flow analysis, mixed-integer linear programming, clique

partitioning, and force directed.

2.3.1 Scheduling

In scheduling, the propagation delay of every operation is determined [PX89a]. Then
each operation is assigned to a specific control step [PIK89a, Par84]. The target in

scheduling is to minimize the time required for program completion [Par84).
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The algorithmic approaches used in scheduling fall in one of two basic classes:
transformational and iterative/constructive algorithms. An iterative/constructive
algorithm schedules one operation at a time until all operations are scheduled. Al-
gorithmsof the other class requires an initial schedule. This initial schedule is usually
either maximally serial or maximally parallel. Then the function of the algorithm
is to transform the schedule from serial to parallel or vice versa. One reported
scheduling algorithm which is graph-based, is used in MAHA. MAHA schedules the
critical path. Then, the remaining operations are scheduled in order of increasing
freedom [Wak91]. Another scheme is Force Directed scheduling (FDS) [PK89a). In
FDS, the probability distribution of operations is determined to balance the required
hardware amount in each control step [Wak91]. A global time constraint is specified
and the algorithm attempts to minimize the resources required to meet the stated
constraint [PK89a]. FDS is used in HAL [Pau91, Wak91] HLS system. Critical path

scheduling and FDS exploit potential parallelism but they do not deal with branches

and loops [Wak91].

List scheduling (LS) is another scheduling scheme where hardware constraints
are specified. The LS algorithm attempts to minimize the total execution time
by using a local priority function to defer operations when resource conflicts oc-
cur [Pau91, PK89a]. A combination of LS and FDS is the force-directed list schedul-
ing (FDLS) [PK89a]. The goal in FDLS is to reduce the resources by balancing

the concurrency of the operations assigned to hardware without increasing the total
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execution time [PK89a).

In HIS, As Fast As Possible (AFAP) scheduling scheme is applied on the CFG [CBH*91].
AFAP emphasizes conditional branching rather than potential parallelism like in LS

or FDS [CBH*91]. Cyber uses As Soon As Possible scheduling algorithm [Wako1].

ADAM system [WTL91] synthesizes circuits interfaces by transforming its in-
ternal representation into finite state machines (FSM). The scheduling scheme used
in ADAM is state scheduling which is used to minimize the number of states in a
controller [WTL91]. State scheduling uses a process called unzapping. The states of
a basic block are unzapped by creating equivalent states. A basic block is a linear
sequence of operations having one entry point and one exit point. Then, the state

scheduling takes advantage of state equivalence to create larger subproblems which

allow more states to be combined [WTL91].

An algorithm called zone scheduling [HL91] is used in THEDA. It is a heuristic
method for solving the resource constraint scheduling of a large basic block; and

several control steps (forming a zone) are solved at a time [HL91].

Unified System Construction (USC) uses 3D scheduling [PKPW91]. 3D schedul-
ing is a module allocation and assignment scheduling technique [PKPW91]. During

the high level synthesis process, 3D scheduling incorporates interconnection delays

obtained from floorplanning [PKPW91].
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O’Brien et al [ORJ92] proposed the Dynamic Loop Scheduling (DLS) algorithm.
DLS is used for the treatment of control-flow dominated descriptions written in
VHDL [ORJ92]. Path-based scheduling (PBS) is another scheduling scheme [Cam91].
This scheme uses directed graphs that represent the precedence relation among oper-
ators. In PBS, parallelism is emphasized on conditional branching; that is to sched-
ule the paths of a condition branch in the minimum number of control steps [Cam91).
A lheuristic scheduling scheme that is based on PBS is the loop-based scheduling
(LBS) [AS94]. In LBS, the input specification is mapped into directed graphs.

Loop entrance nodes are scheduled in different control steps [AS94].

2.3.2 Allocation

Allocation consists of assigning the operations to hardware. The allocation goal is
to minimize the number of functional units, total storage, and the total connection
path [Par84]. The main allocation techniques in HLS are [CBH*91]: heuristic or
greedy techniques, linear programming formulation, and clique covering or coloring

based allocation.

The allocation scheme in Facet [TS86] is to transform the minimization of the
number of storage elements, data operators, and interconnection units problems into
clique partitioning problems. The clique partitioning technique is used to bind vari-

ables to the minimum number of registers, and operators to the minimum number
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of functional units.

In Mimola [TS86], a minimum implementation/cost subject to hardware avail-
ability is reached by means of statistical analysis. A similar approach is followed
in HARP. HARP uses a First Come First Served (FCFS) strategy in allocating
functional units (FUs) [TKIK89]. The merging criteria of FUs is determined by

calculating the minimum mutual correlation between FUs.

Other allocation techniques are applied. In HIS, a modified data-flow analysis
technique which is used in compiler construction is adopted [NON91]. However, HAL
uses FDLS in allocation [Pau91]. Finally, Devadas and Newton [DN89] proposed a

simulated-annealing based algorithm for hardware allocation.

There is no consensus as to which task to perform first, scheduling or alloca-
tion [KM92]. Most of the HLS systems perform scheduling first [KM92]. While
Caddy/DSL is reported to perform allocation first [KM92]. MAHA and HAL com-

bine scheduling and allocation [KM92].

2.4 Target architecture

The final step in HLS is data path synthesis. The target in data path synthesis is
to produce Register Transfer level hardware designs (structural description) [DN89].

Structural description specifies a set of components and their interconnection. Each
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component is retrieved from a cell library. The design is finished once components
are placed and routed. Designers have to do evaluation and modification to meet
constraints [PG87]. Usually this is done with available Design Automation (DA)

analysis tools.

Different target architectures are followed. In HARP, the data path is synthesized
in RTL like description. Then, a micro-programmed controller is loaded with the

data path control information.

EXPL [TS86] uses the DEC PDP-11 Register Transfer Modules (RTM) as a mod-
ule set for the implementation of the design. In Camposano et al, the synthesized
structure is given in STRUDEL (STRUcture DEscription Language) which consists

of hierarchical netlists [CR89)].

In STAR, data path construction (DPC) and data path refinement (DPR) are
the phases where the physical design is generated from the relation networks as

defined earlier [TH80].

HIS synthesizes synchronous digital systems. The output design is an FSM
describing the control and a netlist for the data path [CBH*91]. In Hercules/Hebe,
a logic-level implementation consisting of data path and control is described in
Structural/Logic Intermediate Form (SLIF) [KM91]. Finally the logic design in

PARTHENON is described in netlists [NONO1].



2.5 Conclusion

From this literature review, it can be concluded that most of the HLS systems
use graph based IFs. Moreover, the optimization techniques followed are software
oriented. Basically they manipulate the specification as a software program rather
than a description of a hardware system. Therefore, The optimization carried is
similar to that used in compiler design. However, as will be demonstrated in a
later chapter, hardware has some distinctive features which allow us to perform

hardware specific optimization techniques, leading to more efficient /optimized RTL

descriptions.

In the next chapter, we describe the intermediate form used by our HLS system.



Chapter 3

The Primary Intermediate Form

Automating the synthesis of digital systems as described earlier requires the compi-
lation of behavioral descriptions into structural descriptions such as register transfer
language (RTL). This compilation process is implemented as a sequence of trans-
lation steps. At each step, an intermediate form (IF) that preserves the original
functionality is generated. IFs are internal representation that are introduced for
the purpose of ease of manipulation as required by the various tasks of HLS. Differ-
ent intermediate forms have been used. From the existing literature, most common

IFs are Graph-based representations.

In this chapter a new IF in the context of HLS will be presented. Transla-
tion to this proposed IF will also be presented. This IF is based on stack internal

representation. Stack representation is commonly used in interpreters. Moreover,

18
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Step 1 BRPN Translator
Step 2 RTLGenerator
Step 3 RTL Optimizer

Figure 3.1: Major tasks in the new HLS system.

stacks are very efficient in evaluating arithmetic expressions, especially when used

in conjunction with Reverse Polish Notation (RPN).

From this stack IF, a Canonical Register Transfer Language (CRTL) description
is generated. CRTL is a control and data flow graph structure (CDFG). The CRTL
description is further optimized and translated into the target RTL. Figure 3.1 gives
an overview of the main tasks in the synthesis system. Step 1 in Figure 3.1 is the
subject of this chapter. While, Step 2 is presented in the next chapter. Step 3 will

be described in Chapter 5.

3.1 Blocked Reverse Polish Notation (BRPN)

To evaluate mathematical expressions on stack machines, prefix notation is the most

appropriate ordering of the expression operators and operands. This prefix notation
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is known as Reverse Polish Notation (RPN).

Usually, RPN is used for a single expression. In order to extend the scope of
RPN, other control operations can be added to RPN. This adds more features to the
mathematical expressions. Sub-expressions can be executed and transfer of control
between them can also be achieved. Therefore, each sub-expression is converted into
RPN separately. The control is then added to the RPN code to link up the different

sub-expressions.

The mathematical expressions (arithmetic and logical) in this context correspond
to a behavioral description of some digital system written in a HLL. To establish the
connection between a HLL description and its corresponding RPN code, consider
the stack operations shown in Figure 3.2. These operations contain data (Dopr) and

control (Copr) operations.

The translation of C-like descriptions to stack notation is a language to language
translation. The mapping of C-like to stack notation is illustrated with the following

example. Consider the following HLL description of a While construct:
1=1;
while (i < k) do
body

i=1+41
end-while.
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push x ontu stack.

pop top of stack and save in x
always pushed onto stack.
duplicates top valuc of stack.

pops top value of stack and prints.
Pops entire stack and prints,

exits program,
pops enlire stack.
stack level pushed onto stack.
add
subtract f

forms the operation on
multiply f,:; two elcmer?; of stack
divide and pushes the result back.
remainder
power

stack’s top element is index to array.
used for array opcration,

top two clements of stack arc popped and
compared. Transfer is made to block x.

unconditional transfer to block x.
marks the start of block.
marks the end of block.

Figure 3.2: Some stack operations and operands used in BRPN.

The first line in the description is an assignment. This assignment is translated

into pushing the constant ‘1’ onto the stack followed by a pop operation. Then the
g

popped value is loaded into register i. The corresponding stack representation is

‘1s7’. In order to execute the loop, the condition ‘i’ is evaluated. The corresponding

stack representation is as follows: the first operand is pushed onto the stack e,

then the second operand is pushed ‘/k’. Now both operands are on top of the stack.

These operands are popped and the condition expression is formed. The evaluation

of this condition will determine whether to execute the body of the loop or not. The

stack representation corresponding to this is ‘/ilk > 0’, where ‘0’ is the address of

the code segment containing the body. The mapping of the rest of the code into

stack representation produces the following stack code:
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Isi

lilk >0

begin (code segment 0)
lil + st

lilk >0

end (code segment 0) .

The first line in the above code is an assignment instruction where register i
is assigned the value 1. The second line is to check the starting of the loop, if
the condition (k > i) is satisfied a branch to code segment 0 takes place. In code
segment 0, the first line is the adjusting step and the second line is the continuity

step. The loop will be executed as long as the condition in the continuity step is

true.

We define a block to be a sequence of stack operations with the restriction that
transfer of control from other blocks can only take place at the first statement of the
block. Blocks are delimited with square brackets and labeled. Each block label is

prefixed with the capital letter ‘S”. Thus the above stack representation is as follows:

1st
itk >0
{181 + sililk > 0]SO0.

Because of this blocking in the stack representation, the RPN code generated
by interpreting HLL will be called blocked RPN (BRPN) to differentiate it from the

traditional way of expressing stack operations as a sequence of statements.
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1S

block iis calling block j is returning
its child block / control to its father
block /
[ s IS;

Figure 3.3: Father-children relation in BRPN.

In BRPN, the relation between the blocks is a father-children relationship. That
is, during the execution of a set of stack instructions in a block, control may transfer
to another block (calling block is termed as father and the called block as child).
After a successful execution of the child block, control returns to the father. For the
above example, the body of the while loop can be interpreted in the same block S0.
Another way is to interpret the body in another block S1 where S1 is called from
S0 every time the loop condition is evaluated true. This father-child relationship
is illustrated in Figure 3.3. Recall that as a rule, the blocking strategy used here

satisfy the following condition that: control can only transfer to the beginning of a

block.

The translation of HLL descriptions to BRPN is a language to language trans-

lation. The grammar of the input behavioral language is given in Appendix A.

In the next section, the translation of different HLL constructs to BRPN will

be shown. In addition, the translation of logical operators such as and and or to
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Figure 3.4: BRPN translation of Repeat-Until control statement.

BRPN will also be illustrated. Then a comparison between BRPN and graph-based

representations like those described in the literature, is conducted in Section 3.3

3.2 Translating different HLL constructs into BRPN

In the previous section, the conversion or translation process from HLL descriptions
into BRPN was shown. The While-do construct was used as an example. Other
control constructs such as Repeat-Until, If-Then-Else, Case, ...etc can also be trans-
lated into their corresponding BRPN. This section shows the different HLL control

structures with their corresponding BRPN.

Repeat-Until: This construct differs from While-do in two basic characteristics: the
condition is evaluated at the end, and the loop is executed as long as the condition

is false. The translation of this construct is shown in Figure 3.4

Here the body is executed before evaluating the condition. Therefore, the body

is translated into stack operations as in block ‘S;’ (Figure 3.4). Then, the condition




Vdand

25

Figure 3.5: BRPN translation of For statement.

is translated to (~ condSy) in block ‘S;". The stack operation (~ condS;) means
that the control is transferred to the beginning of block ‘S;.’ if the condition (cond)

is false. In block ‘Sy’, the body is executed as long as the condition (cond) is false.

For: Unlike While-do and Repeat-Until, the For control construct is used when the
number of iterations is known. Counters are used to control the execution instead of

conditional expressions. The For construct and its corresponding BRPN are shown

in Figure 3.5.

The initialization of the loop counter is translated into stack operations as in
block ‘S;’ (Figure 3.5). The counter is checked whether its limit value is reached. If
this is not the case, the control is transferred to block ‘Sy’. The body is executed
and the loop counter is advanced by the step value. Thereafter, the body is executed

as long as the loop counter is within the range.

If-Then-Else: In this construct, the code execution is controlled by a condition.
The If-Then-Else control construct and its corresponding stack representation are

illustrated in Figure 3.6. The graphical representation of the resulting BRPN is
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Figure 3.7: Graphical representation of BRPN If-Then-Else code.

illustrated in Figure 3.7.

Case: These statements are multi-branch control statements. This means that they
are viewed as multiple if-then-else statements. The Case statement and its corre-

sponding BRPN are illustrated in Figure 3.8. The BRPN generated is graphically

illustrated in Figure 3.9.

Logical operators: These operators are widely used in high-level programming lan-
guages. AND and OR are among the widely used logical operators. The correspond-

ing translation of both is shown in Figure 3.10(a) and (b) respectively. Statements
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Figure 3.8: BRPN translation of Case statement.

Figure 3.9: Graphical representation of BRPN Case code.

27
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with multiple logical operators can also be translated to BRPN as illustrated in
Figure 3.10(c). The If-Then-Else construct with logical operators can also be trans-
lated into BRPN. Figure 3.11(a) shows the If-Then-Else construct including the
AND operator and its corresponding BRPN. While the same construct with the OR

operator is illustrated in Figure 3.11(b).

(a)

(c)

Figure 3.10: BRPN translation of different logical operators.

3.3 BRPN versus graph-based representation

The representation in BRPN is different from graph-based representations such as

DFG and CFG. In this section, we will discus the key differences.
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Figure 3.11: BRPN translation of Different logical operators in If-Then-Else state-
ment.

A DFG models the data dependencies among the operators and variables. Fur-
thermore, a DFG may be disconnected. The precedence relations on these data
operations cannot be shown in a DFG alone. These relations are modeled by a

CFG. The DFG and CFG are linked to resemble the behavioral model.

Flamel [Tri87] uses Dacons, which are CDFG. Each node represents a basic
blocks, where a basic block is the largest number of statements in the code that
does not contain any type of control construct and has one entry point and one exit

point. The edges in dacons represent the control transfer among the basic blocks.

On the other hand, the structure in BRPN resembles the structure of HLL mod-
els. The basic entity in BRPN is a block. Blocks are not basic blocks as defined

above. Instead they may contain control statements and loops. The definition of a
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Figure 3.12: Blocking in BRPN.

block here is the largest number of stack operations that satisfy the following con-
dition: “control can only be transferred to the beginning of a block”. For this, blocks
cannot be merged because this might violate the transfer of control condition. More-
over, optimization cannot be carried out on BRPN code. For example, a common
sub-expression in different blocks cannot be eliminated. As each sub-expression is lo-
cated in a different block and invoked at different instances. Therefore, BRPN code
is translated into another IF for optimization. The precedence relation among the

blocks is more like the strategy used in HLL subroutine calling. This is illustrated

in Figure 3.12.
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3.4 Conclusion

A new IF is presented. The translation of different HLL constructs into this IF
(BRPN) is also presented. A comparison between the proposed IF and the known
graph-based representation is conducted. The structure in BRPN resembles HLL

subroutine calling mechanism. This is unlike DFG and CFG.

The translation of BRPN into the second intermediate form will be explained in
the following chapter. The structural description can be extracted from the second

IF. In Chapter 5, the developed hardware specific optimization will be explained.
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Chapter 4

The Sécondary Intermediate

Form

In the previous chapter, the behavioral model of a digital system is translated into
BRPN. As stated earlier the BRPN code resembles HLL description. The stack
representation form does not allow the efficient implementation of the optimization
tasks required to generate a quality RTL output. Graph-based IFs are most suit-
able in this case. Therefore, before attempting to carry any optimization step, we
first transform the BRPN into a CDFG. This transformation is accomplished in a
systematic way and with the same ease as the interpretation of the initial behavioral

specification into BRPN.

This chapter presents the methodology and the algorithm developed to generate

32
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the second IF from BRPN. This IF is a Canonical Register Transfer Language

(CRTL). CRTL is a graph based IF.

Section 4.1 discusses the generation process of CRTL from BRPN. Section 4.2
presents the algorithm to perform this task. The algorithm builds up an internal data
structure which is discussed in Section 4.3. One important issue is how to generate
CRTL code for BRPN control operations. This issue is discussed in Section 4.4. The
different HLL constructs shown in the previous chapter are translated into CRTL
in Section 4.5. Some illustrative examples are given in Section 4.6. In Section 4.7

the target RTL is presented. Ve conclude in Section 4.8.

4.1 Generation of CRTL models from BRPN

After translating HLL descriptions into BRPNs, the CRTL models are extracted
from these BRPNs. CRTL is a graph based IF. It is simpler to extract the hardware
structural description from such IFs. Recall from Chapter 3 that the general block

format in BRPN is:

[stack operations]Sx

In the above format, z is a distinct label given to the block of stack operations.

These stack operations may either be operations on data or program control. Fig-
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ure 3.2 shows some of the stack operations where Oprnd stands for operand, Dopr
stands for data operation, Copr stands for control operation, and Dltr stands for a

delimiter. More details are given in Section 4.2.

The stack operations in the above format are executed in sequence. This means
that these operations are ordered. The location of each stack operation, whether
data or control, inside the code is unique. As a result, the above format can be
divided into a sequence of statements where cach statement holds either a data
or control operation and has a unique tag. Moreover, all branches to successor
statements are defined. In this context, the concern is with the operations that

cause popping from the stack.

The above description has similarities to some known RTL formats such as A
Hardware Programming Language (AHPL) except that it is not as compact as AHPL
description. Thus, the generated code is referred to as Canonical RTL (CRTL). It is

called canonical because each statement holds either a data or a control operation.

There are two steps involved in generating the CRTL statements:

Step 1 Determine the CRTL statement number; this number is formed as a pair of

block number and sequence number (BN,SN), where BN is the block number
uniquely defined for each block of the stack code and SN is the sequence

number associated with any operation within the block that causes popping
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from the top of stack. SN is the relative position of the operation from the

left of the BRPN block.

Step 2 Indicate whether the stack operation is a control or a data statement; if the
stack operation is a data operation then the RTL statement is to hold the
operation and the address to the next statement. Otherwise, the statement is
to hold the condition of the operation and the addresses of the true and the

false branches. The mechanism used to determine the true and false branches

is described below.

The format of a CRTL statement consists of:

stmnt no. | data operation | control operation | true branch | false branch

Using this format, each statement in the code obtained from BRPN holds either

(1) a data operation and an unconditional branch or (2) a conditional branch.

The two steps defined to generate CRTL statements are graphically illustrated

in Figure 4.1.
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Figure 4.1: The translation of BRPN into CRTL.
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4.2 BRPN-to-CRTL Algorithm

The algorithm that accomplishes the conversion process from BRPN operation for-

mat to CRTL format is presented in Figure 4.2.

The main task of the algorithm is to extract the data and control parts. The
input to the algorithm is the BRPN code translated from behavioral description.
The algorithm outputs a generalized CDFG where nodes represent CRTL statements
and edges represent the order of execution of these statements. The algorithm
begins by reading a token. A foken may be a delimiter (Dltr), an operand (Opnd),
a data operation (Dopr), or a control operation (Copr). Delimiters are used to
signal special events in the BRPN code, e.g. ‘[’ and ‘]’ signal the beginning and
end of a block respectively. Operands may either be numeric constants or variables.
Constant operands can be of any length and are always pushed onto the stack. Each
variable operand starts with either ‘I’ for pushing the variable onto stack or ‘s’ for
popping the value on top of the stack and assigning it to the variable. Data operator
characters are one character tokens. On the other hand a control operator consists
of one or two characters. Figure 3.2 shows some of the operators and operands used

by BRPN. Details on the translation algorithm are given in Section 4.6.



Current_block = -1
input(token)

WHILE (not eof)
CASE token:

token="[" \* The starting of a block "\
Initialize a new block with seq_num=0;
Current_block=block label.

token = push operation
Push operand to the stack.

token = pop operation
Pop operand from the stack;
Form the expression:  operand=expression
and put it in a new link;
set the address of this link to:

(current_block, seq_num)

Increment seq_num.

token = data operation  \* construct expression *\
data_operation(token).

token = control operation
control_operation(token).
Increment seq_num.

token="} \* The ending of a block "\
Increment seq_num;

Current_block=-1.
END_CASE
input(token)

END_WHILE

Figure 4.2: The algorithm that generates CRTL code from BRPN.
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Procedure data_operation(token)
Begin_Procedure
Pop the operands ;
Construct the parse tree to retrieve the original
expression;
Push the retrieved expression back to the stack.
End_Procedure

Procedure control_operation(token)
Begin_Procedure
Pop the operands;
Construct the parse tree to retrieve the original
expression;
Assign the resulting expression to the control
operation field;
Set the address of this link to:
(current_block, seq_num);
Set the address of true branch to:
(blk_num, 0);
Set the address of false branch to:
(current_block, seq_num+1);
Determine father. \* see text for methods of
End_Procedure father determination *\

Figure 4.3: Procedures used by the algorithm in Figure 4.2.
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Figure 4.4: The internal data structure used by the algorithm.

4.3 Internal data structure

The data structure used to generate the CRTL code is a linear linked list. Each
element of the linked list consists of a body that holds a single CRTL statement

with the format defined in Section 4.1 and a pointer to the next element in the list.

This internal structure is not efficient because two types of links are used. One
type is used to keep track of the physical proximity of the statements. The other
type is for proper transfer of control as illustrated in Figure 4.4. A more efficient

internal structure can be implemented where only one type of links is used.

The CRTL code generated from BRPN is stored in a single linked list for further
processing. Therefore, each statement holds either a data or a control operation as
defined previously. This sequence of statements is subject to further compaction in

the following optimization steps.
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4.4 True and false branching mechanism

The formation of true and false branches is only needed for control statements. To
illustrate the mechanism used in forming these branches, let us consider the general

format of a condition operation in a BRPN block:

[ ..10pnd, 10pnd, Rop BN ... |S;

In this statement, ‘I’ is the push operation, Opnd; and Opnd, are operands to be
pushed on top of the stack, Rop is a relational operation on the two top values of
the stack, and BN is the block number to branch to on true. Now, if the condition
holds (true) then a branch takes place to the statement that has a block number
equals BN and a sequence number equals to zero (BN,0), i.e. to the first statement
in block BN. While on false, a branch takes place to the next operation in sequence
in the current block (current block number, current sequence number +1). This is

shown in Figure 4.1.

The father of the child block can be determined in two ways depending on the
order of the blocks. In the case where the blocks are processed in descending order
of their number, the children blocks are processed before their parents. Here, the
return address of the child block is left empty till its father is defined. Once the
control operation that calls the child block is located, the return address of the child

block is set to the address of the next stack operation in the father block.
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On the other hand, when the blocks are processed in ascending order, the father
blocks are processed first. Each time a stack control operation is processed, the
address of the next stack opcration in sequence is saved in a table. This address is
basically the return address of the child block. This table contains the branch to
block (child) number and the return address. Once the child is processed, its return

address is fetched from the table.

4.5 Generating CRTL for different HLL constructs

The translation of various HLL constructs into BRPN was discussed in the previous
chapter. In this section we describe how we generate the CRTL model for each of

the corresponding HLL constructs.

4.5.1 The Repeat-Until construct

Recalling Figure 3.4, the BRPN code of Repeat-Until construct is processed to gen-
erate the corresponding CRTL description. In block i, the body is translated into
CRTL statements. Assuming the sequence number of the body is &, then the CRTL
statement is ‘(Z,h) body’. The next stack operation in sequence is a control oper-
ation. The transfer to block k takes place only when the condition cond is false.

Hence, the corresponding CRTL statement is ‘(i,h + 1) if ~ cond then (k,0).
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Block £ is processed in a similar way. The generated CRTL code from the BRPN

description is given in Figure 4.5.

(i,h) body
(i,h+1) if “cond then (k,0)

(k,0) body

(k,1) if “cond then (k,0)
(k,2) goto (i,h+2)

Figure 4.5: CRTL description of the Repeat- Until construct.

4.5.2 The For construct

Recalling Figure 3.5, the CRTL description is extracted from the BRPN code as
follows. In block i, the first stack operation is translated into ‘(i, h) ¢ = 2’ where h

is the current sequence number. Then the stack control operation is translated into

“(t,h+1)if i<y then (k,0).

The complete CRTL model for the For construct shown in Figure 3.5, is given

in Figure 4.6.

4.5.3 The If-Then-Else construct

The BRPN description on If-Then-Else construct is given in Figure 3.6. There are

two children blocks: the true block j and the false block % The control transfer to
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(i,h+1)

(k,0)
(k,1)
(k,2)
(k,3)
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i=x
if i<y then (k,0)

body

i=i+1

if i<y then (k,0)
goto (i,h+2)

Figure 4.6: CRTL description of the For construct.

one of these block takes place depending on the condition. In the father block 4,

the first control operation is translated into the corresponding CRTL description

(i,h) if cond then (j,0)’ assuming h is the current sequence number. Similarly,

the statement {(i,h 4+ 1) if ~ cond then (k,0)’ is generated. The If-Then-Else

CRTL description generated from the corresponding BRPN is given in Figure 4.7.

(i,h)
(i.0+1)
(3,0
G.0
(k,0)
(k,1)

if cond then (j,0)
if “cond then (k,0)

true block
goto (i,h+1)

false block
goto (i, h+2)

Figure 4.7: CRTL description of the If- Then-Else construct.

4.5.4 The Case construct

The Case construct is a multi-branch construct. The BRPN code of the Case con-

struct is given in Figure 3.8. Processing this code as described above generates the
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CRTL code shown in Figure 4.8.

(i,k) if a=1 then (1,0)
(i,k+1) if a=2 then (2,0)

(i,k+n-1) if a=n then (n,0)

(1,0) first block

(1,1) goto (i,k+1)
{2,0) second block

2,1) goto (i,k+2)

(n,0) n~-th block
(n,1) goto (i,k+n)

Figure 4.8: CRTL description of the Case construct.

4.6 Illustrative examples

Example 1

The first example shows the generation phases of a structural description from
a behavioral description. The first phase is to translate the behavioral model of
a digital system into BRPN. To illustrate the process of translating algorithmic
(behavioral) descriptions into BRPN, we use the bubble sort algorithm shown in

Figure 4.9.

Using the stack operations given in Figure 3.2, the BRPN code corresponding to

the above algorithm is given in Figure 4.10.
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a[1]=21
af2]=19
al3]=13
af4]=12
a[5]=1
for (i=5; i>1; i--) {
for (j=1; j<i); j++) {
if (afj)>alj+1]) {
t=a(j]
aljl=alj+1]
afj+i]=t
}

Figure 4.9: The C-like description of Bubble Sort Algorithm.

21
19

13

12 4:t
1 65:¢

[1j;tst 1j 1+;11j:11¢t1j 1+:1]S2
[1j;11j 1+;1<2 1jdi+sj 1j1i>1]s1
[1dsj 1j1i>1 lidi-si 1i 1<0]SO

5dsi 1i 1«0

q

N =

> W

Figure 4.10: The BRPN description of Bubble Sort Algorithm.
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The second phase is to apply the algorithm presented in Section 4.2 in order to
generate CRTL from this BRPN. To illustrate the steps of the algorithm, consider

the following BRPN code segment of the bubble sort algorithm taken from 4.10:

[1j;!st 1j 1+;11j:11¢t1j 1+:1]S2
[13;11j 1+;1<2 1jdi+sj 1jli>1]s1.

In the first line of the code ‘[’ indicates the start of the block. The block number
(blknum) is derived from the block label. In this case, blkonum equals 2 and the
sequence number (seq.num) is reset to zero. The next input token is ‘lj;’, causing
the variable ‘j’ to be pushed into the stack. However, since ‘i’ is followed by *;’, the
variable is interpreted as an array index and the name of the array follows the *;". The
variable name is found by taking the character after ‘;’ (which is!) and adding 64 to
its ASCII value to get the ASCII value of the actual variable (in this case ‘a’). This
coding is used to avoid directly using the alphabetical characters as variable names
in the BRPN output thus avoiding conflicts with the stack operations. Thercfore,
‘alj]’ is pushed into the stack. The next token is ‘st’ which means pop the top of
the stack to the variable ‘t’, form the expression ‘t=alj]’, and assign it to the data
operation field of the current link (the first link). The address field of the link is

also created: (blk-num,seqnum)=(2,0). The seq_num is then incremented to 1.

The next token is ‘lj’, and the resulting action is push ‘j’ into stack, followed
by 1, which is also pushed into the stack. Next the operator ‘+’ will cause the top

two elements of the stack to be popped, and the expression ‘j+1’ is pushed back
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-

into the stack. The ‘;’ indicates that the expression ‘j+1’ on top of the stack is an
array index. The next token ‘lj’ causes j’ to be pushed in the stack, the ‘:’ indicates
an array operation that pops the top element of the stack (in this case ‘4), uses it
as an array index and assigns to it the next top element of the stack (‘afj+1]" in
this example). The variable or array name (which is ‘a’) is also found as mentioned
previously. The expression thus formed is ‘a[j]=a[j+1)". Note that *:’ is of the pop-
operand type and thus the resulting expression is assigned to the statement in the

current link, and the address formed is ‘(2,1). The seq-num is then incremented.

The algorithm continues in the same way to form the cell ‘a[j+1]=t’, and the
delimiter ‘]’ indicates the end of the block. Since the father of this block is not yet

defined, it is left temporarily empty.

Now the next block, given below, is read:

[1j; !1j 1+;1 <21jd1 +sjs. 1j1i >1)s1

The blk.num is 1 and the seqnum is reset to 0. The statements Gyt 1+
will result in forming the expressions ‘afj]’ and ‘a[j+1]’ as the top two elements of
the stack. The token ‘<2’ will form the condition ‘afj] < afj+1)’ and assign it to
the control operation field of the link. The address of this link is (current blk_num,
current seqnum) which is (1,0). The true branch field gets (2,0) and the false branch

field gets (1,1). The “Father” of the called block (which is block 2)is(1,1). Since the
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father of block 2 is now defined, the generated code is updated accordingly. Finally,

the generated CRTL code is:

(1,00 if a[j+1]<alj] then (2,0)
(1,1) j<=j+1

(1,2) if i>j then (1,0)

(1,3) goto ‘father’

(2,0) t<=aljl

(2,1) aljl<=alj+1]

(2,2) alj+il<=t

(2,3) goto (1,1)

The complete bubble sort CRTL model generated from BRPN is given in Fig-
ure 4.11. Note that the stack operations outside the blocks are grouped into block

number -1.

Example 2

Consider the following HLL of If-then-else construct with logical operators:

a=1

=3

if (a==1 & b==2) then
s=atb

else
s=b-a

end_if

t=2*s

The first step is the translation of the above behavioral description into BRPN.

<9
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Figure 4.11: CRTL description of Bubble Sort Algorithm.

afi])=21.

af2]=19.

a[3]=13.

al4)=12.

a(5]=1.

i<=5,

if i>1 then (0,0).
End.

j<=1.

if i>j then (1,0).
i<=i-1.

if i>1 then (0,0).
goto (-1,7).

if a[j+1]l<a[j] then (2,0).
je=jHL.

if i>j then (1,0).
goto (0,2).
t<=a[j].
aljl<=alj+1].
a[j+1l<=t.

goto (1,1).
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The resulting BRPN code is:

i sa

2 sb

[3 la+ suls3
{lalb+ su]S2

[2 1b=2 2 1bi=3]S1
[1 la=1 1 1a!=3]S0
2 lux st

q

Applying the algorithm given in this chapter, in the same manner described

earlier, the CRTL code is generated.

In Block ‘0’, the first condition (¢ == 1) is evaluated. If the condition is true, the
control is transferred to Block ‘1’ where the other condition (b == 1) is evaluated.
Otherwise, control is transferred to the block that holds the BRPN translation of
the false code (Block ‘3’). Similarly, the condition (b == 1) is evaluated in Block ‘1°.
If the condition is true, the control is transferred to Block ‘2’ which holds the BRPN
translation of the true code. Else, control is transferred to Block ‘3’. The complete

CRTL code is given in Figure 4.12.

4.7 AHPL as a target RTL

The generation of AHPL code from CRTL models is described in this section. The

language AHPL uses the convention that any digital system can be divided into a
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a<=1

b<=2

t<=2x%s

End.

if (a==1) then (1,0)
if (a<>1) then (3,0)
goto (-1,2)

if (b==2) then (2,0)
if (b<>2) then (3,0)
goto (0,1)

s<=a+b

goto (1,1)

s<=3+a

goto (0,2)

-
= O WN = O

WWNNFE OO O =

-

N NN NN IN NN ONINININ NN

Figure 4.12: CRTL description of the algorithm in Example 2.
data part and a control part. Recall from Section 4.3 that the information about
the data transfer and the control flow is stored in the form of a linked list. Then
the corresponding RTL specification in AHPL can easily be obtained from this
linked list. In this .section, a very brief overview of the AHPL language is presented,

following which, the generation procedure of the AHPL code from CRTL is discussed.

This section is not intended to detail the entire AHPL language but to mention
only the basic constructs. We also restrict the discussion to the SEQUENCE section

of the AHPL model. This is the section that models the finite state automaton.

The AHPL SEQUENCE section consists of a sequence of numbered steps, each
step representing a state of the finite state machine. A step may have transfer state-

ments ‘<=, connections to buses ‘=", or conditional/unconditional branches. Con-
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ditional branches are expressed as ‘= (f}, f2,..., fu)/(S1,S2,...Sn)’, which reads
as, if condition f; is true, then, in the next clock pulse, transfer control to Step S;;
else transfer to the following step in sequence. Unconditional branching to Step S;
is expressed as ‘=> (S;)’. Conventionally, in AHPL, all transfers to registers, and
state transitions, are assumed to take place at the trailing edge of the clock pulse,
whereas transfer.to buses are active during the entire duration of the clock. In
addition, an abbreviated form for expressing combinational functions called CLUs
(combinational logic units or functional units) is available. Complex combinational
logic circuits can be modeled separately as CLUs, and then invoked in the sequen-
tial part of the description when needed. Examples of combinational logic units
are comparators (COM), bus_functions (BUSFN), binary decoders (DCD), binary
incrementers (INC), and binary decrementers (DEC). The comparator is used to
compare two vectors, and has 3 outputs. For example, in COM(I;J) where I and J
are binary codes, the third output bit of the CLU, that is COM{2} is high if condi-
tion ‘7 < J' is true. Reading from memory is done through the decode (DCD) and
the bus_function (BUSFN) CLUs. The DCD unit decodes the given address and en-
ables the corresponding memory location value. CLU BUSFN then routes the value
of the enabled location to the destination. Thus a memory read is accomplished as

follows,

destination_register<=BUSFN(MEMORY,DCD(address_register)).
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IF a memory variable has a conflict then

Split the statement into two or more statements
Use a new variable in one statement;
Refer to the new variable in the other one

END_IF

Figure 4.13: Algorithm for memory conflict resolution.

Writing to the memory is done in a similar way. The address is decoded using DCD

and the corresponding memory location is enabled for writing. The instruction is

MEMORY*DCD(address_register)<=source.

For a more detailed overview of AHPL the reader may refer to [SBK93]. The

complete documentation on the language and its grammar are available in [Mas81].

With this introduction to AHPL, let us consider the memory conflict issue which
is a by-product of interpreting HLL descriptions. Statements such as ‘afj] < a[j+1]’
are possible in high level descriptions. However, in AHPL it is not possible to
read two locations of the memory bank simultaneously and compare their contents.
Similarly, it is not possible to simultaneously read and write, i.e. move the contents
of one memory location into another in a single step. To resolve this conflict, the
action is divided into two steps and temporary registers are introduced as described
in Figure 4.13. For the bubble sort example in Figure 4.11, there are two steps

where we have memory conflicts: steps 9 and 14. They are resolved by splitting
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Step 9 into 9.1 and 9.2 and introducing temporary registers YY1. While Step 14 is

split into 14.1 and 14.2 and register YY2 is used. The new generated AHPL model

for the bubble sort is given in Figure 4.14.

MODULE
MEMORY
MEMORY

CLUNITS

(-1,5)

~
]

-

A4

- - - -

-

NN P R REEO0OO0O0 OO0
et O WN R OOPWNSONOD
N N’ N N N N NS N N N N N N

PN NN NN NI ON NN PN NN

(2,2
(2,3

: SORT.

: A{8}<8>;1{3};J{3};T{8}.
: YY1{8}; Yv2{8}.
EXINPUTS :

RESET; CLOCK.

: DCD{6};INC{3};BUSFN{12};COM3{3};COM8;DEC{3}.
BODY SEQUENCE:CLOCK.

1
2
3
4
5
6
7
8
9

9.

10
11
12
13

14,
14,

15
16

ENDSEQUENCE
CONTROLRESET(RESET)/(1).

END.

[y

I1<=\1,0,1\.

=>COM{2} (\0,0,1\;1)/(4).
DEADEND.

J<=\0,0,1\.
=>COM3{2}(J;I1)/(9.1).
1<=DEC(I).
=>COM3{2}(\0,0,1\;I)/(4).
=> (3).

YY1 <= BUSFN(A;DCD(J)).

=> COM8{2} (BUSFN(A;DCD(INC(J)));YY1)/(13).
J<=INC(J).
=>COM3{2}(J;1)/(9.1).

=> (6).
T<=BUSFN(A;DCD(J)).
YY2<=BUSFN(A;DCD(INC(J))).
A*DCD(J)<=YY2.
A*DCD(INC(J))<= T.

=>(10).

Figure 4.14: Tle bubble sort example after resolving memory conflicts.

¥ =y
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4.8 Conclusion

A general methodology to generate CRTL from BRPN is proposed. The algorithm
to accomplish this is developed and presented. The internal data structure generated
by this algorithm is discussed. One major issue in generating CRTL is the proper
processing of control constructs. In this chapter, we described algorithms that are
used to obtain CRTL code from the primary IF (BRPN). Several examples are used

to illustrate the translation.

The target RTL description in this work is AHPL and the extraction of AHPL
from CRTL is also discussed. The issue of memory conflicts which are inherently

present in interpreting HLL descriptions is addressed. A methodology to resolve

such conflicts is proposed.

As described earlier in this chapter, the RTL code is not optimized. In the
next chapter, software as well as hardware specific optimization techniques will be

presented in order to further reduce the number of control steps in the RTL code.
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Chapter 5

Optimization of AHPL

Descriptions

In Chapters 3 and 4, the synthesis of an AHPL description from a behavioral de-
scription of a digital system was discussed. The generated AHPL code contains
statements holding either a single data operation and an unconditional branch, or

a conditional branch operation.

Scheduling is an essential step of HLS. Besides deciding the correct ordering of
the operations, it also determines the number of various hardware resources required

by the following allocation step. The outcome from the scheduling step depends
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entirely on two main features:

1. the scheduling objective, and

2. the existence of constraints, such as limited resources.

In this work we assume unlimited resources, and our objective is to obtain an
RTL description with the smallest number of control steps (CSteps). Two types of

optimization are considered: software optimization and hardware optimization.

Section 5.1 discusses the software optimization techniques used. While hardware
specific optimization is addressed in Section 5.2. Hardware specific optimization is
based on two transformations: loop transformation and switch transformation. The

application of these techniques is shown in Section 5.3. We conclude in Section 5.4.

5.1 Software Optimization

In this optimization, compiler-like optimization techniques are applied. Uncondi-
tional branch elimination and code factorization are the two major types of opti-

mization applied.



For each statement in the code do
If astatementi is a dead statement then

Scan the code for any statement j branching to
i then:
Modify j to branch to the address that i is
branching to

End_If
End_For

Figure 5.1: The unconditional branch elimination algorithm.

5.1.1 TUnconditional branch elimination

Each transfer of control from a child block to its father is an unconditional branch
statement. These statements are extra and therefore are deleted. Their true branch
addresses are copied into the true or the false branches of the calling statements.
The algorithm used for unconditional branch elimination is shown in Figure 5.1 and
has an O(n?) complexity; where n is the number of statements in the AHPL code.
The algorithm initially scans every statement looking for unconditional branches. A
second scan is done by the algorithm for branch adjustment. For example, consider

the following code segment:
10 J<=INC(J); => (5).

15 A*DCD(INC(J)) <= T.
16 => (10).

Statement 16 is an unconditional branch. It is deleted and Statement 15 is
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For. each statement i in the code do

Scan the code for any statement j that is
similar to i then do:
delete j and modify the necessary branches

End_For

Figure 5.2: The code factorization algorithm.

adjusted as follows:

15 A*DCD(INC(I))<=T; => (10).

5.1.2 Code factorization

Similar expressions can be found in different blocks. These redundant expressions
are easy to identify and factored out. The algorithm to do this is given in Figure 5.2
and has an O(n?) complexity; where n is the number of statements in the AHPL
code. Two scans are carried out by the algorithm. One to pick the statement and
the other to check for identical statements and delete them. The branches of the

calling statements are adjusted accordingly. For example consider the following code

seginent:

2 =>COM{2}(\0,0,1\;1)/(4).

6  I<=DEC(I).
T =>COM{2}(\0,0,1\;1)/(4).
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Statements 2 and 7 have similar expressions. Thus, one of them is kept to repre-
sent the other. In here Statement 7 is deleted. Now the branch out of Statement 6

is adjusted to point to Statement 2 as follows:

6 I<=DEC(I) => (2).

5.1.3 Example

To illustrate the optimization of this phase, consider the AHPL code of the bubble
sort given at the end of Section 4.7. The resulting code after software optimization
is given in Figure 5.3. The order of applying these optimization techniques may
give different results. But for this work (in Figure 4.14), unconditional branch
elimination is applied first. Steps 8, 12 and 16 are unconditional branches (GOTO).
Thus they are deleted. The branchings in Steps 7, 11 and 15 are modified to include
the transfers to Steps 3, 6 and 10 respectively. Applying code factorization, Steps 2
and 7 are found redundant as they have similar expressions. Hence Step 7 is deleted
and Step 6 is modified to branch to Step 2. Moreover, as Step 3 is the successor of
Step 2, it is not necessary to include transfer of control to Step 3 in the set of output
branch addresses of Step 2. Similarly, Steps 5 and 11 are redundant and Step 11 is
deleted. Modification in the code is done in a similar manner. The control steps in

the resulting code has been reduced by five control steps. The optimized AHPL is

given in Figure 5.3.
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MODULE : SORT.
MEMORY  : A{8}<8>;I{3};J{3};T{8}.
MEMORY : YY1{8}; YY2{8}.
EXINPUTS : RESET;CLOCK.
CLUNITS : DCD{6};INC{3};BUSFN{12};COM3{3};COM8;DEC{3}.
BODY SEQUENCE:CLOCK.
(-1,5) 1 I1<=\1,0,1\.

(-1,6) 2 =>COM{2}(\0,0,1\;I)/(4).

(-1,7) 3 DEADEND.

(0,0) 4 J<=\0,0,1\.

(0,1) 5 =>COM3{2}(J;1)/(9.1).

(0,2) 6 I<=DEC(I); => (2).

(1,0) 9.1 YY1 <= BUSFN(A;DCD(J)).

(1,0) 9.2 => COM8{2}(BUSFN(A;DCD(INC(J)));YY1)/(13).
(1,1) 10 J<=INC(J); => (5).

( 2,0) 13 T<=BUSFN(A;DCD(J)).

( 2,1) 14.1  YY2<=BUSFN(A;DCD(INC(J))).

( 2,1) 14.2  A*DCD(J)<=YY2.

(2,2) 15 A*DCD(INC(J)) <= T; => (10).
ENDSEQUENCE
CONTROLRESET(RESET)/(1).
END.

Figure 5.3: AHPL description of Bubble Sort Algorithm after applying software
optimization.
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5.2 Hardware Specific Optimization

In the previous section, superfluous CSteps due to unconditional branches and du-
plicate statements are detected and eliminated. To produce optimized AHPL code,
further optimization techniques should be applied. The techniques used here are
optimization by successive transformations that are applied for the purpose of iden-
tifying mergable CSteps. The goal here is to further minimize the number of CSteps

in the AHPL model.

Since we assume unlimited resources, minimizing the number of CSteps is equiv-
alent to maximizing parallelisim, i.e., assign as many statements as possible to the
same CStep. This will achieve other objectives as well: (1) elimination of multi-
plexers, (2) obtain smaller controller, and (3) provide more opportunity for logic
minimization. In Figure 5.4(a), an AHPL model of a digital system is given. The
control part of this AHPL model is shown in Figure 5.4(b). Merging different CSteps

(see Figure 5.4(c)) produces a smaller control circuit, as shown in Figure 5.4(d).

Hence, as far as the logic in the AHPL data part is concerned, the chance to
eliminate redundant logic increases. Silicon compilers like AHPL silicon compiler
run logic optimization on their input models. The optimization is only applied to
the logic within a CStep rather than the logic in the whole model. By clustering
as many statements as possible in a single CStep, we increase the chance for logic

optimization. Thus, leading to the minimization of overall silicon areca. This has
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= g&):mpm(x.y).~comp{2}(x.y)) /(54).
=> .

=> (comp{1}(x,y),~comp{1}(x,y)} / (7.6).
=> (comp{0}(x,y),~comp{0}(x,y)) / (8,3).
y<= INC(ADD(y,~x)); => (6).

x<= INC(ADD(x,~y)); => (3).

OO bW

(a) AHPL model

6
comp{0}
a7 8
b ¢ o
A )

(®) Control unit of above model

5 y*'comp{1}{x,y)<= INC(ADD(y,~x));
x'comp{0}{x,y)<= INC(ADD(x,~y)); => (5).

(c) AHPL model after merging CSteps (Optimized model)

85

D3

(d) Control unit of optimized model

Figure 5.4: Example of merging different CSteps.



been confirmed by experimental results as will be discussed in Section 6.2.

Hardware specific optimization algorithms are developed to accomplish the above
task. Central to these algorithms is a template which is the subject of the following

paragraphs.

5.2.1 Template

Recalling the general format of CRTL statements described in Section 4.1, each

statement in the CRTL code is mapped into the following template and tagged with

its reference number:

< Bin; , O; » I, Bout; >

where,

Bin; is the set of all predecessor statement numbers of statement ¢,
O; is the set of all output variables in statement {

I; is the set of all input (used) variables in statement 7, and

Bout; is the set of all successor statement numbers (|Bout;| > 0). If |Bout;] = 0

then statement ¢ is a dead end.
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The sets O; and I; for the i*" statement are formed from the variables found

either in the data or the condition operations.

Using this template, two optimization techniques are proposed: loop transfor-

mation and switch transformation.

5.2.2 Loop transformation

Loops can be: predicate loops or counter loops. For a predicate loop, the execution
is controlled by a boolean expression. Changes in the logic value of this expression
are subject to the body of the loop. The optimization involved in these loops is

similar to the switch transformation which is discussed in the next section.

A counter loop, in general, consists of an initialization step, a compare step, a
body, and an adjust step. The number of executions in a loop is controlled by a
variable (cv). Every time an iteration is completed, cv is adjusted accordingly. In
AHPL, the adjust and compare steps can be performed in the same CStep. The
reason is that in AHPL, register transfers occur at the trailing edge of the clock. This
means that the new value of a variable is set at the trailing edge. During the clock,
the old value is unchanged. We refer to the operation of merging the adjust and
compare steps as loop transformation. Figure 5.5 illustrates this merging. However,
one has to be careful because this merging requires that cv be adjusted inside as

well as outside the loop. The adjustment is essential as cv holds the next value at
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initialize. initialize
Ccondition | adiust
N, . cond
Y E{n
SR — Y
l body
. adjust’ L

Figure 5.53: The definition of loop transformation.

the beginning of the loop rather than at the end.

The variable cv appears in both the data and the control expressions after this
merging. Because of the aforementioned property of AHPL register transfers, cv in
the control part of the compare step stays unchanged. The new value of cvis set in

the next clock cycle.

To adjust the value of cv inside and outside the loop, we need to backtrack to
all locations where cv is invoked. The expressions that use cv are replaced with new
expressions containing the adjusted value of cv. That is, outside the loop, the effect
of the adjustment step is undone. For example, assume that the adjust step for a
loop contains ‘cv = cv + 2. Then cv in any expression inside or outside the loop is

replaced with ‘cv — 2. We shall call this adjustment step as ADJUST(cv).
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IF (O;n;#@8&I10;nLI=1) THEN
cv= Oi N Ii \* cv is the controlling variable “\
Search for Sj | cve Cond(Sj)

IF Sj is located THEN
BackTrack(Si, ADJUST(cv))

Merge S; into Sj
END_IF
END_IF

Figure 5.6: Algorithm for loop transformation.

The loop transformation algorithm is given in Figure 5.6. The algorithm is
executed when the adjust step is located. Let S; be a particular statement and I;

and O; be respectively, the set of input variables and the set of output variables of

statement S;.

Definition 1 A statement S; is a loop adjustment step if and only if ; N O; # 0

and I; N O; ={cv} where cv is the loop controlling variable.

Once an adjust step is identified, a search for the compare step is initiated. Once
the compare step is located, a backtrack procedure is invoked to find the places where

cv is used, and the variable cv is adjusted as described above.

To illustrate the algorithm, consider the AHPL model for the bubble sort exam-

ple of Section 5.1. The flowchart representing the partially optimized AHPL state



69

Procedure BackTrack(Si » ADJUST(cv))
Begin_Procedure

FOR each Si € Bin(S;)
BackTrack(Sk » ADJUST(cv))
IF cveO;UI, THEN
Replace cv with ADJUST(cv)
END_IF

END_FOR
End_Procedure

Figure 5.7: Back Track Procedure.

machine is shown in Figure 5.8.

Loop transformation is illustrated in Figure 5.9. The variable ¢ j'is cv. The
shaded region in this figure represents the body of the loop, and is executed if the
condition 4 > j’ is true (Step 5). If the condition is false then control branches
to Step 6. The adjustment of cv is done in Step 10 ‘J <= j+ 1. Figure 5.9(b)
illustrates the merging in Steps 5 and 10, and the adjustment of the value of j both

inside the loop and at Step 6 where j is decremented.

Lemma 1 A loop transformation reduces the number of Control Steps by at least

one.

Proof: A loop has a compare step and an adjust step. Merging the adjust step

with the compare step results in reducing the total number of CSteps by one. The



Figure 5.8: Partially optimized AHPL model for

bubble sort example.
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Figure 5.9: Flow chart illustrating loop transformation.

adjustments that may be required to statements where cv is used outside the loop

do not cause any increase in the number of CSteps. n

To derive the complexity of this transformation, let us consider the extreme case

where we have n statements with n/2 nested loops as shown in Figure 5.10. The loop

Loop # 1 >

Loop #n/f2 I__l

Figure 5.10: Nested loop used in calculating the complexity of loop transformation.

transformation algorithm will find the adjust step for the inner loop (Loop# n/2)
in 7/2 comparisons while the continuity step will be located in one comparison.

Backtracking requires at most n comparisons.
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In the second iteration for the algorithm, n/2 comparisons are required to find
the adjust step, two to locate the continuity step and at most n—1 for backtracking.
This continues till identifying the last loop (Loop# 1). Here the transformation will
locate the adjust step in n/2 comparisons and the continuity step in n/2 comparisons
too. Therefore, the total number of comparisons required to find all the adjust
and continuity steps is (n2 + 2n)/2. While backtracking requires a total of n2/4
comparisons. Then the overall number of comparisons is (3n2 + 2n)/4. Hence, the
loop transformation algorithm has an O(n?) complexity, where n is the number of

statements in the code.

5.2.3 Switch transformation

A statement is a switch if it branches to more than one statement. A condition is
associated with each branch. The branch is taken (executed) if the corresponding

condition is true.

If a statement is switching to a number of statements, then these statements can
be merged into one statement. The condition can either be inclusive or mutually
exclusive. In mutually exclusive conditions, one and only one condition is true.

Whereas, in inclusive conditions, none or at least one condition is true.
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Mutually exclusive conditions

In the case of mutually exclusive conditions, the switch forks to at most 27
branches; where n is the number of boolean variables forming the conditions. To

illustrate this transformation on AHPL descriptions, consider the following general

AHPL code:
Step Data transfers Control transfers
k. stmty; = (m1,ma,...,man)/(51,82,...,59m).
5. stmt,,; = (T, 29, ,2)/(t, ta, .., 1),
S3. stmt,,; = (Y ¥25-- -, Yp)/(u1, ug, ... yUp).
Son. stmts,, ; = (21,22,...,29)/(v1, 09, ... ) Ug)-

In AHPL, more than one register transfer operation can take place in a single
control step. Moreover, these register transfers can be conditionally controlled.
Thus, a data transfer operation will only be executed if the corresponding condition
is true. Therefore, the above code can be transformed to a more compact form as

follows,

k. stmi; stmts, * my; stmt,, * my;... s Stmitg,, * Mon;
= (Timy, ..., zmy, yima, ... ypma, ..., 2y Mo, ..., ZgMan )/
(t;,...,t,,ul,...,u,,,...,vl,...,vq).

The conditional branch in the transformed statement is the and operation be-

tween the switch conditions and the conditions of the branches. Figure 5.11 shows
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Figure 5.11: Switch transformation of an If- Then-Else statement.

the switch transformation technique applied to If-Then-Else statement.

Lemma 2 A memory conflict free switch with n-boolean variables forming 2" mu-

tually exclusive conditions is reduced by 2" Csteps.

Proof: The total number of CSteps forming this switch is 2% + 1 (the condition
statement + 2" branches). If there is no memory conflicts between the branches

and the switch, then these branches are merged into the switch. This results in a

code reduction of 2" CSteps. »

Lemma 3 A switch with n-boolean variables forming 2" mutually ezclusive condi-

tions is reduced by at least 2" — 1 CSteps.

Proof: As in the above lemma, 2" branches are formed. In the case of memory

conflict free condition we achieve a reduction by 2" CSteps. In the presence of
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memory conflicts, two CSteps are needed, one to evaluate the conditions and the
other to perform the corresponding register transfer operation. A total of 2" — 1

CSteps are saved. "

Inclusive conditions

Unlike mutual exclusive conditions, inclusive conditions are independent. This
is to say that the variables forming the conditions are not related. Moreover, the
number of conditions forming the conditional branch in an AHPL statement is not
limited. Thus, if none of the conditions is true, the next AHPL statement in sequence
is executed. To show the optimization involved in this case, consider the AHPL

statements below:

Step Data transfers control transfers

k. stmty; = (my,ma,....m;)/(s1,89...,5).
kE+1. stmipy; = (...).

8. stmt,, ; => (.’L‘l,.'lfg,...,ﬂ.‘()/(i],tz,...,t1).
2. stmt,,; = (y17y21-"’yp)/(ultu2v"-sup)-
s;. stmt,,; = (21,22, 3)/(V1, 02, .., ).

Because my, my,...,m; are independent conditions, there is a probability that
none of them is true. And therefore, a correct transformation of the above i + 2

CSteps is as follows,



k. stmiy; stmt,, * my; stmi,, *mo;...; stmt,, * m;
= (T1m, .., My, Y1, o YpM, 21y e Zgmy, (M + ..+ 1))/
(tl,...,t,,ul,...,u,,,vl,...,vq,k+ 1).

Now, statement k+1 is part of the control transfer code. If none of the conditions

is true, control branches to &k + 1.

Lemma 4 A memory conflict free switch with k inclusive conditions is reduced by

k +1 Csteps.

Proof: For a switch with k£ independent conditions, % different statements can be
branched to. If none of the conditions is true then a branch to the following state-
ment takes place. A total of k& + 1 branches are available. If none of the branches
has memory conflict, then k + 1 branches are merged into the switch. This results

in reducing the code by k + 1 CSteps. .

Lemma 5 A switch with k inclusive conditions is reduced by at least 1 Cstep.

Proof: As the conditions are independent, one or more branches can be taken at the
same time. Moreover, all the branches can be taken when all conditions are true. In
the extreme case of memory conflicts between all conditions, none of the branches
is mergable. The reason is that conditions may all be true. If none of the conditions

is true, the following statement is executed. As the condition of this statement is
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Figure 5.12: Cascade transformations at two level switches.

disjoint with the conditions of the branches, this statement is merged with one of

the branches. Therefore, at least one CStep is saved. n

The switch transformation, in the case of inclusive conditions is more general
than the case of mutual exclusive conditions. In fact, mutual exclusiveness is a

special case of inclusive conditions.

The switch transformation is applied recursively. Therefore, a branch of a switch
statement can also be another switch statement. For example, in the case of two-
level switching, the branches in the second level are merged into the switch of the
first level. A new condition set is formed from the two sets. The first set is the set
of conditions in the first level switch excluding the condition that causes branching
to the second level switch. The other set is formed by ending the excluded condition

with the set of conditions in that branch. This is illustrated in Figure 5.12.

The switch transformation algorithm is given in Figure 5.13. The algorithm is

called by the main program once a statement with at least one conditional expression



Procedure Switch_Transformation(S i)
Begin_Procedure
Form the set of conditions C
C={c.cpncihi 2 IBout;|
FOR eachcy € C
IF (Sy has no memory conflict with §;) THEN
Switch_Transfornwtion(Sk)
Merge Sy * ¢y into S;
END_IF
END_FOR
End_Procedure

Figure 5.13: Algorithm for switch transformation.

is found. The set of conditions (C) in this statement is formed. For every condition
¢ € C, if the corresponding statement has no memory conflict, then the statement
can be merged into the switch statement. The execution of the child statement
is controlled by the truth value of ¢;. The algorithm continues scanning AHPL

statements and merging them whenever possible.

To illustrate how the algorithm works, consider the AHPL model for the bubble
sort example after loop transformation. Two forks are identified in the flow chart
of Figure 5.14(a). One in Step 2 and the other in Step 5. From Step 2, C contains
{t > j,~ (i > j)}. If the condition 4 > j’ is true, we proceed with Step 4. Step 3
is called when the condition ‘~ (¢ > j)’ is true. Step 4 has no memory conflict with
Step 2. The procedure is recursively called until all conditional expressions in Step 4

are processed. Thus, Step 4 is merged into Step 2, conditional on i > 7’ Then
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Figure 5.14: Flow chart illustrating switch transformation in bubble sort.

Step 3 is merged into Step 2. A dead end (stop) is achicved by a transfer back to

the same state.

Applying the algorithin to the switch at Step 5, a conditional branch forks to
Steps 6 and 9.1. Data transfers in these steps are converted to destination controlled
conditional transfers in Step 5 of Figure 5.14(b). Therefore, Step 6 which contains
the transfer ‘¢ < i — 1’ is moved to Step 5 and is executed if 4 < j’. The same
transfer is applied to the transfer in Step 9.1. Figure 5.14(b) shows the flow chart

of the bubble sort AHPL model after switch transformation.
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To find the complexity of this transformation, let us assume a code with s
switches. In the case of disjoint switches, the algorithm processes each switch in-
dividually and merges the corresponding branches if there is no memory conflict.

Therefore, the transformation will be applied s times. Hence, the complexity is O(s).

5.3 Illustrative examples

The transformation algorithms were explained and illustrated with the bubble sort
example. In this section, we shall illustrate the entire synthesis process on two new
examples. Initially the behavioral model is given; then, the translation step into
BRPN and the generation of CRTL are shown. The first example is the greatest

common divisor (ged) benchmark test [DR92]. The algorithm for ged is:

x=4

y=5

while(z! = y) {
flz<y){y=y-=}
i {= }

The translation of the above gcd behavioral description will result in the following

L9
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BRPN intermediate form.

4sx

Ssy

[lylz - sy]S1

[lxly — sz]S52

[lzly > lizly < 2lzly! = 0}SO
Izlyt=0

q.

The second step is to obtain the CRTL code from the BRPN description. The
outcome of this step is the following:

(-1,0) 1: x=4

(-1,1) 2: y=5

(-1,2) 3: if y!=x then 5
(-1,3) 4: Deadend.

(0, 0) 5: if y>x then 9
(0, 1) 6: if y<x then 11
(0, 2) 7: if y!=x then 5
(0, 3) 8: goto 4

(1, 00 9: y=y-x
(1, 1) 10: goto 6
(1, 2) 11: x=x-y
(1, 3) 12: goto 7

Then, following the application of software optimization, Steps 8, 10 and 12
which are unconditional branches are deleted. Steps 7, 9 and 11 are modified to
branch to Steps 4, 6 and 7 respectively. Steps 3 and 7 are redundant. Thus, Step 7
is deleted and the code is modified. The partially optimized code is as follows:
(-1,0) 1: x=
(-1,1) 2: y=5
(-1,2) 3: if y!'=x then 5
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Figure 5.15: Switch transformation in the ged example.

(-1,3) 4: Deadend.

(0, 0) 5: if y>x then 9

(0, 1) 6: if y<x then 11 else 3
(1, 0) 9: y=y-x; goto 6

(1, 2) 11: x=x-y; goto 3

The repetitive application of the switch transformation leads to the merging of
Steps 3, 5 and 6 into one CStep. Meanwhile, the register transfer operation in Step 9
is translated into a destination controlled conditional transfer ‘Yr(y>z)=y-—2a'
Similarly, Step 11 is transformed into ‘z*(y < x) = x—y'. Since there is no memory
conflict in Steps 1 and 2, they are merged. Figure 5.15 shows these transformations.
The ged algorithm finishes when y and x are equal. Therefore, a finish signal is

introduced. This signal is true only when y = .

The optimized AHPL model for the gcd example is given below. All conditional
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transfers are destination controlled transfers.

1 x=4,y=5;=>(5).
5 yx(z>y)=y-zmrx(z<y)=z-y;
finishx (y = z) = \1\; => ().

A more complex example is the traffic light controller (tlc) benchmark test

[DR92]. The high level description of tlc is:

current_state=newstate
case current_state of
0 : newHL=4; newFL=6;
if (cars==1)and(timeoutL==1) then
newstate=4; newST=1;
else
newstate=0; newST=0;
end_if
4 : newHL=2; newFL=6;
if (timeoutS==1) then
newstate=0; newST=0;
else
newstate=6; newST=0;
end_if
2 : newHL=6; newFL=4:
if (cars==0)and(timeoutlL==1) then
newstate=6; newST=0;
else
newstate=2; newST=0;
end_if
6 : newHL=6; newFL=2;
if (timeoutS==1) then
newstate=0; newST=1;
else
newstate=6; newST=0;
end_if
7 : newstate=0; newHL=6;
newFL=0; newST=0;
end case
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The corresponding BRPN code is:

In sc

[6 sn 0 st]S15
[0 sn 1 st]S14
[2 sn 0 st]S13

[6 sn 1 st]S12

{1 11=12 1 11<>13]S1i

[6 sn 0 st]Si0

{2 sn 1 st]S9

[0 sn 0 st]S8

[4 sn 1 st]S7

{1 11=7 1 11<>8]S6

[0 sn 0 sh 0 sf 0 st]S5

[6 sh 2 sf 1 1s=14 1 1s<>15]S4
[6 sh 4 sf 0 1r=12 0 1r<>11]S3
[2 sh 6 sf 1 1s=9 1 1s<>10]S2
[4 sh 6 sf 1 1r=6 1 1r<>8]S1
[0 1c=1 4 1c=2 2 1c=3 6 lc=4 7 1c=5]S0
q

The AHPL model extracted from the above BRPN code is a 63 AHPL state
model. Due to the length of the AHPL code, its flow chart is illustrated in Fig-
ure 5.16. The switch transformation algorithm is run on the tlc AHPL model. A

two CStep AHPL model is accomplished and is given in Figure 5.17.

5.4 Conclusion

In this chapter we described the optimization techniques that are used to produce
an RTL description with a minimum number of states. Software optimization tech-

niques such as common sub-expression and unconditional branch elimination, are
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Figure 5.16: Flow chart representing the partially optimized AHPL machine of tlc.
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used. The algorithm for these techniques are given. The application of these tech-

niques was also demonstrated on several examples.

The novelty of this work is hardware specific optimization techniques. Two such
techniques namely: loop transformation and switch transformation, are proposed.
The algorithms developed for these transformations and their complexities are also

presented.

The techniques described are illustrated with three examples, bubble sort, ged

and tlc. Optimized AHPL models are generated.
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MODULE : TLC.

MEMORY : H{3}; F{3}; N{3}; c{8}; T; R; L; S.
BUSES : CO; C2; C4; C6; C7.

EXINPUTS : RESET; CLK.

BODY SEQUENCE:CLK.

i C<=N.

2 co="c{o}&"c{1}z"c{2};
H<=\1,0,0\*C0; F<=\1,0,0\*C0;
N<=\1,0,0\*(CO&RLL) ; T<=\1\*(CO&R&L) ;
N<=\0,0,0\*(C0&"(R&L)); T<=\0\*(CO&~(R&L));

C4=C{0}&"C{1}&"C{2};
H<=\0,1,0\*C4; F<=\1,1,0\*C4;
N<=\0,1,0\*(C4&S); S<=\1\*(C44S);
N<=\1,1,0\*(C4&"S); S<=\0\*(C4%"S);

c2="c{0}&xC{1}&"Cc{2};
H<=\1,1,0\*C2; F<=\1,0,0\*C2;
N<=\1,1,0\*(C2&"R&L); T<=\1\*(C2&~R&L):
N<=\0,1,0\*(C2&~ ("R&L)); T<=\0\*(C2&~ (~“R&L));

Cc6=C{0}&C{1}&£~Cc{2};
H<=\1,1,0\*C6; F<=\0,1,0\*C6;
N<=\0,0,0\*(C6&S); T<=\1\*(C6&S);
N<=\1,1,0\*(C6&"S); T<=\0\*(C6&"S);

C7=C{0}&c{1}&C{2};
H<=\0,0,0\*C7; F<=\0,0,0\*C7;
T<=\0\*C7; N<=\0,0,0\*C7;
=> (1).

ENDSEQUENCE
CONTROLRESET(RESET) /(1) .
END.

Figure 5.17: AHPL description of tlc after optimization.



Chapter 6

Analysis and Comparison

This chapter describes, analyzes, and compares the HLS methodology developed
in this thesis with previously reported systems. This comparison will be carried
using some benchmark tests from the 1992 High-level Synthesis Workshop [DR92]
and other circuits. The rest of the chapter is organized as follows: Section 6.1
analyzes the different tasks in the HLS system presented in this work. Details of

the comparison is given in Section 6.2. Section 6.3 concludes the chapter.

6.1 Analysis of HLS system

The HLS system proposed and developed in this work consists of three major tasks:

BRPN translation, CRTL generation, and CRTL optimization. These tasks are

88
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integrated as illustrated in Figure 3.1. The system was implemented in the C pro-

gramming language.

The behavioral description of a digital system is first translated into BRPN. This
behavior is modeled in a C-like description. An extended version of the UNIX b¢
utility is used to compile the input behavioral specification into BRPN. bc is an in-
teractive arithmetic language processor that outputs an RPN representation. Other
constructs such as repeat-until, if-then-else, and case are also translated into BRPN.
Logical operators like and and or are mapped into BRPN. Systematic procedures to
map these constructs and logical operators are implemented. The behavioral models
of these constructs and their corresponding BRPN were presented in Figures 3.4,

3.5, 3.6, 3.8, 3.10 and 3.11.

The next task accomplished by this work is the generation of RTL from BRPN.
The generated structural description is the Canonical RTL (CRTL), where each
step is limited to one statement. This CRTL is a graph-based representation. A
procedure to generate CRTL descriptions from BRPN descriptions has been imple-
mented. The algorithm used in this task is presented in Figure 4.2. The complexity
of the algorithm is O(n); where n is the number of tokens in the BRPN code. The
algorithm builds up a linear linked list data structure. The data structure created
is shown in Figure 4.4. This data structure is developed for experimental purposes.

More efficient data structures can be investigated.
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The format of the CRTL code has a simple structure. It simply consists of state-
ments. A statement can either be a data operation and an unconditional branch, or
a conditional branch. Then several optimization techniques are performed in order
to reduce the RTL description to a minimum number of control steps. The opti-
mization strategy followed in this work consists of: software optimization techniques
and hardware specific optimization techniques. Initially, compiler like optimization
techniques are used. Two commonly used techniques are applied: unconditional
branch elimination and common sub-expression (redundant code) elimination. The
algorithms developed to accomplish these optimizations have a quadratic complexity

in the number of AHPL statements.

In hardware specific optimization, two techniques are developed. These tech-
niques rely on the hardware specific features. They are loop transformation and
switch transformation. The algorithms developed for these transformations are
shown in Figures 5.6 and 5.13. The complexity of the loop transformation algorithm
is O(n?) where n is the number of statements in the code. While the complexity of
the switch transformation algorithm is O(s) where s is the number of switches in

the code.

The final step in our HLS system is the generation of the AHPL code from the
optimized CRTL. This AHPL code is fed to an AHPL silicon compiler to generate
the physical description (layout). The VLSI layout of the control unit of the bubble

sort circuit is given in Figure 6.1. The transistor level circuit is extracted from the
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Figure 6.1: Layout of bubble sort control circuit.
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layout and simulated to verify the correctness at layout level. The output of the

circuit level simulator is shown in Figure 6.2.

= . L L R - . Yue Aup 24 15:51:14 1K)
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Figure 6.2: Transistor-level simulation results of bubble sort control circuit.

6.2 Comparison

The results of generating concise RTL code of digital systems modeled in HLL are
presented here. Benchmarks from [DR92] are used. The benchmark circuits used are
traffic light controller (tic), greatest common divisor (ged), and differential equation
(DiffEq). The bubble sort (BubSrt) model is also used to study the situation of
having memory conflicts in the AHPL code. The generated circuits are compared
with those in {Cam91], [ORJ92], and [AS94]. The comparison is with respect to the

number of CSteps required.
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A digital system can be modelled as a finite state machine (FSM). While RTL
models consist of control steps (CSteps). Each CStep may hold one or more states
in the corresponding FSM. For example, a 3-bit incrementer is modeled with eight

FSM states; while only one control step is required to model it in AHPL.

During optimization, transformation algorithms search for possible merging of
CSteps among the unoptimized RTL statements. This optimization process reduces
the number of CSteps as well as the number of logic components used in the control
logic; the overall logic may also be minimized. In Table 6.1, the first column (Before
optimization) shows the hardware resources consumed by the control logic in the
unoptimized RTL description. The columns titled (CSteps) hold the number of
control steps which correspond to the number of flip-flops. The consumed logic
is given in the columns titled Logic Units. The logic components used are: 4-bit
comparator (Comp), and some logic gates (And, Or). The second column (After

optimization) shows the resources allocated based on the optimized code.

Circuit Before optimization After optimization
CSteps Logic Units CSteps Logic Units

TLC 63 | 36And,170r,3comp 2 10r

GCD 9 8And,40r,4comp 2 10r

DiffEq 19 4And,20r,2Comp 2 10r

BubSrt 18 10And,4or,5comp 6 2And,30r,3Comp

Table 6.1: Control logic in unoptimized and optimized RTL.

Software as well as hardware optimization techniques are performed on each
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circuit. Exploiting hardware special features has resulted in more optimized models.

This is illustrated in Table 6.2.

Circuit | Unoptimized | Software | Hardware
TLC 63 47 2
GCD 9 7 2
DiffEq 19 17 2
BubSrt 18 14 6

Table 6.2: The number of CSteps at different stages of the HLS system.

In the tlc benchmark test, the unoptimized code has 63 CSteps. The application
of software optimization had reduced the number of CSteps in the code by 16 CSteps.

While the application of hardware specific optimization had resulted in a 2-CStep

AHPL model.

The results obtained in this work are compared with those reported in literature.
In Table 6.3, the columns titled Path, DLS, and LBS give the number of states
obtained by the scheduling algorithms reported in [Cam91}, [ORJ92], and [AS94]
respectively. The last column titled HSO in the table, holds the number of states
obtained by the application of the optimization techniques developed in this work.
The experimental results show a reduction in the number of states ranging from 50%
for DiffEq to 75% for TLC. This reduction was mainly a consequence of hardware

specific optimization.

Another measure to test the quality of the optimization techniques is to calculate



Circuit | Path | DLS | LBS | HSO
TLC 8 7 5 2
GCD 2 2 2 2
DiffEq 4 3 2
BubSrt | - - - 6

Table 6.3: Experimental vs literature results.
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how much reduction is achieved in the total area of the chip. Table 6.4 illustrates

this. The numbers in the first three columns are in A2, The figures in the first column

Circuit | Unoptimized | Software | Hardware | -%
TLC 653,632 562,832 | 223,644 | 65.4
GCD 971,152 960,480 | 598,096 | 38.4
DiffEq 2,712,544 | 2,602,112 | 2,486,112 | 8.3
BubSrt | 1,813,312 | 1,586,848 | 1,427,728 | 21.3

Table 6.4: The areas of test circuits at different stages of the HLS system:.

are the areas of the test circuits before any optimization is performed. The second

column titled Software holds the areas after the application of software optimization.

The (Hardware) column shows the areas of the optimized circuits. The relative

percentage reduction in each model is shown in the last column (-%). For example,

the total area of the optimized AHPL code for the TLC benchmark test is 223,644 2.

The area of the unoptimized model is 653,632 A2. This gives a percentage decrease

in the total area by 65.8%.

In Section 5.2, we stated that the chance for the silicon compiler to perform logic

optimization increases as more logic is combined in a single CStep. Table 6.5 gives
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the percentage decrease in area at different stages of our HLS system. The figures

Circuit | Unoptimized | Software | Hardware
TLC 57.2% 57.7% 74.8%
GCD 13.6% 13.8% 16.8%
DiffEq 20.2% 20.1% 20.6%
BubSrt 13.1% 19.8% 22.8%

Table 6.5: The logic optimization performed by AHPL silicon compiler.

in each column present the percentage decrease in area when the logic optimization
of AHPL silicon compiler is performed. For example, in the unoptimized tlc model,
the AHPL silicon compiler accomplished 57.2% reduction in the total area. This
reduction is due to logic optimization only. The application of software optimization
has reduced the number of CSteps as discussed earlier. Consequently, the logic per
CStep is increased. Therefore, the chance for the AHPL silicon compiler to reduce

the circuit area also increased. As seen in the second column (Software) a 57.7%

reduction is accomplished.

Finally, the application of hardware specific optimization has further reduced the
number of CSteps. Thus more logic is combined into a single CStep. The AHPL
silicon compiler was able to perform more logic optimization. A reduction of 74.8%

in the circuit area was reached. This is mainly due to combining more logic in one

CStep.




6.3 Conclusion

The experimental results were collected by running the proposed optimization tech-
niques on some benchmarks. A reduction upto 75% in the number of control steps
was reached. This is compared to the results of others work. The situation of hav-
ing memory conflicts in AHPL code was also studied. The optimization techniques
developed were able to resolve memory conflicts and reduce the number of control

steps in the initial AHPL model.

Another quality measure of our HLS system was to calculate the reduction in
the total area of the chip. Experimental results showed that a reduction in the chip
area ranging from 8.3% to 65.4% was achieved. This is mainly due to exploiting

hardware special features.

Moreover, we observe that as more logic is combined in a single CStep, the silicon
compiler has a greater chance to perform logic optimization. Table 6.5 showed
that the percentage reduction in the area increases as more CSteps were combined.
And the most reduction was obtained after the application of hardware specific

optimization.



Chapter 7

Conclusion and Future Work

High-level synthesis (HLS) is the process of translating an input behavioral speci-
fication of a digital system into hardware. In this work we presented a high-level
synthesis system which accepts as input a behavioral specification in a subset of
the C language and generates optimized RTL descriptions in the AHPL language.
We introduced a new stack intermediate form expressed in blocked reverse polish
notation (BRPN). BRPN serves as a primary intermediate form from which other
internal representations are extracted. The simplicity of the stack abstract data
type made the generation to/from BRPN very efficient and easy. The translation of

behavioral models into BRPN is described in Chapter 3.

The target AHPL description is derived in two steps. First a Canonical RTL

(CRTL) description, where each step is limited to one statement, is extracted from
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the BRPN. Then, in the second step, the CRTL is optimized to produce a compact
AHPL description with minimum number of CSteps. In Chapter 4, the generation

of CRTL from BRPN and the extraction of AHPL models were described.

The main tasks in HLS systems are: scheduling and allocation. In scheduling,
operations are assigned to control steps. The objective in scheduling is to minimize

the time required for program completion.

In this work, software optimization techniques are used. Unconditional branch
elimination and code factorization are two techniques applied. Section 5.1 discussed

these software optimization techniques.

Besides the well known compiler-like optimization technicues, our scheduler ex-
ploits the hardware specific features of the AHPL language to perform suitable
optimization, yielding a schedule with minimum number of CSteps. Experiments
on benchmark tests show sizeable reduction in the number of CSteps compared to

other reported systems.

The optimization techniques developed in this work were tested. The compar-
ison was carried using benchmark circuits. The comparison results were given in

Chapter 6.

In this research, we were concerned more with the quality of results rather than

the quality of tools and techniques developed. Though all algorithms have low
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polynomial complexity, they can still be improved and refined. The places where

improvement can take place are discussed next.

The interface between the different steps in the proposed HLS system is not

yet automated. Therefore, these steps can be interfaced together to automate the

propagation from one step to the other.

The behavioral description language used is an extended version of UNIX utility
called bc. bc resembles C language but it does not define some HLL constructs
such as Case construct. Therefore, a new behavioral description language can be

developed for this purpose. Otherwise, it is sufficient to enhance b¢ to define other

HLL constructs and logical operators.

As shown in Chapter 4, the internal data structure developed in this work uses
two types of links. One type is used to keep track of the physical proximity of the
statements. The other type is for proper transfer of control. This is because our
intention was to develop a data structure for experimental purposes. More efficient

data structures can be implemented using one type of link.

In this work, we exploited some specific hardware characteristics. Other hard-
ware characteristics can be investigated and exploited. The algorithms proposed
for hardware specific optimization can be enhanced to provide global optimization.
Moreover, the goal of the techniques developed is to minimize the number of control

steps. However, new techniques exploiting the hardware special attributes such as
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parallelism and pipelining, can be developed to optimize the logic within the control

step (data path logic).

In current implementation, we assume unlimited hardware resources and a single
port memory. Upgrades to allow the specification of resource constraints can easily

be accommodated; instead of checking for memory conflicts only, one also has to

check for other resource conflicts.



Appendix A

Grammar of the C-like HLL

The translation of HLL descriptions to BRPN is a language to language translation.
The HLL description language used in this HLS system is a C-like language. This
language is a subset of C language. The definition of the language in BNF is given
in this appendix.

program : statement

statement ¢ expression

IF ‘(’ expression ‘)’ statement

IF ‘(’ expression ‘)’ statement ELSE statement
WHILE ‘(’ expression ‘)’ statement
FOR ‘(’ expression ‘;’ expression
statement

| REPEAT statement UNTIL ‘(’ expression ‘)’ *;°
| CASE ‘(’ expression ‘)’ ‘:’ statement

| identifier ‘:’ statement

(4

;? expression )’

expression : binary { ‘;’ binary}

binary : identifier ‘=’ binary
identifier ‘+=’ binary
identifier ‘-=’ binary
identifier ‘%=’ binary
identifier ‘/=’ binary
identifier ‘Y=’ binary
identifier ‘"=’ binary
binary ‘==’ binary
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unary

primary

binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
unary

‘<=’ binary
‘>= binary
‘1= binary
‘<’ binary
‘>? binary
‘+? binary
‘-’ binary
‘¥’ binary
‘/’ binary
‘%4’ binary
‘"’ binary

‘+4’ identifier

¢

==’ identifier
primary

identifier
constant
“(’ expression ‘)’

103



Bibliography

[AS94]

[Cam91]

[CBH*91]

[CR89]

[DN89]

[DR92]

[HL91)

[KM91]

[KM92)

Hassan F. Al-Sukhni. A C-based High-Level Synthesis System. Master
Thesis, KFUPM, January 1994.

Raul Camposano. Path-Based Scheduling for Synthesis. IEEE Trans-
action on CAD, 10(1):85-93, January 1991.

R. Camposano, R.A. Bergamaschi, C.E. Haynes, M. Payer, and S.M.
Wu. The IBM High-level Synthesis System. In High-Level VLSI Syn-
thesis, Editors Raul Cemposano and Wayne Wolf, Kluwer Academic
Publishers, pages 79-104, 1991. )

Raul Camposano and Wolfgang Rosenstiel. Synthesizing Circuits From
Behavioral Descriptions. IEEE Transaction on CAD, 8(2):171-180,
February 1989.

Srinivas Devadas and Richard Newton. Algorithms for Hardware Alloca-
tion in Data Path Synthesis. IEEE Transaction on CAD, 8(7):768-781,
July 1989.

Nikil Dutt and Champaka Ramachandran. Benchmarks for the 1992
High Level Synthesis Workshop. Technical Report no. 92-107, October
1992,

Y. Hsu and Y. Lin. High Level Synthesis in the THEDA System. In
High-Level VLSI Synthesis, Editors Raul Camposano and Wayne Wolf,
Kluwer Academic Publishers, pages 283-306, 1991.

David Ku and Giovanni De Micheli. Synthesis of ASICs with Hercules
and Hebe. In High-Level VLSI Synthesis, Editors Raul Camposano and
Wayne Wolf, Kluwer Academic Publishers, pages 177-203, 1991.

D. Ku and G. De Micheli. Relative Scheduling Under Timing Con-
straints: Algorithms for High-Level Synthesis of Digital Circuits. JEEE
Transaction on CAD, 11(6):696-718, June 1992.

104




[Mas81]

[MPC90)

[NON91]

[ORI92]

[Par84]

[Pau91]

[PG87]

[PK89a]

[PK89b]

105

M. Masud. Modular Implementation of a Digital Hardware Automation

System. Ph.D dissertation, Department of EE, University of Arizona,
1981.

Michael C. McFarland, Alice C. Parker, and Paul Camposano. The
High-Level Synthesis of Digital Systems. IEEE proc., 78(2):301-318,
February 1990.

Y. Nakamura, K. Oguri, and A. Nagoya. Synthesis from Pure Behavioral
Descriptions. In High-Level VLSI Synthesis, Editors Raul Camposano
and Wayne Wolf, Kluwer Academic Publishers, pages 205-229, 1991.

K. O'Brien, M. Rahmouni, and A. A. Jerraya. A VHDL-Based Schedul-
ing Algorithm For Control-Flow Dominated Circuits. IMAG/TIM3
Technical Report, 1992.

Alice C. Parker. Automated Synthesis of Digital Systems. IEEE Design
and Test, pages 75-81, November 1984,

P. Paulin. Global Scheduling and Allocation Algorithms in the HAL
System. In High-Level VLSI Synthesis, Editors Raul Camposano and
Wayne Wolf, Kluwer Academic Publishers, pages 255-281, 1991.

Barry Michel Pangrle and Daniel D. Gajski. Design Tools for Intelligent
Silicon Compilation. IEEE Transaction on CAD, CAD-6(6):1098-1112,
November 1987.

Pierre G. Paulin and John P. Knight. Algorithms for High-Level Syn-

thesis. IEEE Design and Test of Computers, pages 18-31, December
1989.

Pierre G. Paulin and John P. Knight. Force-Directed Scheduling for the
Behavioral synthesis of ASIC’s. IEEE Transaction on CAD, 8(6):661-
679, June 1989.

[PKPW91] A. Parker, K. Kucukcakar, S. Prakash, and J. Weng. Unified System

[Saig2]

[SBK93]

Construction (USC). In High-Level VLSI Synthesis, Editors Raul Cam-

posano and Wayne Wolf, Kluwer Academic Publishers, pages 331-354,
1991.

Sadiq M. Sait. Integrating UAHPL-DA System with VLSI Design
Tools to Support VLSI DA Courses. IEEE Transaction on Education,
35(4):321-330, November 1992.

Sadiq M. Sait, Muhammad S. Benten, and Asjad M. Khan. ASIC Design
from UAHPL Models. ICM proceedings, pages 237-144, December 1993.




M

[THS6]
[TKKS89]
[Ti87]

[TS86]

[Wako1]

[WTL91]

106

Fur-Shing Tsai and Yu-Chin Hsu. STAR: An Automatic Data Path Al-
locator. IEEE Transaction on CAD, 11(9):1053-1064, September 1986.

Toshiaki Tanka, Tsutomu Kobayashi, and Osamu Karatsu. HARP: For-
tran to Silicon. IEEE Transaction on CAD, 8(6):649-660, Junc 1989.

Howard Trickey. Flamel: A High-Level Hardware Compiler. IEEE
Transaction on CAD, CAD-6(2):259-269, March 1987.

Chia-Jeng Tseng and Daniel P. Siewoirk. Automated Synthesis of Data
path in Digital Systems. IEEE Transaction on CAD, CAD-5(3):379-
395, July 1986.

Kazutoshi Wakabayashi. Cyber: High-level Synthesis System from Soft-
ware into ASIC. In High-Level VLSI Synthesis, Editors Raul Camposano
and Wayne Wolf, Kluwer Academic Publishers, pages 127-151, 1991.

W. Wolf, A. Takach, and T. Lee. Archetictural Optimization Methods
for Control-Dominated Machines. In High-Level VLSI Synthesis, Editors

Raul Camposano and Wayne Wolf, Kluwer Academic Publishers, pages
231-254, 1991.



Vita

Abdulaziz Sultan Al-Mulhem was born in Muharaq, Bahrain, on December 16,
1967. After graduating from Na’eem Secondary School, Bahrain, he attended King
Fahd University of Petroleum and Minerals at Dhahran, Saudi Arabia. He received
the degree of Bachelor of Science with highest honors in Computer Engineering in
June 1990. In 1990, he was employed in the Computer Engineering Department of
the College of Computer Science and Engineering at the same university as a Gradu-
ate Assistant. He received the degree of Master of Science in Computer Engineering

from the same university in June 1994.

107



