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Chapter 1

Introduction

The design of current VLSI circuits is of such high complexity that working with
the full design on the detailed level is not practical. The design process of an
integrated circuit (IC) can be divided into three sub-tasks so that it is easy to
manage. First, system design which includes the description of the system in a
structural form. Second, logic design which includes gate level description, logic
assignment, and mapping the design into the cell library. Third, physical design
which includes placement, routing, mask generation, and fabrication. Figure 1.1
represents a description of the three levels of the design process on an IC. This

thesis is concerned with the placement problem presented at the physical stage.



System Design

- Structural representation
of the design

Logic Design

- Gate level description
- Logic assignment
- Mapping to cell library

Physical Design

- Placement

- Routing

- Mask generation
- Fabrication

Figure 1.1: A three levels representation of the IC design process.



1.1 The Placement Problem

"The placement problem for VLSI design can be defined as the process of assigning the
modules or circuit elements to suitable physical locations on a layout surface. Suit-
able locations are those locations that minimize given objective functions, subject
to certain constraints imposed by, for example, the designer or the implementation

process. The most popular measure of the quality of the placement is the total

wirelength [SY94].

1.2 Standard-cell Design

Designing large and dense VLSI circuits using the full custom design style is very
tedious. Therefore, semi-custom approaches are used to ease the automatic map-
ping of logic level descriptions to mask level. These approaches include gate array,
standard-cell, and general cell design styles. With th;i"help of computer aided de-
sign tools it is possible to automate the entire layout procedure that follows the
logic design step in VLSI design. Applying standard-cell design style has made
this automation possible, combined with efficient software packages for automatic

placement and routing. Figure 1.2 shows a standard-cell layout within a chip.

Standard-cells are logic modules with a predefined internal layout. They have
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a fixed height but different widths, depending on the functionality of the modules.
They are laid out in rows, with routing channels or spaces between rows used for
laying out the interconnections between the chip components. Standard-cells are
usually designed such that the power and ground interconnects run horizontally
through the top and the bottom of the cells. When the cells are placed adjacent
to each other, these interconnects form a connected track in each row. The cell’s
input and output terminals or pins are accessible along the top or bottom edge (or
both). To connect them, interconnects are spread through the routing channels. In
order for connections to go from one row to another, they either run through vertical
wiring channels at the edges of the chip or through feed-through paths which may
be contained in existing cells, or require new cells to carry the connections [Bra87).

These feed-through cells are standard-cells with interconnects running through them

vertically.

Layouts using standard-cell design style do not allow easy incorporation of design
requirements such as special cell or pad placement or use of special macrocells such
as ROMs and PLAs. In addition, the restriction of cell placement to rows can lead

to long interconnection distances and use of extra silicon area [PGT78].

On the other hand, layouts using standard-cell design style are more structured.
Furthermore, cells designed using this style have relatively high performance com-

pared to gate array design style. Regarding CAD tools, there are many layout pro-



grams for practical use, which are based on the standard-cell design style [Oht86).

1.3 Cost Functions for Placement

Due to advances in device sizing, small sizes of gates have reduced their switching
delay and driving power. Low driving strength of gates has made the propagation
delays of the interconnects relatively more dominant. So far, on an average, these

interconnect delays have been responsible for roughly haif of the clock cycle.

In the past, the main objectives of most placement algorithms were to minimize
the total chip area and the total estimated wire length for all the nets without regard
to performance aspects. However, in today’s dense CMOS FET technologies and
high performance designs, typically 50-70 % of a circuit’s delay is attributable to
inter-circuit wiring capacitance [DNA+90][SS90]. Large wiring capacitances, besides
degrading the overall performance of the circuit, usually lead to long path problems.
Large interconnect capacitances are usually caused by a “bad” placement. There-
fore, to avoid having placement-related long path problems, there is a great demand
to make the placement procedure aware of the timing requirements of the circuit.
This measure may be needed even at the cost of an increase in the total wire length.
A circuit may, also, exhibit short path timing problems. However, these are easy

to be corrected by the insertion of buffers or by adding metal into the paths in




question [SS90][You90).

In addition to the circuit timing constraints, the placement procedure should

still be constrained by geometric aspects of the problem; that is,

1. the cells should not overlap,
2. they should lie within the boundaries of the chip, and

3. standard-cells should be restricted to rows in predetermined locations.

Prior to the layout step of the design process, the actual propagation delays of
the paths are not known. Therefore, timing problems that may arise from the long

paths after layout are difficult to adjust.

Three ways have been suggested to solve long path timing problems. The first
approach consists of making some changes to the design, for example, reducing the
load on some circuit elements of a certain path. The second approach performs
transistor sizing. The third approach consists of reducing the interconnect delays
to a minimum by imposing timing constraints on the nets and (or) paths. This

approach will make the circuit faster without changing the design [You90].

To make the placement process timing driven, timing constraints should be im-

posed and included into the placement objective(s) as well. For these objectives,



a cost function is defined. The goal of the placement algorithm is to determine a

placement with minimum possible cost.




Chapter 2

Literature Review

2.1 Classification of Placement Techniques

The placement problem is NP complete. Therefore, it can not be solved exactly in
polynomial time [Don80]. For example, for a placement of n modules, the number
of possible permutations of the placement can be as large as n! (in the case where
all modules are identical) [Bra87]. This method is, therefore, impossible to use for
circuits with any reasonable number of cells. Because of this exponential nature of
the problem, exact (globally optimal) solutions can not be achieved in a reasonable
time. Therefore, heuristics must be used to obtain a good placement which meets

a given objective within a reasonable amount of time. The two most important
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placement metrics are routability and timing constraints [Bra87).

‘Two basic approaches were applied in earlier works for the cell placement prob-
lem: constructive placement and iterative improvement [SM91][SS90}. Constructive
placement approaches build a placement in a piecewise manner, where they start
with a seed cell, then remaining cells are constructively selected and placed one (or
a group) at a time until all cells are placed. Iterative improvement algorithms start
with an initial placement and repeatedly modify it in search for a cost reduction.

This iterative search stops when a given termination condition is met [SM91].

In a constructive placement algorithm a seed cell is selected and placed in the
chip layout area. Then other cells are chosen one or group at a time, (for example,
in order of their connectivity to the already placed cells), and are placed at an
empty location near the placed cells, such that the cost function is minimized. Such
algorithms are generally very fast, but may result in poor layouts. Because of their
speed, they are now used for generating initial placements for iterative improvements
algorithms where the value of the objective function gets substantially improved

[SS90]. Constructive placement algorithm is probably the hardest type of algorithm

to implement [Bra87].

An iterative improvement algorithm generally enhances the present placement in

small steps [Bra87]. In general, it produces good layout solutions but need tremen-
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dous amount of computation time for checking all the constraints for any new point
in the solution space [SS90]. The simplest strategy for iterative improvement is to
interchange randomly selected pairs of cells and accept the interchange if it results
in a reduction in cost. The algorithm continues until there is no more improvement
during a given large number of trials. One way to improve this algorithm is to re-
peat the process many times with different initial configurations in the hope to get

a good solution in one of the trials [SM91].

Another way to classify placement algorithms is whether they are deterministic
or probabilistic. Deterministic algorithms work on the basis of fixed connectivity
rules or formulas, or determine the placement by solving simultaneous equations.
These algorithms will always generate the same layout for a certain placement prob-
lem [PG78]. However, probabilistic (or non deterministic) algorithms work by ran-
domly testing configurations and may generate a different final layout each time
they are run. Constructive algorithms are usually deterministic, whereas iterative

improvement algorithms are usually probabilistic [SM91].

2.2 Placement Algorithms

In general, there are many classes of VLSI module placement algorithms. We will

briefly introduce five classes of placement algorithms which are widely used. These
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are: simulated annealing, mincut, force-directed, numerical optimization, and ge-

netic algorithms [SM91].

Simulated annealing is among the most popular heuristics. It is one of the best
algorithms available in terms of placement quality, but it takes an excessive amount
of computation time. It is derived from the analogy of the process of annealing, or
the attainment of ordered placement of atoms in a metal during slow cooling from

a high temperature [KGV83].

Mincut algorithms rank second in terms of placement quality but would probably
be the best in terms of cost/performance ratio, since they are much faster than
simulated annealing. These algorithms are based on a simple principle: cells that
are densely connected to each other ought to be placed close together. This can be
achieved by repeated partitioning of the given network. The main objective of the
partitioning operation is to minimize the nets cut between partitions. Partitions
are assigned to different areas on the layout surface. By applying this operation

repeatedly on the newly obtained partitions the wire length is minimized [Bre77].

Force-directed algorithms operate on the physical analogy of masses connected by
springs, where the system would tend to come to rest in the minimum energy state,
with minimum tension on the springs. In the context of the placement problem the

forces are proportional to the square of the wirelength. Force-directed algorithms
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have been around since the 1960s and were among the first algorithms to be used for
placement (mainly printed circuit board placement in those days) [FCW67]. A rich
variety of implementations have been developed over the years, including construc-
tive (equation solving) methods for determining a minimum-energy configuration
from scratch and two types of iterative techniques. The first consists of selecting
modules one at a time and determining an ideal location for them from force con-
siderations. The second consists of random/exhaustive pairwise interchange, with

acceptance of the good moves and rejection of the bad moves, on the basis of force

considerations [HWA76].

Placement is an optimization problem, and methods such as Simplex, Quadratic
Programming, and the Penalty Function Method have traditionally been used for
various linear and nonlinear optimization problems. Further, the placement prob-
lem can also be formulated in terms of the quadratic assignment problem, which
can be solved by the eigenvalue method. Accordingly, several papers that use these
techniques have been discussed under the category of numerical optimization tech-
niques. The common feature of all these techniques is that they do not constrain
the modules to rigid points or rows, hence they are more applicable to macro blocks
than to standard-cells or gate arrays, although the solution generated by numer-

ical techniques can be further processed to map the modules to the nearest grid

points [Hal70).
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The last class of algorithms are genetic algorithms, which although invented
in the 1960s [Hol75], were not used for placement until 1986 [Gre85) [Gre87]. The
genetic algorithm is an efficient search and optimization technique for problems with

a large and varied search space, as well as problems with multi objective functions.

The placement problem is represented in the form of a genetic code. This is a
major deviation from conventional placement algorithms that directly apply trans-
formation to the physical layout. The genetic algorithm processes a set of alter-
‘native placements together and creates a new placement for trial by combining
sub-placements from two parent placements. This causes the inheritance and accu-
mulation of good sub-placements from one generation to the next. It also causes the
mixing of the good features of several different placements that are being optimize&
simultaneously. Thus, the search through the solution space is inherently parallel.
This parallelism of the genetic algorithm can, however, be a potential problem in
terms of excessive memory size and CPU time, and unless a clever representation
scheme is devised to represent the physical placement as a genetic code, the algo-
rithm may prove ineffective [SM91]. Table 2.1 is an approximate comparison of the

performance of the algorithms discussed here.
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Numerical optimization
Mincut

Clustering and other
constructive placement

Medium to good
Good

Poor to Medium

Algorithm Result quality Speed

[ Simulated annealing Near optimal Very slow
Genetic algorithm Near optimal Very slow
Force directed Medium to good | Slow to medium

Slow to medium
Medium

Fast

Table 2.1: A rough comparison of the performance of placement algorithms.

2.3 Timing Driven Placement

For the placement problem many approaches have been reported which optimize not

only for wirability, but also for timing. The circuit timing performance is determined

by the maximum clock rate that gives a correct functional response. However, the

maximum clock rate is bounded by the longest path delay present in the circuit.

The path delay is the time needed by a signal propagating along a path between

two input/output pads or storage elements [ID9Q).

One of the earlier approaches to include timing aspects of the design with the

placement procedure consisted of, first finishing the placement, then performing tim-

ing analysis. Individual cells were allowed to change their positions whenever timing

verification indicated that some of the paths did not meet their timing constraints

[DNA+90).
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One possible way to include timing information into the placement stage is to
transform the path-oriented timing constraints into constraints (bounds) on the nets.
This is based on the path margin, called SLACK, which is the difference between
the required arrival time and the actual arrival time at the sink of the path. The
constraint of a net is calculated in terms of the criticality of the paths involved. The
cells that are connected with tightly constrained nets are placed closer together so
as to satisfy the net bounds and therefore the timing constraints {ID90}, [JKMS87],

[D*87], [HNY87], [OI+86].

More recent strategies share the idea of limiting net capacitance. In one tech-
nique, the placement program is directed to individually shorten those nets contained
in critical paths as determined by timing analysis. However, because placement al-
gorithms based on capacitance limits optimize nets without regard to paths (which
are combinations of nets), they do not address the fact that timing is not deter-
mined by the behavior of particular nets, but rather by paths [DNA*90]. In other
words, the performance of a design tends to be path-oriented in nature and the
minimization of total net length may not lead to the improvement of the circuit’s
performance [ID90]. The authors of [DNA*90] use the approach of simulated an-
nealing [SSV85], [VK83]. Simulated annealing generally results in placements with

good wirelength and performance.

Another recent approach, also described in [DNA+90] uses a hierarchical tech-
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nique to solve this problem. It uses capacitive weights based on timing analysis
which are recalculated at each level of the hierarchy. In [JK89], a system called
Allegro is developed based on a hierarchical technique. In this approach, linear
programming is used to dynamically optimize the performance of the chip during

placement. It has been tested on Sea-of-Gate designs

In [SCK92], a system called RITUAL is developed to find an approximate so-
lution to the problem by using mathematical techniques and heuristics based on
Lagrangian relaxation. It is solved in two phases: continuous and discrete. An av-
erage irnprovemen.t of 8% to 30% in the interconnect delay were reported compared

to the results of an industry standard simulated annealing based placement package

TimberWolf 5.6 [SL88].

2.4 Placement Routability

"The general routing problem is an NP-hard problem [Bra87]. Therefore, the complex
task of routing all nets of the circuit can be reduced by first performing what is
called loose or global routing, followed by detailed routing. The purpose of the
global routing, also known as topological routing, is to decompose a large problem
into smaller manageable ones. This is done by first assigning nets to routing regions

called channels. Initial assignment of nets to channels helps in reducing wire lengths.



18

Furthermore, the global router can be used to check the routability of the circuit

before subjecting it to time consuming detailed routing.

Conventional routing sequences for standard-cell design would be: (1) channel

definition, (2) global routing, (3) channel (detailed) routing [Bra87).

In standard-cell placement, global routing can be used to determine the required
separation between the cells rows in order to ensure routability of the chip. Chan-
nels between the rows are used to connect the cells. However, vertical wiring is
needed to connect cells placed in non-adjacent rows. This is done by inserting some
feed-through cells. Having to insert feed-through cells complicates the placements,
because it is difficult to know exactly where a feed-through will be needed. Therefore,
the placer has to effectively anticipate what the router will be doing. Furthermore,
the insertion of feed-through cells will perturb the placement which may cause cells

to change rows [Bra87]. This may happen if there is a restriction on the maximum

row length.




Chapter 3

Modeling and Constraints

3.1 Problem Definition

In this work we address the problem of timing driven placement. Given a VLSI
design, with no macro blocks, consisting of modules (cells) with predefined input
and output terminals and interconnected in a predefined way, the task is to design
and implement a placement algorithm to place the modules such that the placement
solution does not violate predefined timing constraints. Furthermore, the standard-
cell design style is adopted in our work. Satisfying timing constraints may in turn
affect the overall wire length of the chip and cause it to increase. Therefore, a

careful representation of the objective function is required so as to balance these

19
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two important constraints. In addition, routability will be taken into consideration
so that the final layout of the design is routable. The main objective of our placement
algorithm is to reduce the wiring delays associated with critical paths by minimizing

their wire length. The objective function adopted is discussed in detail in Section 5.7.

3.2 Inputs and Outputs

The standard-cell design style is adopted in our system. The system takes the

following as inputs:

e A netlist describing the interconnections between the terminals of the modules
of the circuit. Two input formats are accepted by our system, AHPL [MS86]
and VPNR [MCN90| netlists. A brief description is introduced in the next

section,

e The aspect ratio of the chip, that is the ratio of height and width. This gives

the user some control on the final layout shape.

e A standard-cell library that includes the cell’s description consisting of their
delay parameters, dimensions (k, w), and the locations of their terminal points.

The cells used in our design are in 24 SCMOS technology obtained from the

OASIS SCMOS standard-cell library [MCN90].
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¢ Timing information that includes the predicted K most-critical paths and their
SLACKs, the nets covered by those K most-critical paths. This information
is obtained from a pre-placement timing analysis of the circuit. Furthermore,

the placement program is interfaced with the OASIS system [MCN90].

The output of the program is a list of the physical z-y location of each cell in
VPNR format. The generated solution is reported with the remaining SLACK, if
any, and its estimated overall wirelength. The generated solution can then be fed
to the detailed router of the OASIS layout system. This detailed router uses the
left-edge algorithm [HS71] [PDS76]. Following detailed routing, the mask layout of
the circuit is viewed using the MAGIC layout system [MAS+90]. MAGIC allows
viewing and extraction of the circuit for validation. An overview of the design steps

is given in Figure 3.1.

3.3 AHPL and VPNR Formats

AHPL and VPNR netlist formats are two different ways to represent a net list of a
certain circuit. The AHPL [MS86] net list is contained in two main files: the gate
list and the I/O list. The gate list file includes the gate number, gate type, input
link, and output link respectively. An example of such file is given in Figure 3.2.

The I/O list file includes a link number, gate(1) number, gate(2) number, and next
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AHPL or VPNR
Netlist

VPNR
Placed Domain

Figure 3.1: A representation of the design process.

link number. An example of such file is given in Figure 3.3. For example, the gate
list of Figure 3.2 has the gate number ‘123’ which is of type ‘4401’ (type ‘4401’ is
a four inputs AND gate) and it has an input link number 700’ and output link
number ‘1200°. From Figure 3.3, the link number ‘700’ leads to four gates ‘20°, ‘30,
‘22, and ‘34’, which means that gate number ‘123’ has four inputs coming from four
gates, namely ‘20’, ‘30’, ‘22’, and ‘34". The link ‘1200’ leads to one gate ‘124°, which

means that gate number ‘123’ is feeding only one gate, namely ‘124’

The VPNR format has two possible variants of a domain description, placed and
unplaced. A sample file of the unplaced domain is given in Figure 3.4. The first
line begins with the keyword domain begin, followed by the domain name, ezample,

and other domain attributes. The other two lines starting with the keyword profile
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gate-number gate-type in-link out-link

20 4402 300 350

22 4403 120 150
30 4404 10 20
34 4203 60 65
123 4401 700 1200
124 4050 200 456

Figure 3.2: An example of an AHPL gate list file.

link gatel-number gate2-number next-link

700 20 30 400

400 22 34 0
1200 124 0 0

Figure 3.3: An example of an AHPL I/O list file.



domain begin example lib=scmos2.0
profile top (0,0) (0,0) ;
profile bot (0,0) (0,0) ;
iolist

a T: (0,100) pintype=pi

b T: (0,100) pintype=pi
nand B: (0,100) pintype=po
row 1

ai2s INSI1 (a,b,ql)

i4s INSI2 (q1,nand)

domain end example

Figure 3.4: An example of an unplaced domain of a VPNR file.

24

describe the domain shape. The keyword iolist indicates the beginning of the input

and output signals. This part, is then ended with a semicolon. After the semicolon

the keyword row followed by the row number starts the section describing the domain

b

interface. The row description ends with a semicolon, followed by the key word

domain end, followed by the domain name. For the unplaced domain, there is

always exactly one row of cells. On the other hand, for the placed domain, there are

more than one row description of the cells. More details can be found in [MCN90].
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3.4 Timing Issues

The performance of today’s integrated circuits is largely dominated by the intercon-
nects between the modules. In this work, we assume that wiring between the cells
is performed on two metal layers. All vertical wires run on one layer using Metal2,
while all horizontal wires run on another layer using Metall. Metal wires introduce
large capacitance that load the logic modules and significantly change the timing
properties of the design. This significant role of interconnects emphasizes the need
to reconsider traditional physical design tools so that they are performance driven.
In the following sections we present some important timing concepts and introduce
the timing model used in our design for making the placement driven by the timing

constraints of the design.

3.4.1 Timing Analysis Concepts

A path is defined as the sequence of circuit modules that a signal must travel through
from a starting point to an ending point. In synchronous circuits, four types of paths
are defined, depending on the type of the starting and ending points. These are: a
primary input to a sequential cell, a sequential cell to a sequential cell, a sequential
cell to a primary output, and a primary input to a primary output. An illustration

of the path concept is shown in Figure 3.5.
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T Pathi: Ing > C3 ~> SE, E"El
Path2: SEq —> Cy—>Cy~>SE,y

Pathd: sEz -> c‘ -> Out.l
Path4: Ing > C4 -> C3 ~> Quty

Cy Cy
SE, — ¢, Co SEp ]
----- 2\ N\ [T
Clock

Figure 3.5: Four types of paths are defined in synchronous designs.

A short path problem occurs when a signal arrives at its destination too early. On
the other hand, a long path problem occurs when a signal arrives at its destination
too late. The problems caused by long paths are more difficult to adjust after the
design process has been completed, than those caused by short paths. For example,
for the circuit to operate with the same predefined clock period, a short path problem
can be easily solved by inserting some buffer logic along the short path. However, for
a long path problem, more complicated solutions are used as described in Section 1.3.
Because circuit performance is highly depended on long paths, the major objective

in our design is directed toward solving long paths.

Let S(i) be the SLACK of path i, given by
S(¢) = LRAT — T(cells) — T(nets) (3.1)

where,
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LRAT = Latest Required Arrival Time of a signal at its sink,
T(cells) = the switching delay of the cells on that path,

T(nets) = the interconnect delays of the nets on that path.

Then, for a given chip to have a correct performance, it is a necessary condition that
S(%) > 0 for all the paths in the circuit. The path whose SLACK value is most
negative is defined as the most critical path in the design. Therefore, to achieve a
circuit with a correct performance the minimum SLACK has to be maximized by

minimizing critical path delay.

3.4.2 Timing Model

In this section, the delay model used in our design is presented. This delay model is
called the linear model. It assumes that for a given net, when a signal starts from
its source, the sinks will be equally charged at the same time. So, the time needed

for the signal to reach any of the sinks is equal. For a given path 7, the total delay

is computed as follows:

Delay(r) = ) Delay(cell) + Y Delay(net) (3.2)

cellen neter

Before we proceed with a description of the net and cell delay computations, we

first need to introduce the following notations. Let,
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ID; = Interconnect Delay of net 2,
CD; = Overall Cell Delay of cell %,
BD; = Base Delay of cell ¢,

ACL;= Total Load Capacitance on the input pins driven by net i

)

LF; = Load Factor of cell ¢,
C; = Interconnect Capacitance of net i,

R; = Interconnect Resistance of net i,

then, the interconnect delay along net i, which is driven by cell ¢, is computed as

follows:

ID; =LF; xC;+ CixR;+ R; x ACL; (3.3)

The switching delay of a cell i, ignoring the interconnect capacitance is,

CD; = BD; + LF;: x ACL; (3.4)

For any net n, the interconnect capacitance C, and the interconnect resistance

R, are computed as follows:

C» = Area_capacitance + Fringe_capacitance (3.5)

where,

Area_capacitance = (Cmy X Lml + Cprp X Lm2) x w (3.6)

Fringe_capacitance = 2 X ((w + Lm1) X Cfm + (w + Lm2) x Cfm2) (3.7)
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_ (le X Iml+ Rm2 X Lm2)
w

Ry,

(3.8)

where,

Cm1 = Plate Capacitance/Area of Metall,

C fm1 = Fringe Capacitance/unit length of perimeter of Metall,
Cm2 = Plate Capacitance/Area of Metal2,

C fm2 = Fringe Capacitance/unit length of perimeter of Metal2,
R, = Sheet Resistance of Metall,

R.2 = Sheet Resistance of Metal?2,

Lml = Length of Metall,

Lm2 = Length of Metal2,

w = Width of Metall or Metal2 interconnects.

For example, for a given path 7 as in Figure 3.6, the total delay on that path is

computed as follows,

Delay(w) = Cells_Delay, + Interconnect_Delay, (3.9)

where,

Cells_Delay, = CDsg, + CDg, + CDg, + CDg, + CDsg, (3.10)

Interconnect_Delay, = IDgp, + ID¢, + ID¢, + IDg, (3.11)
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Figure 3.6: Linear Delay Model of a path. Path 7 : SE, — C; — Cy — C5 — SE,.
then, for example, the value of the interconnect delay of net C; shown in Figure 3.6

is computed as follows:

ID¢, = LF¢, x C¢, + Ce¢, X Re, + Re, x ACLg, (3.12)
where,

ACLc, = ACL(Cy) + ACL(C3) + ACL(Cy) (3.13)

Based on our assumption that Metall is used for horizontal wires and Metal? is
used for vertical wires, then for net C; we have, L,y = 104+ 5+ 5, and L2 = 20.

Therefore, the interconnect capacitance and the interconnect resistance are,

Ce, = (Cm1 X (1045+45)+Crnax 20) X w+2X ((w+10+5+5) X C fruy+(w+20) X C fn)

(3.14)



_ (Rm1 X (1045 +5) + Rpma x 20)

Re, ”

To complete the computation of Equations 3.12, 3.13, 3.14, and 3.15 let,

ACL(C,) = 0.076 pF,
ACL(C;3) = 0.068 pF,
ACL(Cy) = 0.083 pF,

Cmi =0.26x 107 pF/u?,
Cfm1 =0.82pF/pu,

Cme = 0.15x 10" pF/u?,
Cfm2 = 0.85pF/p,

R, = 0.060 /square,
Ry, = 0.033 /square,

w =3,

then the values of Equations 3.13, 3.14, and 3.15 are:

ACLg, = 0.227 pF
Ce, = 0.0246 + 0.007682 = 0.032282 pF

Ro, =062

then if LFg, = 4.13 ns/pF the value of Equation 3.12 is:

31

(3.15)
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ID¢, = 0.13332 + 0.00002 + 0.0001407 = 0.1335 ns.

From the above example and from experimental results, we observed that the
dominating term in Equation 3.3 is (LF; x C;). The delay due to the value of
(LF; x C;) was big compared to the delay due to the value of the other two terms. The
contact resistance that connects the two layers of interconnects running horizontally
and vertically, has been neglected because the delay due to its value was small

compared to the delay due to the other variables in Equation 3.3.

The computation of C; has included two terms, one for the plate (area) capac-
itance and the other is for the fringe capacitance. For circuits with size of about
250 cells, it has been shown that the fringe capacitance dominates the plate capac-
itance. For example, using the above values of Cp,1, Cina, C fm1, Cfma, and w for a
two pins net ¢ with Lm1 = 1000 4 and Lm2 = 1000 p we find that the values of the

Area_capacitance and the Fringe_capacitance are:
Area_capacitance = (0.26 x 10™* x 1000+ 0.15 x 10™* x 1000) x 3 = 0.123 pF

Fringe_capacitance = 2 X ((3+1000)x0.82x10~*+(3+1000) x0.85x10™%) = 0.335 pF

From this example we can note that the value of the Fringe_capacitance is about

63% more than that of the Area.capacitance.
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3.4.3 Prediction of the Critical Paths

From past layouts of circuits with similar complexity, the average and standard
deviation of net length are estimated for each type of net (2 pin-, 3 pin-,..., n pin-
nets). These are converted to capacitances for the particular technology of the design

at hand.

To simplify the explanation, we shall assume that all cells are single output cells.
Let m = [e1, 0,7, €450+ »Cm+1) be a particular path from cell ¢; to cell Cm+1- Under
the assumption that the nets are statistically independent, the expected delay on

path 7 can be expressed as given in Equation 3.2.

Similarly, the delay variance on path 7 can also be computed as follows,
k
Sz =) (LF!-5}) (3.16)
i=1

where, S? is the variance on the capacitance of net i as estimated from past designs.

Let Tinax be the estimated delay of the longest path in the design, that is,
Thax = m;gx{T,,} (3.17)
A path 7 is called a-critical if and only if,
Trt+a-Sy 2 Thax (3.18)

The parameter a acts as a confidence level. The larger a is, the larger is the
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number of predicted critical paths, and the higher is the probability of including all
potentially critical paths. We will refer to the number of a-critical paths as the K

most critical paths. Reasonable values of o are < 3 or 4.

The algorithm used to enumerate all paths which satisfy Equation 3.18 is inves-
tigated in [AF]. It is a variation of the algorithm reported in [AS85]. The prediction
strategy described in this section achieved a 100% hit ratio with all test cases that
we experimented with.! Nevertheless, one has to be careful as to when such a
strategy is possible. In our case, the variances on net lengths were relatively much
smaller than the overall path interconnect length. However, it may happen that for
design styles other than the standard-cell design style (used in this work) and very
dense and large designs the net length variances would be unacceptably large. For

example, such a phenomenon has been observed in [YSS92] for very dense CMOS

sea-of-gates chips.

Our placement program then computes Equation 3.1 for each of the K reported
critical paths. These values are compared with those reported by the timing analysis
program to verify the correctness of the critical paths so they are free from long path
problems. This means that the operation of our program is very sensitive to the
reported K most critical paths. Therefore, the accuracy of the resulting layout will

heavily depend on the effectiveness of the delay model used by the timing analysis

The critical paths enumerated after placement were a proper subset of the predicted paths.
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program and the correctness of its reported timing information which is supplied to

the placement procedure.

3.5 Wirelength Model

The performance of a certain placement algorithm can be affected by the way it
estimates the wirelength of its nets. In our work, the semi-perimeter method is used
with the assumption that all the routing is done using the Manhattan geometry in
which routing channels are either horizontal or vertical. The semi-perimeter estimate
is one of the most popular and fast methods used for estimating the wirelength of
a net. This method starts by finding the smallest bounding rectangle that encloses
all the pins connected to a net, (see Figure 3.7). Then, the estimated wirelength of

the net is one half the perimeter of its bounding rectangle.

This method works very well for nets with two or three pins, which is the case
for most nets in practical circuits. However, for nets with more than three pins, this
method under-estimates the wirelength. To improve the accuracy of this estimation,
an inflation factor of 20% has been included for nets with more than three pins. This
value for the inflation factor was chosen based on experiments. Using this inflation
factor has resulted in a better estimate for the wirelength. It should be mentioned

that all pins on the cells used in our work are accessible from both top and bottom
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Bounding Rectangle
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Figure 3.7: Bounding rectangle for net with five pins.
sides. This helps in connecting nets with pins on different rows. For example, if
we apply the semi-perimeter method on the nets with different sizes as shown in
Figure 3.8, the resulting wirelength estimate will be:

For the two-pin net in Figure 3.8(a):
Actual =5+ 8 =13
Eistz'mated =5+8=13
For the three-pin net in Figure 3.8(b):
Actual =3 +8+4=15
Estimated =7+ 8 =15

For the four-pin net in Figure 3.8(c):

Actual =8 +3+9=20



37

a) Two pins net, b) Three pins net,
Actual = 13 Actual = 15
Estimated = 13 Estimated = 15

O 0O

¢) Four pins net, d) Five pins net,
Acutal = 20 Actual =25
Estimated = 17 x 1.2=20.4 Estimated = 15x1.2= 18

Figure 3.8: The effect of semi-perimeter estimate on different net sizes.

Estimated =8+ 9 = 17
Estimated with 20% inflation = (8 4+ 9) x 1.20 = 20.40

For the five-pin net in Figure 3.8(d):

Actual =8+2+2+2+3+8=25

Estimated =8 +7=15

Estimated with 20% in flation = (8 + 7) x 1.20 = 18
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To estimate the width of a routing channel, we have used the vertical constraint
graph of that channel as a measure for estimating its width. The length of the longest
path in that graph represents a lower bound on the number of tracks required for
that channel. For example, to estimate the width of a channel, say ¢, we first
build the vertical constraint graph, then find the length of the longest path in that
graph, say Min._tracks. After that, the estimated value of the width of channel ¢,

Channel_width(c) in microns is computed as follows:

Channel_width(c) = Min_tracks x Track-width x Channel. factor

s

where, :
Channel_factor = 8.5,

Track-width = 3p.

The value of the Channel.factor is determined based on some analysis done on
complete layouts (placed and routed) which have been placed by our program and
routed by OASIS. The analysis involved collecting some data of channels width
after routing. For each channel, the actual width after routing is found from the
layout. Then, the actual width is divided by the Track_width (3u) and by the
Min_tracks of the current channel. The result of this division is what we call the
local factor. By averaging the collected data of the local factors we have found that

the Channel_factor is about 8.5. This value accounts for the separation between
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routing tracks, which is determined by the design rules?, and for those extra tracks

that are not included in the vertical constraint graph.

3.6 Placement of Main I/O Pins

The main input and output pins of the circuit which will be connected to the I/0
pads of the chip are assigned to the periphery of the chip. In our design, only the
top and bottom sides of the chip are used for placing the main I/O pins. Fixing
some of those I/O pins to the top, and others to the bottom, affects the solution in
a bad direction compared to having those I/O pins free to move between top and
bottom sides. This is because there might be some I /O pins on one side, for example
top side, that are connected to cells that are near the bottom side. In this case it
would be better for these I/O pins to be placed at the bottom side. Therefore, in

our program we have implemented a procedure that finds the best side for placing

each I/O pin.

2In our design, the minimum separation between two tracks of Metall is 4 p.
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~ Area_capacitance Fringe_capacitance
(10~*pF/u?) (10~*pF/p)
Min Typ Max | Min Typ Max
Metall | 0.21 0.23 0.26 | 0.75 0.79 0.82
Metal2 | 0.13 0.14 0.15 | 0.78 0.81 0.85

Table 3.1: Values of the Area and Fringe Capacitance of Metall and Metal2.

Sheet_resistance
(ohms/square)
Min Typ Max
Metall | 0.050 0.055 0.060
Metal2 | 0.022 0.028 0.033

Table 3.2: Values of the Sheet Resistance of Metall and Metal2.

3.7 The Technology Used

Cells in the standard-cell design style have been adopted in our work. For these
cells we have used a 2 p-well CMOS technology. The parameters of these cell,
such as timing characteristics and dimensions are given in [MCN90]. Furthermore,
it is assumed that routing is done using Metall for horizontal tracks, and Metal2 for
vertical tracks. The values of the capacitance and resistance of these metal types are
obtained from an industrial manual [Orb92]3. These values are given in Tables 3.1

and 3.2. In our program we have used the worst case ‘Max’ value of these numbers.

3These values are dated July 1992.



Chapter 4

Genetic Algorithm and the

Placement Problem

The Genetic Algorithm (GA) was introduced first by John Holland in 1975 at the
University of Michigan. Since then it has found a lot of interest among researchers
in different fields of science and engineering. Table 4.1 lists some of the early ap-
plications of GA. The rest of this chapter presents GA basics and its application to

the placement problem.

41
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Year | Investigators | Description

Computer Science
1985 | Rendell GA search for game evaluation function
1986 | Cohoon and Paris GA for Placement
1987 | Raghavan and Agarwal Adaptive document clustering using GA
1990 | Shahookar and Mazumder GA for Placement

1985

1985

Engineering &
Operations Research
Grefenstette and Fitzpatrick

Schaffer

Test of simple genetic algorithm with
noisy functions

Multiobjective optimization using GAs
with subpopulations

1985
1987

Image Processing &
Pattern Recognition
Gillies

Stadnyk

Search for image feature detectors via GA
Explicit pattern class recognition using
partial matching

Table 4.1: Genetic algorithm applications in search and optimization.

4.1 The General Genetic Algorithm

In this section, we give a brief overview of the Genetic Algorithm. For more detailed

information, we refer the reader to [Gol89]. GA is an exploratory procedure based

on the process of natural selection and natural genetics. GA has four distinctive

features [Fre93], [Gol89]:

1. GAs work with the representations of solutions, rither than the solutions

themselves,
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2. With GA, the search in the solution space is inherently parallel, as opposed to
a point by point search. It can search many zones of the search space at the

same time. This characteristic has made GA less likely to be trapped in local

minima.

3. GA does not use derivatives or other auxiliary information. It only requires

values of the objective function associated with individual solutions.

4. Transitions in GA are based on probabilistic rules, not deterministic rules.

This gives GA the broad search scheme which helps it to get out of local

minima.

For GAs to work correctly, two basic assumptions are made:

o the fitness value of an individual is a correct estimate of its ability to solve the

problem, and

e the integration of individuals allows the construction of improved offsprings.



Algorithm (Genetic_Algorithm)
N,= Population Size.
Ng= Number of Generations.
No= Number of Offsprings.
P.= Crossover Probability.
Pu= Mutation Probability.
Begin
Initial Population(V,)
For j =1to N,
Evaluate Fitness(Population[j))
EndFor
Fori=1to N,
For j=1to N,
(*CHOICE*)

(z,y) « Choose_parents
(*CROSSOVER¥*)

With probability P, Apply
Offspring[j] < Crossover(z, y)
(*MUTATION*)

With probability P, Apply
Mutation(Population[j])

Evaluate Fitness(Offspring]j])

EndFor
(*SELECTION*)
Population « Select(Population, offspring, N,)
EndFor
Return highest scoring individual in Population
End

Figure 4.1: A simple Genetic algorithm.

44
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A high level algorithmic description of a basic genetic algorithm is given in
Figure 4.1. To start a GA, a clever representation of the solutions is developed. Then
the GA starts with an initial set of solutions called population. Population is made
of individuals which are also called chromosomes. These chromosomes are made of
genes. On each iteration, the individuals of the current population are evaluated
using some measure which is called the fitness value. The survival of potential
individuals is determined by their fitness value. On the other hand, individuals
with low fitness values are more likely to die off. After the fitness evaluation, a
number of operators are applied on the current population which will generate a new
population that preserves the old but good characteristics. Four major operators
are applied in each iteration. These are, choice, crossover, selection, and mutation.

More information about genetic algorithms can be found in [Gol89].

4.1.1 Choice

The choice operator is a preparatory step for the crossover operation. It chooses
two parents (individuals) at a time to participate in the creation of a new offspring.
In its simplest form, for a population P, a parent s € P with a cost value cost(s) is

chosen for crossover with probability Z, defined as follows:

Ws

Ly = ———m
EieP w;
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where,

_ maz{cost(t) | t € P}

° cost(s)

This scheme selects individuals with low cost values at a higher probability than
those with high cost values. It is called the roulette wheel scheme and is based on
the concept of stochastic sampling with replacement. Several researchers have exam-
ined a number of other schemes, aimed at the minimization of the stochastic errors
related to the roulette wheel scheme. Brindle A. has examined several schemes in
her doctoral dissertation (1981) titled “Genetic algorithms for function optimiza-
tion” [Gol89]. Stochastic remainder without replacement is one of these schemes
which has been proven by Booker L. B. in his doctoral dissertation (1982) titled
“Intelligent behavior as an adoption to the task environment” [Gol89), to be supe-
rior over the expected value. Because of the superiority of this scheme, it has been
adopted in our GA implementation. The details of this scheme will be discussed in

Section 5.3.

4.1.2 Crossover

Crossover is the main genetic operator. It is performed on the chosen parents with a
certain probability P.. In other words, after the parents are chosen using the choice

operator a random number between 0 and 1 is generated. Then, if this number
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Segment A

:/ Segment A

Segment B
Before Crossover After Crossover
Figure 4.2: A simple crossover operation.

is greater than or equal to P, crossover is performed, otherwise, it is not. The
operation of crossover results in the generation of an offspring for some pairs of
parents. The generated offspring inherits some characteristics (good or/and bad)
from both parents in a way similar to natural evolution. An example of this operation
is depicted in Figure 4.2. In this example we assume that each individual consists
of a string of Os and 1s. Given two strings (parents), a random cut point is chosen.
Then the offspring is generated by combining the segment of one parent to the left
of the cut point (segment A) with the segment of the other parent to the right of
the cut point (segment B). This example shows a simple crossover operation. More
sophisticated crossover operations are usually used in GAs. The overall progress of

a GA is highly dependent on the choice of the crossover operation.
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4.1.3 Selection

This operation is responsible for the selection of individuals for the new generation.
It operates on the combined set of parents and offsprings. Many variations of this
function have been used by researchers. Three selection methods are most commonly

used. These are: competitive, random, and stochastic.

In competitive selection, only the P fittest individuals are selected, where P is
the population size. In random selection, the individuals are selected at random with
uniform probability. Finally, in stochastic selection, an individual is selected with
probability proportional to its fitness. It is similar to the roulette wheel described

earlier for the choice of parents for crossover.

4.1.4 Mutation

Mutation is the process of injecting new information in the population. It is a sec-
ondary operation which happens occasionally (with small probability P,) to protect
against the loss of important information. Furthermore, it helps in introducing some

variations in the solutions in order to avoid getting trapped in local minima.

The most popular mutation method is pairwise interchange of two genes that are

selected at random as shown in Figure 4.3. In this example, the gene c is swapped
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Figure 4.3: The mutation operation using a simple pairwise interchange.

by mutation with the gene g.

4.1.5 GA Parameters

Many parameters, such as the crossover and mutation probabilities, are used with
GA to control its operations. The best values for these parameters are problem
dependent. However, it is possible to follow some general guidelines. First, the
population size should not be too small compared to the size of the search space,
otherwise, it will be difficult to efficiently search the entire space. Second, a low
mutation probability is recommended, so as to avoid the disturbance of the steady
improvement resulting from crossover. In general, it has been found that for the
placement problem a population size of 30 individuals, a crossover probability of

60%, and a mutation probability of 3% are good starting values.
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4.2 Placement by Genetic Algorithm

The GA is one of the many heuristic techniques that were applied to the placement
problem. The reported applications of GA to placement aimed mainly at obtaining a
placement configuration with minimum total wirelength. In this section, we give an
overview of some of the proposed GAs for solving the placement problem including

a brief discussion of the crossover and mutation operators that are applied.

4.2.1 Genie

Genie is a genetic placement algorithm developed by Cohoon and Paris [CP87]. The
authors did not mention what design style was used with Genie. The following is a

description of some of the applied functions and their results.

1. Initial population construction. Three constructors are considered. These
are: (1) cells are placed randomly, (2) cells are clustered based on their nets;
the cells are linearly ordered then folded to generate the rows. (3) same as
(2) but cells are placed in row major style. This is shown in Figure 4.4. Their
observations have indicated that a mixed initial population of size 50 (75%
using the third method and 25% using the first method) resulted in a good

initial mean population score while having a satisfactory amount of diversity.




o1

(a) (b)

Figure 4.4: Order of slot assignment. (a) Constructor of type 2, (b) constructor of
type 3.

2. Scoring function. The fitness of a placement is computed using a scoring
function. The applied scoring function uses the traditional semiperimeter for
each net. Furthermore, this function encourages a more uniform distribution
of the wiring by penalizing all channels that have a wiring density more than

one standard deviation above the mean.

3. Choice function. Four choice functions are considered. These are: (1) choose
the best scoring parent and a random parent, (2) choose both parents ran-
domly, (3) select parents with probability proportional to their fitness, (4) same
as (3), but only those parents with above average fitness are considered. Func-

tions (2) and (3) produced the best results.

4. Crossover operator. Two types of crossover are used. These are: (1) select a
random module e, and bring its four neighbors in parent 1 into neighboring

slots in parent 2; the neighboring locations of e, in parent 2 are shifted outward
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Figure 4.5: Crossover operator 1. (a) Passing parent, (b) target parent, (c) offspring.

by one location at a time in a chain move until a vacant location is found as

in Figure 4.5, (2) select a k x k square from pai'ent 1, where k is a random

number with mean 3 and variance 1, and copy it to parent 2. The modules

that are in the square of parent 2, but not in the square of parent 1, are moved

to the locations of the modules that are in the square of parent 1, but not in

the square of parent 2, (see Figure 4.6). Experimental results favor the second

operator,

5. Selection function. Three functions were considered, These are: (1) select the

best individual and p—1 other individuals randomly, where p is the population

size, (2) select p individuals randomly, (3) select individuals with probability

proportional to their fitness. The results favor the second and third functions

depending on the characteristics of the placement instances.
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Figure 4.6: Crossover operator 2. (a) Parent 1, (b) parent 2, (c) copy to parent 2

(d) offspring.
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Figure 4.7: Mutation operator in Genie.

6. Mutation operator. Two operators were investigated. These are: (1) perform
a random series of interchanges, (2) select a module e, on a net Z , then bring a
module e, that is connected to e, and farthest from es to a closer location. The
displaced modules are shifted one location at a time until a vacant location is

found, (see Figure 4.7). Experimental results favor the second operator.

4.2.2 GASP

GASP is a Genetic Algorithm for Standard-cell Placement developed by Shahookar
and Mazumder [SM90]. The following is a description of some of the applied func-

tions and their results.
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. Initial population construction. The only method that was used is to construct
the population randomly. Their observation showed that a population size
of 24 individuals gave the best performance. However, the authors did not

mention whether the population size is dependent on design size or not.

. Scoring function. The reciprocal of the wirelength was used as a measure for

computing the fitness of individuals.

. Choice function. Parents are selected from the population with a probability

proportional to their fitness.

. Crossover operator. Three crossover operators were investigated. These are:
(1) order crossover, (2) partially mapped crossover (PMX), (3) cycle crossover.
Either PMX or cycle crossover performed best. More details about these types

of operators can be found in [SM90] [SM91].

. Selection function. Three selection functions were considered. These are:
(1) competitive selection. In this method, the best of the parents and offsprings
are selected, (2) random selection, (3) select the best individual and the rest

at random. Competitive selection gave the best results compared to the other

methods.

. Mutation operator. The mutation operator consisted of a simple random pair-

wise interchange of the modules.



Chapter 5

Timing Driven Genetic Algorithm

for Placement (TDGAP)

In our work, we implemented a timing driven placement program using the genetic
algorithm. It is the first time that a GA is used for timing (performance) driven
placement. All previous works have used GAs for placement with wirelength as an
objective function. In our"work a two dimensional (multi-objective) score (cost)
function has been applied. The applied score function has included the timing
performance of the circuit and the total wirelength as a measure of its goodness.
Moreover, in this work we assume standard-cell design style. However, the same

work can be applied to gate array design style with minor modifications.

56
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Four major issues have been taken care of in-our design:

1. Timing constraints, in which the delays of the critical paths should be smaller

than a certain predefined value as reported by the timing analysis program,

2. Geometric fit, in which cells are placed at legitimate locations within the cir-
cuit’s boundary without overlapping. The circuit’s boundary or the shape of
the layout can be controlled via an aspect ratio variable, which is user speci-
fied. Because cells are not allowed to overlap, the aspect ratio of the sides of
the layout can be changed. To maintain this ratio the layout is subjected to a

row equator procedure. This procedure tries to make all rows of equal length.

3. Routability, in which sufficient routing space is left to properly interconnect
the cells without affecting the performance of the circuit. This is done by

using a procedure for estimating the channel density of the routing channels

based on the vertical constraint graph approach.

4. Total wirelength, a certain weight has been given for the total wirelength of
the layout. This is to give a chance for those solutions that are best in terms
of total wirelength, but within a small difference from the best solution with

respect to timing to contribute in the evolvement toward the final solution.
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5.1 Approach Overview

5.1.1 General Algorithm

The implementation of our TDGAP follows the general structure of the GA shown
in Figure 5.1. In our implementation we have followed a different structure then the
basic GA shown in Figure 4.1. In the basic GA the operation of mutation is applied
on the generated offsprings. Then, the new generation is constructed by selecting
its candidates from a set combining the offsprings (that might have been mutated)
and the parents. However, in TDGAP, the selection for the next generation is done
on the set of the offsprings (without mutation) and the parents. Then, the mutation
operation is applied on the new constructed generation. This sequence has proven
to be better than the originally proposed GA. A discussion of the results are given

in Section 5.8.




Algorithm (TDGAP)
N,= Population Size.
Ny= Number of Generations.
N,= Number of Offsprings.
P.= Crossover Probability.
P,= Mutation Probability.
Begin
Initial Population(V,)
For j=1to N,
Evaluate Fitness(Population[j])
EndFor
Fori=1to N,
For j=1to N,
(*CHOICE¥*)
(z,y) «— Choose_parents
(*CROSSOVER¥)
With probability P. Apply
Offspring[j] — Crossover(z,y)
EndFor
(*SELECTION¥*)
Population «+ Select(Population, offspring, N,)
For k=1to N,
(*MUTATION¥*)
With probability P, Apply
Mutation(Population{k])
EndFor
For m=1to N,
Evaluate Fitness(Population|m])
EndFor
EndFor
Return highest scoring individual in Population
End

Figure 5.1: A TDGAP simple representation.

99
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Given an initial solution, TDGAP applie; a repeated modification and search in
the solution space using its operators and functions. The process of modification
and search is repeated until all the timing constraints or some terminating criteria
are met. Timing constraints refer to critical paths in the circuit whose delays must
be below or within certain bounds for the circuit to perform correctly. This means,

that the SLACK values of the critical paths should be positive.

The final placement of a design reported by TDGAP is the best one over the
whole run time with respect to timing aspects first then with respect to total wire-
length. While running TDGAP there is a procedure that keeps track of the best
individual since the starting time and saves it. When TDGAP terminates, this pro-
cedure reports the saved individual (placement solution) in VPNR format. After

that, the OASIS system is used to complete the generation of the layout until the

mask level.

5.1.2 Solution Representation

Each individual (solution) in the population is encoded (represented) as a set of
rows. Each row contains modules (genes) that are represented as a set of three
integers indicating the cell serial number, the row number, and the displacement

from the left edge of the layout. The encoding scheme for 7 rows solution is shown
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Module # 450

Figure 5.2: Encoding scheme of an individual.

in Figure 5.2. Next the major operators and functions of TDGAP are discussed,

then some comments on the other parts of the program are given.

5.2 Imitial Population Constructors

Initial solution construction is very critical to GAs. Five initial population construc-

tors IPCy,IPCy,IPCs3,I1PCy and IPCy are investigated. All of these constructors

are dependent on a random number generator, so they can be applied to generate

an initial population of any desired size. These are:
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¢ Constructor I PC) selects modules at random and places them in rows. The

qualities of the generated solutions using this constructor are unpredictable.

o Constructor I PC, attempts to cluster cells (modules) affecting the same path
to improve the score of the initial population. Based on.the linear delay model
presented in Section 3.4.2, the cells affecting the same path are defined to be
all cells on the nets that are on that path, (see Figure 5.3). It is known that
when the solutions in the initial population are all of good quality, GA tends
to get quickly trapped into a local minima. We suspect that this constructor

might suffer from such a phenomenon.

o Constructor IPCj is similar to constructor IPC,. The major difference be-
tween IPC; and IPCj is in the way they start placing the cells on the layout
surface. For a layout of n rows, IPC, places cells, left to right, starting from
first row, where as in I PCj cells are placed starting from middle row and pro-
ceeding outward. In both types, cells are ordered in a row-major fashion as

shown in Figure 4.4(b).

e Constructor JPCy is a variant combination between I PC; and IPCj3. For ex-
ample, I PC4 can be made of 25% of IPC; and 75% of I PCj. This constructor
has an average fitness value that is better than IPC, but lower than I P(C;.

This can help in avoiding the trap of local minima.
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e Constructor JPCj is similar to constructor IPC,. However, IPC5 has one
of its solutions built constructively based on mincut partitioning algorithm
that is used with OASIS placer [MCN90], where cells are partitioned into
subgroups such that the total wirelength is minimized. Algorithms based on
mincut partitioning are well known for their good results in generating layouts
with minimum chip area. Therefore, a solution based on this algorithm is
constructed to aid the performance of our TDGAP. Using I PC; three types
of solution qualities are presented. First type is random, the second is good

in timing aspects, and the third is good in chip area.

Population size has great effect on the quality of solutions and the total run
time of TDGAP. Therefore, we have run different test cases for different population
sizes. Furthermore, we have tested the effect of having the population size being
fixed or changed during run time. As we will see later, run time is greatly affected
by the population size. The results of selector functions I PC,, IPC,, IPC;, IPCy,

and IPCj and the effect of the population size are discussed in Section 5.8.1 and

Section 5.8.2.
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Figure 5.3: Cells affecting path i are: C}, Cs, C3, Cy4, C, Cy, and SE,.

5.3 Choice Function (Stochastic Remainder with-

out Replacement)

As mentioned in Section 4.1.1, the stochastic remainder without replacement scheme
has been proven to be superior over the expected value scheme. As a result, this

scheme has been adopted as a choice function in our TDGAP.

The implementation of the choice function involves two procedures. First, a pre-
select procedure, prepares a list, say ¢, of parents that are possible to contribute in
the crossover operation. Then a second procedure, called parent selection, selects a

parent from the list ¢ for crossover.

In the pre-select procedure, the list ¢ is built based on the concept of stochastic

remainder without replacement. First, let the value of the expected count of an
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individual; | score(i) | exp-count(s) | sure copies in £ | probabilistic copies in ¢
1 37 0.78 0 0.78
2 52 1.10 1 0.10
3 60 1.27 1 0.27
4 21 0.45 0 0.45
5 98 2.08 2 0.08
6 15 0.32 0 0.32

Table 5.1: An example to show how to compute the expected count of individuals
in a certain population P. AVG(score(i))=47.17, | P |= 6.

individual 7 in population P be exp_count(i). This value is computed as follows:

score(t)

exp-count(i) = —

where,

score(i) =score value of individual 4, and

$COTE = ]%[ X ¥;ep score(i).

In stochastic remainder without replacement, for each individual 7 the expected
individual count value is computed and the integer part is assigned. An individual
represents a placement configuration. For example, Table 5.1 shows how to com-
pute the expected count of individuals in a certain generation. From this table,
exp-count(5) = 2.08 which means that we have to assign two copies of individual
5 in the list £. After that, the fractional parts of the expected number values are
treated as probabilities. For each individual, Bernoulli trials are carried out using

the fractional parts as success probabilities. This operation is repeated until the
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list € is full. For example, let the expected number of copies of an individual i be
exp-count(i) = 1.5, then this individual will receive a single copy surely in the list ¢

and another with probability 0.5.

After the pre-select procedure, the parent selection procedure operates on the
generated list £. Each time a parent is needed for a crossover operation, the parent
selection procedure randomly selects it from the list £. Then, the selected parent is
removed from the list. In case we have two identical parents, we run the selection

again so as to get two different parents for the crossover operation.

5.4 Crossover

Crossover is the dominant genetic operator. For the two parents selected by the
choice function, crossover is applied to generate an offspring. Two types of crossover
operators ¥; and ¥, are considered in our TDGAP. The twé types use information
passing from one parent to the other. However, they are different in the way they
pass the information. Both operators are aimed at improving the timing aspects of
the reported K most critical paths. They try to pass the information about some
of satisfied paths (paths with no timing problems) from one generation to another.
Operator ¥, does this by maintaining the same locations of the cells affecting these

satisfied paths. Operator U5, however, does it by keeping the cells affecting these
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satisfied paths within a certain boundary.

Let a, and oy be respectively, the passing and target parents, and C P be the set
of the K most critical paths of the circuit. Operator ¥, operates in the following
way. An identical copy (a,) of a, is made. A critical path cp, is selected from CP
according to a criterion that will be explained later. Then, the set 8 of cells affecting
cps are identified. The goal of ¥, is to reconfigure offspring a, such that the cells in
B occupy the same locations as if they were in a;, the passing parent. This operation
may overwrite some of the modules in @,. A collision resolution technique is used to
resolve these conflicts and which works as follows. Suppose a module ¢; € B is to be
assigned to location loc; which is occupied by module e;. This conflict is resolved
by swapping the locations of the two modules. For example, e; is assigned to loc;
and e; to loc; where loc; and loc; are locations of e; and ¢; in @, respectively. The
steps of ¥ operation are illustrated in Figure 5.4. In this figure, for example, the
set B = {c1,¢c2,¢3,¢4}. Then, the cells of 8 in a, are moved to the same location as
if they were in ;. As shown in Figure 5.4(c), cell ¢; is moved to the location of cell

dy. To avoid overwriting cell d;, cells ¢; and d; are swapped with each other.

Operator ¥, operates in the following manner. It starts like ¥, by making a
duplicate (a,) from o, selecting a critical path cp, from CP, and identifying the
set (3 of cells affecting cp,. The size and location of the smallest bounding window w,,

that encloses the cells of 8 in a, is determined. The location of wy is also determined
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for parent ay, call it wy. Comparing the contents of these two windows, three sets
can be defined. These are,

o = cells € 3, and € w,,

p = cells € w;, and ¢ wy, and ¢ G,

7 = cells € w;, and € wy.

"The operator ¥, then, tries to reconfigure a, as follows. It first defines a window
Wo in @y, of the same size and location of w,. After that, it scans the contents of Wo
cell by cell in a row-based fashion. Then, for each scanned cell e;, operator ¥, works
according to the algorithm shown in Figure 5.5. A graphical representation of the
operation of ¥ is depicted in Figure 5.6. A discussion of the crossover operators

¥, and ¥, is given in Section 5.8.3.

Selection of Critical path cp,

The operation of selecting a critical path cp, from CP is done in the following
manner. For every solution in the layout, there are two lists associated with it. One
is used to keep a list of the critical paths that are within their timing bounds. In
other words, it is a list of those critical paths that do not have long path problems
(SLACK 2> 0). The second list is used to keep the remaining critical paths which

still have long path problems (they have exceeded their timing bounds). Based on
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Algorithm (Reconfigure)
Stop=0
Repeat
If ; €  (where ¢; is a cell € w,) Then
skip this cell and go to the next one,
Elself 0 € ) Then
Begin
pick a module e; from o and swap the modules ¢; and €
remove module e; from o
End
Elself p ¢ § Then
Begin
pick a module e; from p and swap the modules of e; and &,
remove module e; from p
End
Else
Begin
skip this cell (all other cells will stay in their locations)
Stop=1
End
Until(all cells € w, are scanned or Stop=1)

Figure 5.5: An algorithm used by ¥, to reconfigure an offspring a,.
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these two lists, cp, is selected as explained in the algorithm shown in Figure 5.7.
The process of selecting a cp, is aimed toward the generation of an offspring with
better timing characteristics. The idea of selecting a cp, is based on the evaluation

of the following conditions in sequence:

1. if target parent has no timing problems, then select a cp, at random,

2. else, if there is a ¢p, that has a long path timing problem in target parent, but

is problem free in source parent then select it,

3. else, if there is a ¢p, such that it is with timing problems in both target and
source parents, but with better timing values in source parent than in target

parent then select it,

4. else, select a cp, at random.

5.5 Selection of the Next Generation

Four selector functions p;, ps, p3, and p, are considered for determining which indi-
viduals to use as part of the next generation. In other words, the selector function

determines the survival of current individuals in a given population. Let:

P = Population
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Algorithm (Select Critical Path)
Total.CP=|CP |
e *={cp, | cp, € CP and (SLACK(cp,), source) > 0, ¥ 0 < s < Total_C P}
&ree={cp, | cp, € CP and (SLACK(cp,), source) < 0, V0 < s < Total_CP}
€5 ={cp, | cp, € CP and (SLACK(cp,), target) <0, ¥ 0 < s < Total_.CP)
loop, =1, loops=1
If ( e:t;arget ¢ m)
For all cp, € £5° Do Unmark(cp,)
While (loop;=1)
If (3 cp, € €™ | cp, is not marked) Then
Mark(cp,)
If (@a c e.;ource)
select this ¢p,, loop; = 0
EndIf
Else
loop; =0
For all cp, € £5"9% Do Unmark(cp,)
While (loop,=1)
If (3 cps € 65779 | cp, is not marked) Then
Mark(cp)
If (cp, € 65°*7° and (SLACK(cp,), source) > (SLACK(cp,), target)) Then
select this cp,, loopy = 0
EndIf
Else
loop2=0
cps=random(1,Total_C P)
EndElse
EndWhile(loop,)
EndElse
EndWhile(loop, )
Else
cps=random(1,Total _C P)
End

Figure 5.7: An algorithm used by ¥; and ¥, to select cps from CP.
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J=PUOffspring

then these selectors are:

e Selector p, selects from J the best scoring individual and p — 1 other individ-
uals at random, where p =| P |. By this way, the best individual is always
remembered and advanced to the next generation where it may pass some of

its good characteristics to the new offsprings.

e Selector p; selects the best 10% of p and the rest are selected at random. With
this selector, a good number of good individuals are selected for survival. This
may lead to the case where most individuals in some later generation are all

alike and then being trapped into local minima.

e Selector p3 selects all p individuals from J at random. With this selector,

results are unpredictable.
e Selector p4 selects individuals on a competitive basis with each individual a;
having a probability Prob(a;) to be selected, where

score(a;, J)
Y=Y score(a;, J)

Prob(a;) =

where,

g=|J|
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Using this selector, individuals have a good chance to be trapped into local
minima. This might happen because individuals with low fitness values die off

with a fast rate.

The results of the selector functions p;, ps, p3, and p, are given in Section 5.8.4.

5.6 Mutation

Two mutation operators y; and p, are investigated. Operator v is targeted toward
improving the timing of the placement. On the other hand, operator p2 is targeted
toward improving the wirelength of the placement. To aid the operation of the
mutation operators, some analysis on the nets for each individual is made. This

analysis includes the computation of the center of mass for every net.

For a given net i with m modules, the term center of mass of net i is defined

as a pair of (Zcenter; Ycenter )is Where, Teenter aNd Yeenter are defined as follows:

2’,::;" z_coordinate of module;

ZTeenter =
center m
Yk=m y_coordinate of module;
Ycenter = m

In TDGAP the mutation operation is applied on all individuals in the newly
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constructed generation except for the best individual. In other word, we do not
allow the best individual to be mutated. This is because if it is allowed to mutate
the best individual then there is a chance of losing it. Losing the best individual can
weaken the population and cause a slower convergence. A discussion of the results

are given in Section 5.8.5.

Operator u; works as follows. It starts by randomly selecﬁng a critical path cp,
from those paths with long path problems. Then, it selects randomly a module e
that is affecting the performance of the selected critical path. After that, a module
e; at the location of the center of mass of the net Net s that module e, belongs
to is determined. Module e; may or may not belong to the net Net s. Then, the
two modules e; and e, are swapped (pairwise interchanged) with each other, thus
improving the SLACK value of c¢p,. This is done once for every individual that is

subjected to the mutation operation. This operation is depicted in Figure 5.8.

Operator pz operates in a similar manner as operator p;. It starts by selecting
at random a two-pin net, where none of these two pins is an I/O pad. After that,
one of these two modules is chosen to be swapped with a module at the location of

the center of mass of the selected net as in p;. The operation of 2 is depicted in

Figure 5.9.

The reason behind conditioning that the selected net should be a two-pin net,
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mutation.
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is that from the analysis of our generated layouts, it has been noticed that most
of the two-pin nets that are on critical paths have their modules separated apart
with large distances. As a result, this big separation tends to introduce more feed-
through cells and increase the total wirelength. This effect is illustrated in Figure 5.9.
Furthermore, the reason as to why the selected net should have none of its pins as
an I/O pad is because of the following. If a two-pin net has one of its pins as an I/O
pad, then the other pin is connected to a cell, say e;, which is connected to other
nets. Moving cell e; tends to disturb the solution much more than moving the I/O
pad between the top and bottom sides of the layout. Due to this reason, we have
included a separate procedure that takes care of moving the I/O pads between the
top and the bottom sides of the layout, so as to improve the scoring function. In our
TDGAP, operator y; is applied on 10% of the total number of nets. A discussion

on the results of operators u; and g, is given in Section 5.8.5

5.7 Scoring Function

The scoring function (objective function) is a combination of three terms. These
three terms are directed toward the improvement of the circuit performance and
total wirelength. Therefore, it is a two-dimensional objective function. The scoring

function is a way to determine which individual is fitter than the other. For two
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individuals ¢ and j in a certain population, if Score(i) > Score(j) then individual :
is fitter than individual j. Let n be the population size and CP the set of critical

paths. The score of a given individual ¢ is computed as follows:

Score(i) = worst_slack(7) X wy + relaz(?) X s Total_wirelength(7) X ws (5.1)
S R w
where,

Total wirelength(i) = the total wirelength of individual ¢
worst_slack(i) = Slack value of the worst critical path x(—1)
relax(i) = Tjccp Slack(path(s)) and Slack(path(j)) > 0

S = mazj=,. nworst_slack(j)

R = mazj. nrelaz(j)

W = mazj-. nTotal_wirelength(j)

wy, Wy, and w3 = different weights assigned for each term

The values of worst_slack(i), relaz(i), and Total.wirelength(i) are used after
they are linearly scaled. Originally, each of these values has a different range of
results from others, and thus, they are not comparable. In order to make them
comparable and use them in one equation as given in Equation 5.1, we have to make

their values all fall in the same range. This is done by linearly scaling them. Another
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need for scaling is that some of these values are either very near each other or very
far from each other. Which means that their variance value is either too low or too
high respectively. Therefore, by scaling these values we are able to have them with

good variance value. For example, to linearly scale the Total _wirelength(i) we do

the following:

Total_wirelength(i) — Old.AVG
Old_STD

Total_wirelength(i) = New_ AV G—( xNew_STD)

where,

J<n

OldAVC = E,‘ao Total wirelength(j)

n ’

Old_STD = standard deviation of Total_wirelength(j), 0 < j < n,
New_AV G= the new required average,

New_ST D= the new required standard deviation.

For example, Table 5.2 shows the steps of scaling the values of worst_slack(i),
relaz(i), and Total_wirelength(i) for each of the six individuals in a given popula-
tion. From this table, the values of S, R, and W are:

S = 61.85
R = 59.85

W = 64.70
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Before Scaling After Scaling
Pop | worst. relax Total_ worst. relax Total.
(8) [slack(d) (¢) wirelength(i) | slack(?) (i) wirelength(i)
1 10 3 100 33.38  57.66 54.20
2 3 10 200 58.29 42.34 33.20
3 2 15 150 61.85 31.40 43.70
4 4 4 90 54.73  55.47 56.30
5 5 2 130 51.17  59.85 47.90
6 8 5 50 40.50 53.28 64.70
AVG'] 533 65 120 50 50 50
STD 2.81 4.57 47.61 10 10 10
MAX 10 15 200 61.85 59.85 64.70

Table 5.2: An example to show the steps of scaling the values of worst_slack(s),
relaxz(i), and Total_wirelength(i) in certain population.

then, the score value of individual 5, for example, Score(5) is computed as follows:

Score(5) = %;—; X w

59.85

N X g 4 2790
17 5085 " 2

.70 s

Let w; = 0.70, w = 0.05, and w3 = 0.25 then,

Score(5) = 0.83 x 0.70 + 1.0 x 0.05 + 0.74 x 0.25 = 0.816

For a given individual ¢, relaz(i) is the summation of the SLACK values of
all satisfied critical paths (paths with no long path problems). This value gives a
measure of the amount by which these paths can be made longer and still be satisfied.
Making some of these paths longer may give other unsatisfied critical paths (paths

with long path problems) the chance to become shorter.
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By changing the values of w;, ws, and ws, results generated by TDGAP can be
different in their quality. For example, if w; > w3 then TDGAP favors solutions
that are better in terms of timing aspects more than those which are better in term

of total wirelength. In the implementation of TDGAP, we have chosen w; = 0.70,

we = 0.05, and w3 = 0.25.

5.8 Results

In this section, we present the results related to the implementation of TDGAP
along with some comparisons of the generated layouts with others that are gener-
ated using the OASIS placer. The OASIS placer is based on mincut partitioning
algorithm that does not incorporate timing aspects. In addition, some other general

observations are made during the process of development of TDGAP.

All the figures are given in two domains. First, in the time domain, where the
graphs are plotted with timing information on the y-axis vs. the number of genera-
tions (iterations) on the z-axis. The timing information is given as the negative of
the worst slack in ns. Second, in the space domain, where the graphs are similar
to those in the time domain, but with the y-axis representing the total wirelength
in p. For each domain one graph is given to represent the performance of the best

solution found over. all generations. The data of the graphs is taken for every 50
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generations. The data for every 50 generations is averaged and considered as one
point in the plot. The tuning of the parameters of TDGAP were conducted using
the circuit ‘CRC16’ which will be described later. For this circuit we have used a

clock period of 15 ns.

Mutation Prior to or after Selection?

The basic GA shown in Figure 4.1 is one of possible GAs. It applies the muta-
tion operation on the generated offsprings. Then, it selects the candidates of the
new generation from a set combining the offsprings and the parents. However, the
TDGAP shown in Figure 5.1 follows a different structure. In TDGAP the mutation
operation is applied on the new generation after it has been constructed from the
set of parents and offsprings produced by the crossover operation. The sequence
used in TDGAP ilas been proven to be better than the one applied in the basic
GA. Figures 5.10 and 5.11 show the performance of these two sequences in both the
time and the space domains for circuit ‘CRC16’ which will be described later. A
summary of the initial and final values of the best solution with these two sequences

in both domains is given in Tables 5.3, and 5.4.

The superior performance of TDGAP over the basic GA can be explained as

follows. Although the mutation operation is applied with a small probability in
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in space domain.
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Algorithm | Basic GA | TDGAP
Initial 4.82 4.82
Final 3.56 2.09
Speed-up % 6.8 16.0

Table 5.3: A summary of the initial and final values of the best solution with basic
GA and TDGAP in the time domain. Values are given in ns.

Algorithm | Basic GA | TDGAP
Initial 162614.4 | 162614.4
Final 126556.6 | 122870.0

Decrease % 22.2 24.4

Table 5.4: A summary of the initial and final values of the best solution with basic
GA and TDGAP in the space domain. Values are given in microns.

both structures, it can not be ignored. It is the process that helps in escaping from
a local minima that the solutions might be trapped in. The sequence applied in the
basic GA reduces the effect of the mutation operation. This is because the mutation
operation may change solutions to a better or worse situation. Then, because of the
behavior of most selection functions, solutions that are changed by the mutation
operation may not be included into the next generation. This approach weakens the
effect of the mutation operation and possibly traps the search procedure into a local
minima. On the other hand, the sequence applied in the TDGAP tries to advance
the effect of the mutation operation completely to the next generation. This way,

solutions are less likely to be trapped into local minima.
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5.8.1 Comparison of Initial Population Constructors

The choice of constructor function affects both the quality of the solution and the
number of generations needed to generate a good solution'. In this work we ex-
perimented with five constructor functions described in Section 5.2. Figures 5.12
and 5.13 show a comparison between these functions in both the time and space
domains. Solutions constructed by IPC) tend to have poor starting values in both
the time and space domains. Which means that most of the solutions are not fit
enough to inherit good features to the next generations. This leads the solutions to
be trapped into a local minima with merely no improvement in the time domain and
some improvements in the space domain. Although the improvement in the space
domain is good, the final value was much higher than the final values obtained with
other constructors. In contrast, solutions constructed by IPCj are good enough that
they are similar to each other. This caused the search procedure to get trapped into
a local minima very fast. The results were poor in both domains. Constructor I PCjs
tends to have slower convergence toward good solutions. Constructor IPCj is the
best in time domain, and constructor IPCj is the best in space domain. However,

in some runs the results using IPCs were better than those using IPCy in both

domains.

Tables 5.5 and 5.6 summarize the initial and final values of the best solution
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Constructor | IPC, | IPC, | IPC3 | IPC, | IPC;
Initial 845 | 475 | 547 | 4.82 | 5.48
Final 413 | 440 | 3.02 | 2.09 | 3.47
Speed-up % | 226 | 1.8 | 136 | 16.0 | 10.9

Table 5.5: A summary of the initial and final values of the best solution with different
constructors in the time domain. Values are given in ns.

with different constructors in both the time and space domains. From these tables
we note the increase in the total wirelength of the solutions initially constructed
by IPCs. This is because constructor JPCj included a very good solution which
favors the total wirelength side of the score function. However, we note that it was
not equally good in the time domain compared to other constructors. Therefore, for
IPCj to gain some improvement in the time domain it had to lose some improvement
in the space domain. Because of the superior behavior of I PCy4 and IPCs, other
constructors were discarded. Hence, only IPCy or I PCs is used in order to tune the

remaining important parameters of TDGAP.

The score of the initial solution should neither be too high nor too low. In the
first case, the GA will be frapped easily in a local minima, where in the second
case, the GA will have a slow rate of convergence toward homogeneity. Therefore,
for constructor JPC, we have chosen it to be 25% of I PC, and 75% of IPC;. We

observed that these values are a good starting point for our test circuits.

The value of the population size can be varied from problem to another. However,



Constructor

IPC, IPC, IPC; IPC, IPC;
Initial 228306.8 | 154063.2 | 151513.8 | 162614.4 | 87786.3
Final 158183.0 | 140080.6 | 121198.8 | 122870.0 | 106766.5
Decrease % 30.7 9.1 20.0 24.4 -21.6
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Table 5.6: A summary of the initial and final values of the best solution with different
constructors in the space domain. Values are given in microns.
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Figure 5.12: The performance of the best solution with constructor functions I PG,
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Populationsize | 16 | 20 | 24 | 30 | 34
Initial 6.16 | 5.36 | 4.82 | 4.29 | 6.40
Final 4.26 {1 3.36 | 2.09 | 1.70 | 2.16
Speed-up % 9.9 1109 |16.0 | 15.5 ] 24.7

Table 5.7: A summary of the initial and final values of the best solution with different
population sizes in the time domain. Values are given in ns.

from our observations, it has been found that a population size of about 24 is best

for all circuits we experimented with. The effect of different population sizes is

shown in Figures 5.14 and 5.15. A summary of the initial and final values of the

best solution with different population sizes in both domains is given in Tables 5.7,

and 5.8.
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Population size 16 20 24 30 34
Initial 147234.6 | 150332.9 | 162614.4 | 164351.2 | 143136.0
Final 133962.7 | 129553.1 | 122870.0 | 126254.5 | 118112.0
Decrease % 9.0 13.8 244 23.2 17.5

Table 5.8: A summary of the initial and final values of the best solution with different
population sizes in the space domain. Values are given in microns.

5.8.2 TDGAP with Dynamic Population Size

Population size has great effect on the total run time of TDGAP. To view this effect
we have ran TDGAP on a certain design with two cases. In the first case, we ran it
with the population size fixed to 30 individuals. In the second case, we ran it with
dynamic population size where it started with a population size of 30 individuals
and as the sea;ch progress, the population size was reduced according to a certain

reduction procedure.

The reduction procedure determines when to reduce the population size and by
how much. It works as follows. The performance of the best solution is checked
periodically every Reduction_Period. If no improvement of at least 3% in the last
Reduction_Period with respect to timing aspects of the design, the population size
is reduced by 20%. This reduction is effective as long as the population size is
not less than half of the original size. Each time the population size is checked,

the Reduction_Period is reduced by a Period_Factor. This is done because the
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convergence rate of TDGAP in the early generations is higher than that of later
generations (i.e. the improvement in later generations is slower than for early gen-
erations). Thus, the reduction procedure monitors the performance after shorter
periods in those generations where the improvement is too slow. For our test case,
we have chosen the Reduction_Period to be 5000 generations and the Period_Factor

to be 5%.

Figures 5.16 and 5.17 shows the performance of the best solution with dynamic
and fixed population size in both domains. Both cases were ran for 300,000 genera-
tions. The total run time for the case of fixed population size was about 59 (Hours),
and for the case of dynamic population size was about 32 (Hours). A summary of
the initial and final values of the best solution with dynamic and fixed population
size in both domains is given in Tables 5.9, and 5.10. From these tables we note
that the quality of the results in both cases were of comparable quality. However,
the total run time for the case of dynamic population size was much less than the
case of fixed population size. That means with dynamic population size, a saving of
about 46% in total run time was obtained for almost the same quality of results as

with the case of fixed population size.
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Population size Dynamic | Fixed

Initial 5.48 5.48

Final 2.23 2.09

Speed-up % 18.9 19.8
Total run-time (Hrs) 32 59

Table 5.9: A summary of the initial and final values of the best solution with dynamic
and fixed population size in the time domain. Values are given in ns.

Population size Dynamic | Fixed
Initial 87786.3 | 87786.3
Final 69959.1 | 70580.8
Decrease % 20.3 19.6
Total run-time (Hrs) 32 59

Table 5.10: A summary of the initial and final values of the best solution with
dynamic and fixed population size in the space domain. Values are given in microns.

5.8.3 Comparison of Crossover Operators ¥; and ¥,

Both crossover operators performed well. However, ¥, performed better than U,.
The performance of both operators is compared in Figures 5.18 and 5.19. Crossover

operator ¥; exhibited faster convergence rate and resulted in better solutions than

¥y in both domains.

The sizable difference between the performance of crossover operators ¥; and ¥,
can be explained as follows. Operator ¥, tends to disturb the solutions much more
than operator ¥;. This is because the window size which controls the operation of

¥, is dependent on the positions of cells affecting a chosen critical path. That means
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Crossover Operator | ¥; | ¥,
Initial 4.82 | 4.82
Final 2.09 | 3.82
Speed-up % 16.0 | 5.3

Table 5.11: A summary of the initial and final values of the best solution with
different crossover operators in the time domain. Values are given in ns.

Crossover Operator | ©U; | T, |
Initial 162614.4 | 162614.4
Final 122870.0 | 149724.5

Decrease % 24.4 7.9

Table 5.12: A summary of the initial and final values of the best solution with
different crossover operators in the space domain. Values are given in microns.

if two cells affecting the chosen critical path are far apart then the window size will
be proportionally larger. Having the window size large means that there is a higher
chance of disturbing more cells contained in the window where they may not be in
direct relation to the chosen critical path. By contrast, in ¥, the disturbance is
limited to those cells that are really affecting the chosen critical path. As a result,
crossover operator ¥, is chosen as the crossover operator in TDGAP. Tables 5.11,

and 5.12 summarize the initial and final values of the best solution with different

crossover operators in both domains.

The value of the crossover probability can be varied from problem to another.
The effect of different crossover probabilities is shown in Figures 5.20 and 5.21. From

these figures, we note that, as we increase the probability of crossover, the solutions
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Figure 5.20: The performance of the best solution with different crossover probabil-
ities in the time domain.

tend to converge faster toward a good solution. However, after some high value of
crossover probability the convergence rate of the solutions will be too fast which
may lead to some local minima that is hard to escape from. Therefore, from these
observations, it has been found that a crossover probability between 0.5 and 0.7 is
a good choice for our test circuits. A summary of the initial and final values of

the best solution with different crossover probabilities in both domains is given in

Tables 5.13, and 5.14.
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Figure 5.21: The performance of the best solution with different crossover probabil-

ities in the space domain.

Crossover Probability | 30% | 50% [ 70% | 90%
Initial 482|482 (4.82]4.82

Final 3.04 | 3.21 | 2.09 | 2.38
Speed-up % 99 | 8.8 |16.0 | 14.0

Table 5.13: A summary of the initial and final values of the best solution with
different crossover probabilities in the time domain. Values are given in ns.

Crossover Probability | 30% 50% | 70% | 90%
Initial 162614.4 | 162614.4 | 162614.4 | 162614.4
Final 134110.8 | 126537.4 | 122870.0 | 134105.0
Decrease % 17.5 22.2 24.4 17.5

Table 5.14: A summary of the initial and final values of the best solution with
different crossover probabilities in the space domain. Values are given in microns.
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Figure 5.22: The performance of the best solution with selector functions selectl
(p1), select2 (p2), select3 (p3), and select4 (py) in the time domain.

5.8.4 Comparisons of Selector Functions p;, ps, p3, and p,

The selection operation is the gateway to the solutions of the next generation. At
this stage some of the solutions are allowed to move to the next generation and some
are not allowed. So it is very important to have a good selection function that can

help the evolution process converge toward the desired solutions.

Figures 5.22 and 5.23 show the effect of different selector functions in both do-
mains. The behavior of both selector functions p; and p, is similar. But selector P2
performed slightly better than p; because of the limited freedom in selecting some

of the individuals at random. Both selectors p; and p4 favor individuals with high
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Figure 5.23: The performance of the best solution with selector functions selectl
(p1), select2 (po), select3 (p3), and selectd (p4) in the space domain.

fitness values, which made these selectors more likely to be trapped into a local min-
ima. For example, from the figures of the selector functions we note that selector P4

got trapped into a local minima which it could not escape from.

Selector p3 was the worst among the proposed selectors. This is because selector
p3 has almost no control over individuals to be selected. This has caused an unstable
performance behavior of the solutions in the next generations. By contrast, selector
p1 performed the best among other selectors. The behavior of p1 gave chance for
all individuals to be selected at random, but keeping the best of them always as
a candidate for the next generation. This behavior saved the search from getting

trapped into a local minima as with selector ps, while controlling the evolution




102

Selector Function | o1 [ o2 | p3 | pa
Initial 4.8214.8214.82(4.82
Final 2.09 | 3.03 | 6.80 | 3.39
Speed-up % 160 99 |-91| 7.8

Table 5.15: A summary of the initial and final values of the best solution with
different selector functions in the time domain. Values are given in ns.

Selector Function 1 P2 P3 P4
Initial 162614.4 | 162614.4 | 162614.4 | 162614.4
Final 122870.0 | 137020.1 | 181487.1 | 146663.5

Decrease % 24.4 15.7 -11.6 9.8

Table 5.16: A summary of the initial and final values of the best solution with
different selector functions in the space domain. Values are given in microns.

process so as to generate good solutions as with selector p,.

A summary of the initial and final values of the best solution with different

selector functions in both domains is given in Tables 5.15, and 5.16.

5.8.5 Comparison of Mutation Operators p1 and o

The design of TDGAP has involved a two dimensional objective function that is
required to be satisfied. One objective is to improve the timing aspect of the circuit.
The other objective is to minimize the overall total wirelength. Therefore, it was

a necessary condition to consider both objectives while developing the mutation
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Mutation Operator | pe | 1 U o
Initial 4821482 | 4.82
Final 142 13.17| 2.09

Speed-up % 20.71 9.1 16.0

Table 5.17: A summary of the initial and final values of the best solution with
different mutation operators in the time domain. Values are given in ns.

operation in TDGAP. To satisfy this condition we have developed two mutation
operators y; and ps. Operator p; favors the improvement of the timing aspects of
the circuit. Operator y, favors the minimization of the total wirelength. The final

mutation operator used in TDGAP is a combination of these two operators.

The effect of the different mutation types is shown in Figures 5.24 and 5.25.
From these figures, we note the preference of each mutation operator. For example,
the improvement in the timing aspects with g, was more than that with to. The
combination of these two operators resulted in a good timing improvement that is
near the one resulted with p; alone. Also, the combination resulted in a smaller
total wirelength than the one obtained with either of the other two operators when
individually applied. A summary of the initial and final values of the best solu-
tion with the different mutation operators in both domains is given in Tables 5.17,

and 5.18.

The effect of allowing the mutation operation to be applied on the best indi-

vidual or not is shown in Figures 5.26 and 5.27. From these figures it is clear that
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Figure 5.24: The performance of the best solution with mutationl (), mutation2
(#2), and mutationl U mutation2 (u; U ps) in the time domain.
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Mutation Operator W o s U o

Initial 162614.4 | 162614.4 | 162614.4

Final 135827.8 | 133298.1 | 122870.0
Decrease % 16.5 18.0 244

Table 5.18: A summary of the initial and final values of the best solution with
different mutation operators in the space domain. Values are given in microns.

disallowing the best individual from being mutated is better then allowing it. Al-
lowing the best individual to mutate will make TDGAP losses some of its history
by losing some of its good individuals. On the other hand, in the case of disallowing
the mutation of the best individual, a good deal of the past history is stored in the
best individual which is passed to the next generation. If the next generation results
in a better individual than the old best then this better individual is considered as
a new best. In this case, the search is more guided toward improving the timing

aspects and the total wirelength of the circuit.

The value of the mutation probability can be varied from problem to another.
However, from our observations, it has been found that a mutation probability
around 0.1 is a good choice for our problem. The effect of different mutation prob-
abilities is shown in Figures 5.28 and 5.29. From these figures we note that having
high probability such as 15% or 20% disturbed the solutions a lot which made them
lose their homogeneity and slowed the rate of convergence. On the other hand, a

lower probability such as 5% did not allow the mutation operation to have any real
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Figure 5.26: The performance of the best solution in case of allowing or disallowing
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Figure 5.27: The performance of the best solution in case of allowing or disallowing
the best individual from being mutated in the space domain.
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Figure 5.28: The performance of the best solution with different mutation probabil-

ities in the time domain.

Mutation Probability | 5% | 10% | 15% | 20% |
Initial 4821482 482 4.82
Final 2.76 | 2.09 | 2.75 | 3.29

Speed-up % 116}16.0 | 11.7 | 84

Table 5.19: A summary of the initial and final values of the best solution with
different mutation probabilities in the time domain. Values are given in ns.

effect. The solutions have been trapped into a local minima. A summary of the

initial and final values of the best solution with different mutation probabilities in

both domains is given in Tables 5.19, and 5.20.
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Figure 5.29: The performance of the best solution with different mutation probabil-
ities in the space domain.

Mutation Probability | 5% 10% 15% 20%
Tnitial 162614.4 | 162614.4 | 162614.4 | 162614.4
Final 131281.6 | 122870.0 | 130484.5 | 130464.5
Decrease % 19.3 24.4 19.8 19.8

Table 5.20: A summary of the initial and final values of the best solution with
different mutation probabilities in the space domain. Values are given in microns.
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Circuit | Format | Bench- | Number | Applied clock | K reported | Number
mark | of cells | period (ns) CP of rows
Ckl AHPL No 209 21 200 8
CRC16 || AHPL No 209 18 330 9
Highway || VPNR | No 56 20 14 4
Fract VPNR | Yes 149 38 368 6
Struct || VPNR | Yes 1952 140 500 22

Table 5.21: Characteristics of the circuits used. C'P=critical paths

5.8.6 Discussions

We experimented with several circuits. Some of these are Benchmark circuits (in

VPNR format). The characteristics of the circuits used are given in Table 5.21. The

function of each circuit given in this table is as follows:

1. Ck1: A sample AHPL model that performs part of the stop and wait protocol,

2. CRC16: A 16-bit Cyclic Redundancy Checker,

o

>

. Highway: A simple traffic light controller.

5. Struct: A 16-bit multiplier (pure combinational circuit).

- Fract: A fractional multiplier. The description of this circuit is given in [N+78],

A summary of the initial and final values of the best solution with the used

circuits in both domains is given in Tables 5.22, and 5.23. In these tables we have
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Circuit || Run time TDGAP OASIS Placer
(Hrs)
SLACK Speed- SLACK

(ns) up % (ns)
Ckl 11 0.52 8.1 -1.14
CRC16 16 0.61 17.7 -2.47
Highway 6 0.51 114 -1.72
Fract 10 0.31 6.5 -2.14
Struct 22 -1.2 0.5 -1.89

Table 5.22: The final SLACK values of five different circuits placed by TDGAP
and OASIS placer that is using mincut partitioning algorithm.

made a comparison between the performance of TDGAP and the OASIS placer.
The slack values given in Table 5.22 are obtained after the placement phase, but
before routing is done. To obtain these values we have developed and used a timing
evaluator that checks for timing violations based on the reported K critical paths.

The placements obtained by OASIS and TDGAP were evaluated with respect to

timing as well as overall wirelength. Improvements up to 17.7 % were obtained with

respect to clock speed-up.

The area values given in Table 5.23 are obtained after completing the routing
phase and generating the layout. The Magic layout editor has been used to view
the layouts of the circuits and get their actual height and width. The improvements
achieved by TDGAP with respect to timing aspects have resulted in some increase
in the overall area. The increase in area is between 1.4% and 9.1%. An example of

a placement produced by TDGAP using circuit ‘CRC16’ is given in Figure 5.30.
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Figure 5.30: A layout example placed using TDGAP.
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Circuit | Run time TDGAP OASIS Placer
(Hrs)
Inserted  Area (u*) Increase | Inserted  Area (u?)
FTS in Area % | FTS

Ck1 11 3 928 %1016 9.1 13 923 x 936
CRC16 16 10 1131 x 968 5.5 38 1072 x 968
Highway 6 11 478 x 496 6.2 7 465 x 480
Fract 10 44 798 x 824 5.9 50 768 x 808
Struct 22 986 3046 x 2880 14 635 3019 x 2864

Table 5.23: The final layout sizes of five different circuits placed by TDGAP and
OASIS placer that is using mincut partitioning algorithm. Area values are given
in terms of Height x Width. FT'S=Feedthroughs.

TDGAP is implemented in C language. Experiments were performed on a 64-bit
DEC Alpha workstation that is running OSF/1 operating system at the speed of
110 MIPS. As an example, Figures 5.31 and 5.32 show the performance of TDGAP
in the first 100,000 generations with circuit ‘CRC16’ in the time and space domains

for both the average and best values.

The performance of TDGAP for long run times is shown in Tables 5.24 and 5.25.
The values are given with respect to the initial value. From these tables we note
that good results were achieved after approximately 100,000 generations for all cir-
cuits except for circuit ‘Struct’, where it was after approximately 5,000 generations.

Although the results were changing very slowly during later generations, they were

improving most of the time.
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Figure 5.31: The performance of the average and best solutlon in circuit ‘CRC16’
in the time domain.

180000 T T T T
Average —
Best ----

160000 J

140000 |- e
i}
o
3
-
5 120000
2
~ |
3
& 100000 [ 'fy | 1

-y 1} K
i
\‘ Al b {
80000 [ Tweme
-..\"...""'-oﬁy.
""""""" ‘--'--"-.r-‘.___‘__‘
60000 L L L .
[} 20000 40000 60000 80000 100000
Generations

Figure 5.32: The performance of the average and best solution in circuit ‘CRC16’
in the space domain.



Circuit | Initial values | After 100,000 | After 200,000 | After 300,000
S W S W S W S w
Ckl 1 1 022 083 (022 081 ]0.22 0.80
CRC16 |1 1 044 080 (043 078 }|043 0.77
Highway { 1 1 066 073 (061 073 |061 0.73
Fract |1 1 055 083 (052 082 048 0.82
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Table 5.24: The performance of TDGAP after long run times with respect to the
initial values. S= SLACK, W=Estimated Total Wirelength.

Circusit

Tnitial values | After 5,000 | After 10,000 | After 15,000
S W S WI|S W |s w
Struct |1 1 0.96 0.1 |005 082 |0.94 082

Table 5.25: The performance of TDGAP after long run time for circuit ‘Struct’ with
respect to the initial values. S= SLACK, W=Estimated Total Wirelength.

Many parameters affect the speed of TDGAP. Among these are the design size

and the number of reported critical paths. Table 5.26 shows how the run time of

TDGAP is an increasing function of both the design size and the number of reported

K critical paths.

To summarize, based on the experiments and above discussions, certain param-

eters, functions and operators are found to perform better than others. These are

summarized in Figures 5.33 and 5.34 and Table 5.27.
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Circuit | Run time(Hrs) | Number of cells | K reported critical paths
Ckl 11 209 200
CRC16 16 209 330
Highway 3 56 14
Fract 10 149 368
Struct 22 1952 500

Table 5.26: The run time of TDGAP is a function of the design size and the reported
K critical paths. The reported run times were after the first 100,000 generations
except for circuit ‘Struct’, where the reported run time was after the first 5000
generations.

Crossover

MuteProb  10%

CrossProb

Selector

Figure 5.33: A summary of the performance of the parameters, functions and oper-
ators of TDGAP in time domain. The nearer the point to the center the better it
is.
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Figure 5.34: A summary of the performance of the parameters, functions and oper-

ators of TDGAP in space domain. The nearer the point to the center the better it
is.

Constructor function | IPCj

Crossover operator ¥,
Mutation operator U po
Selector function P1
Population size 24

Crossover probability | 0.5 - 0.7
Mutation probability 0.1

Table 5.27: A summary of certain parameters, functions and operators that are
found to perform better than others.



Chapter 6

Conclusion

In this thesis, we have addressed the problem of timing driven placement for standard-
cell designs. To solve this problem, we have designed and implemented a Timing
Driven Genetic Algorithm for Placement (TDGAP). TDGAP is the first genetic al-
gorithm that is performance driven for standard-cell design style. It is has two main
objectives. First, maximize the timing performance. Second, minimize the overall
wirelength. A complete discussion of the motivations and the results of our work

are presented.

In Chapter 1, the general placement problem is defined. Furthermore, the
standard-cell design style which has been adopted in our work is introduced. The

most popular cost function applied to the placement problem is the total wirelength.
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However, there is a great demand to include the circuit performance in the score
function. In Section 1.3 the main motivation behind including the circuit perfor-

mance in the score function is discussed.

In Chapter 2, a survey on previous works in the field of placement is introduced.
In this chapter, the two major approaches of the placement problem (iterative,
constructive) are discussed. Also, five classes of placement algorithms are discussed.
These are simulated annealing, mincut, force-directed, numerical optimization, and
genetic algorithms. The routing problem is an important issue that the placer should

take into account. In Section 2.4 the global routing is briefly discussed.

In Chapter 3, the modeling problem and its constraints are discussed. This
chapter includes the problem definition, the inputs and outputs, and the AHPL
and VPNR formats. In Section 3.4 some timing issues are presented. These issues
include the linear delay model which has been adopted in our work. This model is
discussed in Section 3.4.2. Furthermore, in Section 3.5, the semi-perimeter estima-
tion method is discussed. This method suffers from the problem of underestimating
the wirelength of large net sizes. Therefore, we have improved this method by

including an inflation factor in our estimate for certain net sizes.

In Chapter 4, the general genetic algorithm (GA) is introduced. This has in-

cluded the main operations used in GA which are: choice, crossover, selection, and
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mutation. In Section 4.2 two GAs (Genie and GASP) for the placement problem
are introduced. An overview on Genie, which is a genetic placement algorithm de-
veloped by Cohoon and Paris in 1986, and GASP, which is a genetic algorithm for
standard-cell placement developed by Shahookar and Mazumder in 1990, is given in

Section 4.2. This has included the types of operations they have applied and their

results.

In Chapter 5, a Timing Driven Genetic Algorithm for Placement (TDGAP) is
discussed. This is the major part of our work. In this chapter, a detailed discussion
of the implementation of TDGAP is given. Many different functions and operators

related to TDGAP are designed and tested. These include:

o Five Initial Population Constructors:

— IPC;: Random.

— IPCj: Cluster cells affecting the same path, start row=0.
~ IPCj3: Same as IPC2, but start row=5 — 1.

— IPCy: 25% IPC1 + 75% IPC3.

— IPCj5: Same as IPC4, but include a solution by mincut partitioning.

¢ Two Crossover operators:

— ¥;: Maintain the same locatians of these cells affecting a satisfied path.
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— W3: Keep the cells affecting a satisfied path within a certain boundary.

o Four Selector functions:

— p1: Best and rest at random.

— p2: Best 10% and rest at random.

— p3: All at random.

— ps4: Competitive basis, each individual has a certain probability.

o Two Mutation operators:

= p: Directed to improve the timing aspects.

— ueo: Directed to improve the total wirelength.

Many experiments were run to determine the best parameters of TDGAP, for
example, best population size, best crossover operator, and best crossover probabil-
ity. In Section 5.8, discussions and comments on the results of the experiments are

given.

Iterative algorithms such as TDGAP take long time to produce good results
compared to constructive algorithms. Therefore, to reduce the total run time we
have tested the case of dynamic population size where we reduced the population
size as the run goes on. Preliminary results of TDGAP showed a speed up of about

2 in the case of dynamic population size over the case of fixed population size.
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Finally, improvements up to 17.7 % were obtained with respect to clock speed-
up of the tested examples with a slight increase in area between 1.4% and 9.1%

compared to a non timing driven placer that is based on the mincut partitioning

algorithm.

As a continuation of this work we propose the following future works:

¢ Extend TDGAP to accept general cell design style.

e Fine tuning TDGAP parameters in the case of dynamic population size with

more test cases.

¢ Design TDGAP such that it dynamically selects the best parameters while

running.

¢ Design and implementation of a timing driven router that can be integrated

with TDGAP.



Appendix A

Using OASIS System with

TDGAP

OASIS system [MCN90] provides the user with some control variables where he
can run OASIS in different modes. For the purpose of completing the generation
of the physical layout from the placement produced by TDGAP and comparing the
results of TDGAP with an area driven placement tool, we have used the placer and
the router that are implemented in the OASIS system. Here we will introduce the

commands that have been used with the OASIS system with brief explanation.
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A.1 The Placer of OASIS

The placement program used with OASIS is based on mincut partitioning algo-
rithm. The objective of the placer is the minimization of the total wirelength. It
accepts its input from a file describing the circuit which is written in VPNR format.
This input file .is an unplaced domain of the circuit modules. It has an extension
of “.vpnr’, and must be in a sub-directory called ‘layout’. The placement program
is called cplrtnew which generates a placed domaiﬂ of the circuit and outputs the
result in a file that has ‘.scan’ as an extension. To obtain the placed domain of the

circuit the following line command is used from a directory which has the ‘layout’

sub-directory:

oasis scandata rows=Number of _Rows

"The word ‘scandata’ indicates the goal of the run. It commands the OASIS sys-
tem to stop after generating the file ‘ File_Name.scan’. The variable ‘Number.o f-Rows’

is an integer indicating the total number of rows to be used for placing the cells by

cplrinew program.

The two most important files produced are ‘ File_N ame.placer’ and ‘Fiile.Name.scan’.
These two files are written in the ‘layout’ sub-directory. They are needed to complete

the design process and produce the routed layout of the circuit.
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A.2 The Router of OASIS

Two routing programs are applied. One is the glol;a.l router. The second is the
detailed router. The detailed router program used with OASIS is based on the left-
edge routing algorithm. The global router program is called ‘dtglrtnew’ and the de-
tailed router program is called ‘mcroute’. To use these programs and obtain the final
routed layout in MAGIC format the following line command is used from a direc-
tory which has the ‘layout’ sub-directory that includes both files ‘ File_Name.placer’

and ‘File_Name.scan’;

oasis magicfiles rows=Number_of _Rows powerargs=""

The goal here is to reach the completed and routed layout files written in
MAGIC format. The option ‘powerargs="""is an argument for the power router
program. It commands the power router program to include all the Power and
Ground rails in the final layout. For this variable to work it needs the variable

‘rows=" to be specified.

The final output files are those files that describe the completed layout of the cir-
cuit at the mask level. They can be found in a sub-directory called ‘ File.N ame.magic’

which is under the ‘layout’ sub-directory.
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