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Chapter 1

Introduction

Design automation is the automatic synthesis of a physical design from some higher-
level behavioral specification. There are three levels of synthesis namely: high-level
synthesis, logic synthesis and layout synthesis.. Logic synthesis converts a structural
design, in terms of an interconnected set of register fra;.nsfer level components, into
combinational logic, and maps that logic onto cells from a library of a particular

technology. Layout synthesis converts an interconnected set of cells, which describes

the design structures, into the physical geometry (layout) of the design. An inte- - -

grated system that contain all three synthesis levels is called silicon compiler (see
Figure 1.1). .

In this work, various intermediate forms from known high-level synthesis sys-
tems are surveyed. A classification framework that classifies intermediate forms

into two main classes (primary and secondary) is introduced. Essential and desir-



Silicon
Compiler

l.nyout?mhcds
| (Placed oslis and
thelr connections)

Figure 1.1: Synthesis levels and silicon compiler.
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able features of primary intermediate forms are identified. Finally, a new primary
intermediate form called Generic Control-Data Flow Graph (GCDFG) is introduced.
This GCDFG has all the desirable features of primary intermediate forms and fa-
cilitates synthesis tasks like scheduling and allocation. This GCDFG is stored in
ASCII, lisp-like format which makes it portable, machine processible, flexible and
rich format.

This work is divided into five chapters. In chapter one, high-level synthesis is
defined and basic terminology like: DFG, CFG, CDFG, transformation, scheduling,
allocation etc., are explained. In the second chapter, some known high-level synthesis
systems that use various intermediate forms are surveyed. Following the survey, a
general classification framework, that classify intermediate forms into two classes:
primary and secondary, is introduced. The essential and desirable features that
should be possessed by a primary intermediate form are identified. Finally, a new
intermediate form that is called the GCDFG is introduced. Based on this new

intermediate form, an attributed format called GCD-List is introduced.

In this introductory chapter, abstraction levels and high level synthesis are de- - -

fined. Following that, basic terminology like: data flow graph (DFG), control flow
graph (CFG) and control-data flow graph (CDFG) are introduced and illustrated by

examples. Finally, the main tasks of high-level synthesis are defined and explained

briefly.



1.1 Definition of High-level Synthesis

Digital systems are represented at three abstraction levels: the behavioral level_,_the
structural level and the physical level. The highest level of abstraction which is the
behavioral level, corresponds to the high-level description of the system. Behavior
means the way the system or its components interact with their environment [4]. At
this level the system can be described in a high-level language like: FORTRAN [27),
PASCAL[29], C... etc. The next lower level of abstraction is the structural level.
At this level the system is described by its hardware components (registers, ALUs
...etc.,) and their interconnection (netlist). This level is also called the Register
Transfer Level (RTL). Finally comes the lowest abstraction level which is called the

physical level. At this level the digital system is interpreted by the chip layout [6].

| o— pm | L | | = pam— |

aw:;ﬁ(a«) &

sum:sb-x;
tf(sum>0) then
out:=True;
else
out:=False; j
endif;
(a) (®

Figure 1.2: Digital system representation. (a) Behavioral level. (b) Structural level.

In general terms, high-level synthesis (HLS) can be defined as the automatic
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translation of a high-level description (behavioral level) to a lower abstraction level

(structural level). This translation is usually subject to specific constraints like
(speed, cost, space ... etc.,) [5, 17, 10, 2](see Figure 1.2).

High-Level Synthesis (HLS) is a very complex process therefore, it is divided into
tasks. The high-level description is first transformed into an internal represén.tation
(intermediate form (IF)). Next, operations are scheduled into control steps. Then,
hardware resources like ALUs, registers ...etc., are allocated to execute these oper-
ations in the required control steps. Finally, a controller is synthesized to generate
the control signals needed to invoke the allocated hardware components (see Figure
1.2). To perform the aforementioned tasks some intermediate forms are used to help
the synthesis process. The most widely used intermediate forms are flow graphs like:
data flow graphs (DFG), control flow graphs (CFG)... etc. DFG, CFG and CDFG

intermediate forms are explained in detail below.

1.1.1 Date Flow Graph (DFG)

Data Flow Graphs are used to express the data flow of straight codes or basic blocks *

only. It can be defined as a sequence of statements that has one entry point and
one exit point with no iterative, conditional or unconditional jumps. A Data Flow
Graph consists of nodes and directed edges. Nodes represent operations as well as
operands. The directed edges connect operand nodes to operation nodes or vice

versa. A directed edge connecting a variable node to an operation node means this
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destination for that operation.

Mathematical and logical operations are eith;e;' unary or binary. Unary oper-
ation nodes have one incoming edge. Binary operation nodes have two incoming
edges (the two operands). If more than one operation are performed in the same
instruction, some intermediate results have to be stored. These intermediate results
are stored in intermediate variable nodes which are represented by small black dots
(see Figure 1.3). In non-commutative binary operations like divide and subtract, a
convention should be followed. For example (¢ — d) in Figure 1.3, the first variable
c is represented by an incoming edge from the left and the second variable d is
represented by an incoming edge form the right.

x=(y+2)+{c-d)

@ © @ @
O ()

Figure 1.3: Data flow graph.



1.1.2 Control Flow Graph (CFG)

A Control Flow Graph (CFG) is a directed graph, where nodes correspond to oper-
ations and edges represent predecessor/successor relationships. There is one to one
correspondence between the DFG operation nodes and the CFG nodes. An outgoing
edge from node A to node B indicates that operation A is executed before operation
B because node B is data dependent on node A (a destination variable in operation A
is used as a source variable in operation B). The CFG is used to express conditional
and iterative constructs. For Example, to implement an if-then-else statement, a
fork node is used. The fork node, which carries the if condition, has two labeled
outgoing edges, one for the ¢rue branch and one for the false branch. The condition
of the if statement is implemented in the DFG. Then based on the condition value
the corresponding branch is chosen (see Figure 1.4). Loops are implemented by

feedback edges as in Figure 1.5.

1.1.3 Control-Data Flow Graph (CDFG)

A high-level synthesis system called ESPRIT [28] translates the high-level language B
into a Control-Data Flow Graph (CDFG) called eztended DFG in which data and
control flow graphs are combined. This eztended DFG consists of nodes and directed
edges. There are three main types of nodes: operation, operand and control nodes.

Edges represent predecessor/successor relationships. Example of control edges are



Figure 1.5: The CFG and the DFG representing a while loop.



feedback edges.

The CDFG nodes represent operations in the behavioral specification, and the
edges model the transfer of values between operations. A single data value instance
is defined to be a token. An operation is executed when a token passes from the
incoming edge and exits via the outgoing edge. Thus, operations can be executed
concurrently without violating data dependencies. Several node types are defined
in this CDFG. These types of nodes allow the CDFG to support various high-level

constructs. The node types are:

1. Operation nodes. These carry mathematical operations symbols like: x, —, +, /

or boolean like and, or.

2. Input/Output nodes. Every graph requires at least one node of type input
and one of type output. Nodes of type input have no incoming edges and
nodes of type output have no outgoing edge as in Figure 1.6. Input/Output

nodes represent source variables and destination variables.

3. Constant nodes. These produce constant data values at their outgoing edge. - -
These nodes have an incoming dashed edge to indicate the timing at which

the constant should be generated.

4. Branch and Merge nodes. These are used in realizing conditional con-
structs like if-then-else statement. A branch node passes the token from the

incoming edge to one output port, which is selected by the value of the token
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Figure 1.6: IN, OUT and constant nodes.

on the control input. In other words, the control input carries one value either
0 or 1, based on that the corresponding branch is selected. For example, in
Figure 1.7 when g = 1, the left BR node passes the token to the increment
node where a is incremented. When ¢ = 0, the right BR node passes the token

to the increment branch and b is incremented.

. Exit and Entry nodes are simila; to branch and merge nodes, however,
they are used to build loop constructs. The loop body and the loop testing
condition cause cycles in the CDFG. Using ezit and entry nodes makes the
identification of the cycles and hence the loop body and the loop condition

easier (see Figure 1.8).

. Get and Put nodes provide a mechanism for communication protocols with
the outside world. These nodes are linked in a sequential chain to set the order

in which read and write operations should appear on the port. These nodes



it (q)
then a++
else b++;
endif

while (q ~> 0)
{x=x+3;}

Figure 1.8: While loop with Entry and Exit nodes.

11
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can for instance model pads on the chip boundary (see Figure 1.9).

x = get();

it (x<0)

x = get();
b & o ]

put(x);

Figure 1.9: Example of Get and Put nodes.

7. Array nodes are used to manipulate array data values. There are basically
three types of nodes: Array type is used for declaring the array size and initial '
values. It has outgoing chained edges which connect it to the other two types
namely: retrieve and update. The retrieve type node is used to read data from
the array. The update type node is used to write values to the array and it has
a data input port that carries the value to be written (Figure 1.10). Chain

edges specify the ordering in which the retrieve and update operations should



take place.

int A[10};
for (i=0;i<10;
i++)

Alil=0;

Figure 1.10: Array example.

1.2 The Main Tasks in HLS

High-level Synthesis (HLS) involves four main tasks namely:
1. Transformation or compilation of input specifications.
2. Scheduling.
3. Allocation and module binding.

4. Synthesis of control path and the merging of the control and data paths.

13
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1.2.1 Transformation

This is the first step in HLS. It consists of parsing the high-level input description

like behavioral VHDL [25], FORTRAN etc., and transforming it into an internal
representation (intermediate form) such as DFG and CFG, CDFG, Value Trace etc.

There are two main approaches in high-level language transformation:
o Two graphs are generated: one for Data (DFG) and one for Control (CFG).

e A Combined Control and Data Flow Graph (CDFG).

1.2.2 Scheduling

Scheduling means assigning operations to control steps so as to minimize a given
objective function while meeting constraints. These constraints are usually speed
and cost. For example, operations are assigned to control steps so as to maximize
hardware resources sharing. Examples of some known scheduling approaches are

listed below:

o Exhaustive search. In this method, all scheduling possibilities are tested and -

the best solution is found. This method finds the optimum solution, however,

it has a very high complexity. It can be improved using some branch and

bound techniques.

e As Soon As Possible (ASAP). Operations are assigned to their corresponding

earliest possible control steps [22].
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e As Late As Possible (ALAP). Operations are assigned to the latest possible

control step [22].

e List Scheduling. The critical path is scheduled first. Operations to be sched-
uled in the next control step are ordered in a list based on some priority

function like path length and urgency [20].

¢ Dynamic List Scheduling. DLS is oriented to control-flow dominated designs.
It is a modified version of the known path-based scheduling approach (3]. The
algorithm takes VHDL as input and produces a Finite State Machine (FSM)

as output. Each transition in this FSM corresponds to a control step [9].

¢ Freedom-based scheduling. Operations on the critical path are scheduled first,

then operations that have less freedom, and so on.

e Force Directed. In force-directed scheduling, a global time constraint is spec-
ified and the algorithm tries to minimize the resources required to meet that

time constraint. By scheduling similar operations in different control steps, it

is ensured that the functional units have high utilization and hence, concur- ' '

rency is balanced [22, 23].

1.2.3 Allocation and Module Binding

Allocations means assigning operations, variables and interconnection to different

hardware resources like registers, ALUs, multiplexers etc., while meeting constraints
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to match a specific objective function such as minimizing total interconnection

length, minimizing total hardware cost, minimizing critical path delays, minimizing
design area and maximizing total throughput.

Some of the reported allocation algorithms are:

1. Clique partitioning. This method consists first of constructing a conflict graph,
then using node coloring or clique partitioning techniques to allocate the min-

imum possible number of resources [31].

9. Cost function allocation. In this method each ALU is assigned a cost. After
each allocation a cost formula is used to evaluate the cost of the overall ALU
allocation. This process is repeated until a satisfactorily low cost allocation is

reached. Allocation is conducted so as to minimize the overall cost [21].

1.2.4 Control Path Synthesis and Merging Data and Con-

trol Path

Scheduling and allocation produce a data-path and a finite state machine (FSM). - -
In the FSM, the states correspond to control steps and the edges correspond to the
conditions that cause transition from a state to another. From the FSM and the
data path, the controller is synthesized. This controller is then interfaced with the

data path to generate the signals that drive the data-path resources.



Chapter 2

Intermediate Forms and

High-Level Synthesis Tasks

This chapter discusses the synthesis tasks and the intermediate forms used in these
tasks in several high-hevel hynthesis systems. Different high level synthesis systems
have been chosen to illustrate the various types of intermediate forms that are in

use. It consists of three main sections. The first section surveys intermediate forms

used in transformation. The second section discusses intermediate forms used in - -

scheduling and the third section discusses intermediate forms used in allocation.

17
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2.1 Intermediate Forms Used in Transformation

In this section, high-level languages and the intermediate forms used with them are

surveyed. In high-level synthéis, the target design [12, 11] can be specified using:
1. a hardware description language like behavioral VHDL [26};
2. a high-level language: C, FORTRAN [27], PASCAL [29]... etc.

The aforementioned categories of languages share common characteristics. They
describe data manipulation in terms of assignments of variables that keep their values
until they are overwritten. Statements are sequentially organized in blocks linked
by control transfer constructs like conditional constructs, and looping. Hierarchy is
achieved by dividing large programs into subprograms (subroutines and procedures).

The study conducted here includes procedural languages only. However, there
have been some experiments with nonprocedural specification languages, such as
applicative (LISP) and declarative or rule based languages such as PROLOG [7].
In what follows, some HLS systems, their high-level languages and the supporting
intermediate forms are surveyed. Three high-level synthesis systems are discussed. |
They are: HARP, Classical, and HAL. As will be seen later, these three are chosen

because they use different approaches.
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2.1.1 Transformation in HARP
The Hardware Architecture Ruling Processor (HARP) synthesis system uses a subset
of the ANSI FORTRAN 77 [27] as a behavioral specification language. The FOR-
TRAN code is translated into a DFG. Since DFG can only express basic blocks, the

following assumptions and restrictions are observed:

1. Subroutines and functions can be used in the high-level description, however,

they are flattened in the DFG.

2. Loops with indefinite iterations are not allowed and loops with finite length

are enrolled.
3. Intrinsic (built-in) functions are not supported.

Before the FORTRAN code is translated into a DFG all procedures have to be
expanded in-line and loops have to be unrolled. The FORTRAN code of Figure 2.1
is translated into a DFG in which nodes represent operations as well as operands
and edges represent input/output relationships (see ngure 2.2).

DFG exposes the maximum potential parallelism of a high-level specification.
For example, the basic block of Figure 2.1 can be realized by the DFG of Figure
2.2. From this DFG an equivalent parallel basic block can be written as in Figure
2 3. Instructions that are written in the same line are data independent and hence

can be executed in parallel. Transforming a straight piece of code into a DFGisa



DATA 11,12,18,14,15,16.17,18,19,
& 110,111,112,118,114,115
/ 1,2,3,4,5,6,7,8,9,

& 10,11,12,18,14,15 /
Is=11 + 12
Is=18-14

IT=13*16
18=13+15

19=11 +17

I11 =110 /15

112 = 100

113 =13

112 =11

I14 = IAND(I111,I8)

I15 = IOR(112,19)

I1 =114

I2 =115

STOP

END

Figure 2.1: High-level specification (basic block).



1m0 1 12 3 16 100

112

n I2 113

Figure 2.2: The corresponding DFG of the FORTRAN code of Figure 2.1.
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I8 =11+ 12 112 = 11; I12 = 100;
I5 =138 - I}; 12 =18 * I6; 118 = IS;

18 = I8 + I5; I11 =110 / I5; 19=11+17;
I14 = IAND(111,18); I15 = IOR(112,19);

I1 = I14; I2 = 115;

Figure 2.3: Parallel code reconstructed from the DFG of Figure 2.2.

reversible process. In other words, an equivalent description of the original code can

be recovered from the DFG.

2.1.2 Transformation in the Classical System

The classical system is a generic HLS system introduced in [32] by Camposano,
where synthesis starts from a behavioral VHDL description. A DFG and a CFG are
built, then scheduling and allocation are performed. The data-path is constructed
from the DFG and the corresponding control path is constructed with the help of a
FSM. Finally, the data-path and the control-path are merged together to form the
RTL design of the input specification.

Behavioral VHDL can be represented graphically by an intermediate form called -
DAG (Directed Acyclic Graph). The graph nodes represent procedures and edges
represent the calling relationships. Nodes and edges have attributes, examples of
node attributes are procedure name, type of hardware (combinational or sequential).

Each VHDL procedure is transformed into a Data Flow Graph (DFG) and a
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Control Flow Graph (CFG). DFG is a graph where nodes represent operations as
well as operands and edges represent input/output relationships as in Figure 2.4.

The small filled nodes in the DFG are those variables that do not exist in the high-

y:=0.22+0.89+x;
foriin 1 to 4 loop
y:=0.5%(y+xfy);
end loop;

Figure 2.4: The corresponding DFG of the FORTRAN code of Figure 2.1.

level code. Operation nodes have operation type as attributes and variable nodes
have type of variable as attribute. CFG is a directed graph where nodes represent

operations and edges represent predecessor/successor relationship (Figure 2.4).
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2.1.3 Transformation in HAL
In HAL [22] synthesis starts from a high-level language (HLL). The high-level lan-
guage HLL which has a PASCAL like syntax and semantics is translated into a
combined Control Data Flow Graph (CDFG) (see Figure 2.5). In the CDFG, nodes
represent operations, constants, and variables. Edges represent input/output rela-
tionships and data dependency. Moreover, dummy timing nodes can be inserted
between two nodes (operation); these are used to enforce a given execution order of
the corresponding operations like forcing a specific operation to be executed before
or concurrently with another operation. Conditional constructs like: if-then-else
and case can be represented in the CDFG by attaching the condition to the edge.

These require fork and join nodes as we will see later.

2.1.4 Summary

The results of the above study are summarized in Tables 2.1 and 2.2. Table 2.1 shows
the high-level languages versus the features they support. In the Classical system
the input description is VHDL which supports all the necessary high-level la.nguage' |
features. In HAL synthesis system a generic PASCAL like language is used. The
HLL in HAL supports all the necessary high-level language features except hierarchy
where it is not clear from the literature whether it is supported or not. In HARP

FORTRAN 77 is used as an input description language. All necessary high-level



Figure 2.5: Combined Control and Data Flow Graph.
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language features are supported in the FORTRAN 77 except concurrency. Finally,

In ESPRIT a generic C-like language is used. All necessary high-level language

features are supported except hierarchy and concurrency.

System Classical | HAL | HARP__| ESPRIT |
Language VHDL | HLL | FORTRAN | HLL
Sequencing Yes Yes Yes Yes
Hierarchy Yes - Yes -
Conditional Yes Yes Yes Yes
Looping Yes Yes Yes Yes
Concurrency Yes No No -

Table 2.1: High-level languages and their supporting features.

In Table 2.2, we summarize the features supported by each intermediate form.

As seen clearly sequencing and concurrency of operations are supported by all typés

of flow graphs. Conditional constructs and looping are supported by DFG+CFG,

CDFG and the extended DFG. Hence, DFG representation alone is not enough to

realize conditional constructs and looping. It was not stated in most of the literature

whether hierarchy is supported or not. However, in HARP it has been clearly stated

that hierarchy is not supported and all subroutines should be in-line expanded before .

translation.
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[ System Classical | HAL |HARP | ESPRIT |
Tntermediate Form | DFG+CFG | CDFG | DFG | Extended DFG |
Sequencing Yes Yes Yes Yes
Hierarchy - - No -
Conditional Yes Yes No Yes
Looping Yes Yes No Yes
Concurrency Yes Yes Yes Yes

Table 2.2: Intermediate forms and their supporting constructs.

2.2 Intermediate Forms Used in Scheduling

In this section, some scheduling techniques and their intermediate forms used in
some high-level synthesis .systems are discussed. The scheduling techniques that
will be explained are as soon as possible (ASAP), path-based [3] and force-directed
scheduling [22]. Scheduling means assigning operations to control steps so as to
minimize a given objective function while meeting constraints. These constrains
are usually speed and cost. Examples of speed constraints are number of control
steps and length of the control step. Examples of cost constraints are number of
functional units, registers, interconnections, buses and multiplexers.

There are two basic types of scheduling algorithms:

¢ Transformational. These are the ones that begin with a default schedule
(maximally parallel or serial). Then several transformations are applied to get
the final schedule. Examples of transformational scheduling algorithms are:

the exhaustive search and the ad-hoc heuristics such as the one used in HARP
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[27].
o Iterative/Constructive. This type adds operations one at a time until all

operations are scheduled. For example: ASAP, ALAP and force-directed.

2.2.1 ASAP and ALAP Scheduling

In ASAP scheduling, operations are assigned to the earliest possible control step as
shown in Figure 2.6(a). In As Late As Possible (ALAP), operations are assigned to
the latest possible control step (see Figure 2.6(b)).
QP OBd Qb
d 0 ‘Q ©
5
"Q J QP RY
ge "D OO

a) ‘ b)

Figure 2.6: (a) ASAP scheduling. (b) ALAP scheduling.

2.2.2 Force-Directed Scheduling in HAL

In HAL synthesis system a scheduling technique called force-directed is used. In
force-directed scheduling [23], a global time constraint is specified and the algorithm

tries to minimize the hardware resources required to meet that time constraint. By
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placing similar operations in different control steps, it is ensured that the func-

tional unit has high utilization and the concurrency is balanced. The force-directed

scheduling proceeds as follows:

1. Determine Time Frame:
A time frame corresponds to an operation in the CDFG. The length of the
time frame is calculated by evaluating the ASAP and the ALAP schedules as
in Figure 2.6. The difference between the two schedules is equal to the length
of the time frame (see Figure 2.7). The width of a time frame is equal to
1/length. Hence the area of each time frame is always one. The time frame
width indicates the probability of scheduling the corresponding operation in
the control step(s) covered by the time frame. For example, in Figure 2.7
the ASAP schedule of the * < " operation is in step 2 and its ALAP is in

. control step 4. So the time frame of the operatioh “ & " spans three control
steps (control step 2 to control step 4) and its width is 1. The time frame of
operation “ < ” has a length of 3 and a width of :-l,, and hence, its area is equal

to: 3x1=1

2. Create Distribution Graph (DG):
Operation types are separated into disjoint sets. For each set the time frames
are added to form a Distribution Graph. In this example there are four types of

operations, namely: multiply, add, subtract and compare. They are separated
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Figure 2.7: Time frames and distribution graph. (a) For multiply operation. (b) - -
For add, subtract and compare operations.
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into two disjoint sets: { multiply } and { add, subtract, compare }. For

example the DG of the first set of operations { multiply } in control step 2
is equal to the summation of the time frames of multiply operations in step
2 and in this case they are operations number: 4, 6 and 7. Which makes the

DG for step 2 = 1 +  + } = 1.8 (see Figure 2.7).

. Calculate the force associated with each control step assignment for each op-

eration as follows:

F(op)= T)L,(DG(j)) * =(op, j)
ji= control step
op = operation

z(op,j): change of probability of schedﬁling operation op in control step j

For example, to schedule the multiply (operation 3) in step 1 then, the prob-
ability of this operation will change from -;- to1in step 1 and from % to 0 in

step 2. This will result in a force equal to:

F(%3) = (DG(1) *z(3,1)) + (DG(2) * 2(3,2))
= (2.833%0.5) + (2.333 % (—0.5))

= 0.25
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The force is positive, because control step 1 is congested, hence scheduling

operation 3 in control step 1 will have an adverse effect on the overall balance.

4. Choose the force with the largest negative value and schedule the correspond-

ing set of operation(s) in the corresponding control step.

5. Update time frames and distribution graph as in Figure 2.8 and repeat from

step (1) until all operations are scheduled.

c-step1 ]2 .
[ ]
c-step2 ¢ b <
c-step3 b L | I
| g 1.1 :
2 1
1 | v | R
2 | S 2 | R
3 | I 3 |
4 4 | I
2
DG for {*} DG for {+, -, <)

Figure 2.8: Final time frames and distribution graph.



Scheduling Conditional Branches

Conditional Constructs such as if-then-else statements cause forks in the CDFG
as shown in Figure 2.9. Operations in different branches of a fork are mutually
exclusive. When operations in different branches can be executed on the same type
of FU, they can be scheduled into the same control-step without increasing the
required number of Fﬁs. Therefore, the same FU will be shared by those operations
since they will never execute concurrently. To take advantage of this observation,
the following is performed. For each control-step in which the time frames of the
mutually exclusive oper;i:ions intersect, only the highest probability of these is added
to the corresponding DG. For example, for the “+" operation in Figure 2.9, which
has a time frame spanning two control steps (steps 1 and 2), the distribution graph
is made equal to 1 rather than 1+1 = 1.5. This is illustrated in Figure 2.9. Without
special treatment of the mutually exclusive additions, the total distribution would
be 1.5 in both control-steps. The unscheduled addition would then have an equal
probability of being assigned to either control-step. It is obviously preferable to
schedule it in the first control-step, since in this case only one adder will be required. .

This is due to the reduced distribution in the first control-step.
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Figure 2.9: Behavioral description with an if statement and the corresponding: (a) .
CDFG. (b) Time frames. (c) DG.



2.2.3 Path-Based Scheduling

Path based scheduling [3] minimizes the number of control steps under given con-
straints. Conditional branches and conditional constructs are taken care of in path-
based scheduling technique. Scheduling is applied on a CFG where nodes represent
operations and edges represent precedence relationship. Edges have attributes (the

condition of if and while statements), as illustrated in Figure 2.10.

entity prefetch is
port(branchpc, ibus  : in bit 32;
- branch, ire s in bit;
ppc, popc, obus  : out bit 32);
end prefetch;
architecture behavior of prefetch is
begin
process
variable pc, olddpc : bit32 := 0;
begin
Ppe <= pC; -1
popc <= oldpc; -2
obus <= ibus + 4; -3
if (branch = '1’) -4
then
pc:= branchpc; -5
end if; -6
wait until (ire ='1') -7
oldpe := pc; -8
pc:=pc +4; -9,10
end process;
end behavior;

Figure 2.10: Behavioral description of an instruction fetch unit for a micro-processor,
and the corresponding CFG.

The algorithm is applied in four steps:

1. The CFG of Figure 2.10 is transformed into a directed acyclic graph (DAG).
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This is done by removing the feedback edges from the CFG.

. All possible paths in the DAG are identified.and scheduled independently in

ASAP manner. A path rébr&ents a possible sequence of operations.
. For each path all constraints are computed. Constraints are as follows:

(a) Variables can be assigned only once in a control step.
(b) 1/O ports can be read or written only once in a control step.
(c) FUs can be used only once in a control step.

(d) The control step duration limits the number of operations that can be

chained in that control step.

Each constraint can be interpreted as an interval that covers a set of operations,
hence a constraint can be interpreted as a set of operations. For instance,
the variable pc is written twice between operations 5 and 10, so constraint
(a) indicates that path 1 has to be cut between operations 6 and 10, this is

illustrated in Figure 2.11.

An interval graph is formed for each set of constraints. In the interval graph,
each node represents an interval and an edge indicates that the two intervals
overlap as in Figure 2.11. The number of cliques in a minimum clique cover
corresponds to the minimum number of control steps. Each clique corresponds

to a cut. This illustrates which operation will be executed in the corresponding
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control step. Beside that, one cut (cut0) is added to the first operation in the

CFG (see Figure 2.11). These cuts give the minimum number of control steps

needed to execute that path.

Path 1 Path 2
Cut10 Cut20
G) ® o)
() ()
G o
cutat
o @
(s) — Path 3
oxi ©
Cutd0
() () oL
i (] ]
® ® ®
o o} o
™ @ ®

Figure 2.11: Constraints and interval graph.

4. Schedules of all paths, which are created in step 2, are overlapped so as to a
minimize the number of control steps. A graph is formed where the nodes cor-
respond to the cuts generated in step 3 and the edges join nodes corresponding
to overlapping cuts as in Figure 2.11. A minimum clique cover of this graph
gives the least set of cuts and hence the minimum number of control steps

(states) that satisfy the ASAP schedule for all paths.
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5. The finite state machine (FSM) with the minimum number of control steps

(states) that is calculated from step 4, is built (see Figure 2.12).

° 1,23456

[ ]

° 789,10

Figure 2.12: The control finite state machine.

2.2.4 Summary

A study of several intermediate forms and scheduling techniques has been conductéti.
ASAP and ALAP scheduling techniques can be easily applied to DFGs. As shown
previously, force-directed scheduling can be applied on CDFG after obtaining the
ASAP and the ALAP schedules. Hence, force-directed scheduling can also be applied
to CDFGs. Force-directed Scheduling takes care of loops and conditional constructs.
Path-based scheduling, operates on CFGs and takes care of loops and conditional .

constructs. The aforementioned results are summarized in Table 2.3.
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CDFG | DFG | CFG

ASAP and ALAP | Yes Yes | Yes
Force-directed Yes Yes | No
 Path-based Yes | Yes | Yes

Table 2.3: Intermediate forms and scheduling techniques.

2.3 Intermediate Forms Used During Allocation

In this section various intermediate forms that are used during allocation are sur-
veyed. Allocations can be defined as assigning operations, variables and commu-
nication paths to different hardware resources like: ALUs, registers, buses, multi-
plexers... etc., while meeting constraints like: total interconnections length, total
hardware cost, critical path delays and design area [30]. In what follows, we describe

how allocation is performed in various HLS systems together with the intermediate

forms used for this task.

2.3.1 Allocation in FACET Synthesis System

FACET is a HLS system designed at CMU [31]. It uses a unified allocation proce- - -
dure. FACET is not surveyed in the previous sections (transformation and schedul-
ing), because the synthesis starts from a scheduled code sequence (straight code)
which can be thought of as a scheduled DFG. The objectives are to minimize the
number of FUs, storage elements, and interconnection units [31]. The synthesis

process starts from a scheduled code sequence (straight code) as in Figure 2.13.
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Step No

1 V8 =V1+ V2 V12 = Vi1;

2 V5 = V8- VY4 V2 =V38 * V6 V18 = V38

3 V8 = V38 + V§5; V9=V1+ VT, Vit =V10/ V5
4 V14 = V11 and V8 V15 = V12 OR VY;

5 V1 = V14; V2 = V15;

Figure 2.13: A code sequence.

Registers Allocation

The code sequence contains many variables. The purpose here is to combine as
many variables as possible in the least possible number of registers. A variable is
said to be live between the time of its first definition and last use. A variable is said
to be dead between the time of its last use and its next definition. Table 2.4 shows
the variables and their life-times (L=Live and D=Dead). If the live periods of two
variables do not overlap then, they have disjoint life-time. Obviously two variables
can be combined and hence stored in the same register if they have disjoint life-times.
Relaxing this restriction, two variables are combinable if their life-times overlap in
a step in which one of them is assigned to the other.

To combine variables in a minimum possible number of registers, a compatible
graph is formed. In this compatible graph, nodes correspond to variables. Each
two combinable registers are joined by an edge. To form a compatible graph, a
complete graph is formed first, then edges that join two variables with overlapping

life-times are deleted. The resulting graph is represented in Figure 2.14 where each -
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(1,9) (1,13) (L,14)* (3 (85) (27)

(28) (29 (211) (213) (215)* (3,8)

(3,13) (3,14) (315) (4,18) (58 (511)
(518) (514) (515) (618) (7.9) (7,13)
(1.14) (7,15) (813) (814) (913) (9,15)
(10,13) (11,18) (11,14) (1218) (12,15) (13,14)
(18,15)

Figure 2.14: The edge list of the compatible variable graph.

pair represents two nodes (variables) connected by an edge. Edges that are tagged

with “*" indicate pure data transfers like (VI = V14).

Time | vl | v2 | _\_!3_ | V4 | v5 | v6 | v7 | v8 | v v10 | vll | v12 [v13 | V14 v15 |
Etry [L|L[D|L|D|L|D DIDILID|D|D|D}|D

1 viclicici{pjLiD|D|{D|L|{D|L}{D|D;D
"2 vipifricir|L]L|D|{L{L|D|L|D|D;D

3 LipjrijL|LjiL|L|L]JL|L L L|D|Dj|D

4 plpi{p|L|DJL|{D|L}L|L}|L LI{D|L L

5 tliciplriDpiL|D|D|D|L | D|{D|D ;L L
ExtlL|L|D|L|D|{L|D|D|D}JL|D|D D|D}|D

Table 2.4: Life-time table.

The compaction procedure works as follows. First, variables that are related by - -
pure data transfers are combined. This is done by merging the nodes corresponding
to these variables. This might lead to a reduction in the number of control steps.
For example step 5 is cancelled because it contains two instructions which are pure
data transfers (VI = V14, V2 = V15). After that, the clique partitioning algorithm

is applied on the graph of Figure 2.14. The algorithm partitions the set of vari-



42
ables into a minimum number of disjoint subsets. The resulting subsets (cliques)

are {1,14}, {2,7,9,15}, {3,8,13}, {4}, {5,11}, {6}, {10} and {12}. The variables in
each of these subsets can be assigned to one phys'i;:al register, as follows:

Register 1 holds variables V1 and V14.

Register 2 holds variables V2, V7, V9 and V15.

Register 3 holds variables V3, V8 and V13.

Register 4 holds variable V4.

Register 5 holds variables V5 and V11.

Register 6 holds variable V6.

Register 7 holds variable V10.

Register 8 holds variable V12.

Therefore, only eight registers are needed to store these fifteen variables.

Functional Unit Allocation

To allocate the minimum number of FUs, similarities between the code sequence . -
instructions are identified. For example, if two instructions have the same operation
and the same operands but different destinations, then the FU and the connections
from the source registers can be shared between these two instructions. Only a
decoder has to be inserted at the FU output to select the desired destination. By

looking at the input code sequence of Figure 2.13 it is clearly seen that the relation
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between any two instructions has to be one of the following:

1. The operations and all three variables (destination and two sources) are dif-

ferent.

2. The operations are the same. All three pairs of variables are different.

3. One pair of the variables is the same. The operations and the other two pairs

of variables are different.

4. The operations and one pair of variables are the same. The other two pairs of

variables are different.

5. Two pairs of the variables are the same. The operations and one pair of

variables are different.

6. The operations and two pairs of variables are the same. The third pair of

variables is different.
7. The operations are different but the three pairs of variables are the same.
8. The operations and the three pairs of variables are all the same.

First a complete graph, whose nodes represent FUs, is constructed. Edges that
connect simultaneously used FUs (nodes) are deleted to form the compatible graph.

Then clique partitioning is applied on Figure 2.15. Hence, all operations are com-

bined in three FUs as follows:



(1,2) (1, 3) (1,4) (1,5) (1,6) (1,7) (1,8)
(24) (25) (26) (27) (28)

(34) (35) (36) (37) (38)

(4,7 (48

(57 (58)

(6,7) (6,8)

(7.8)

Figure 2.15: The edge list of the FUs compatible graph.

1. FU1 implements “+” in step 1, “*” in step 2, “+ " in step 3, and “or" in

step 4.
2. FU2 implements “ — " in step 2, “+” in step 3, and “and” in step 4.

3. FU3 implements “/” in step 3.

Interconnections Allocation

Interconnections that are never used simultaneously can be grouped into one bus.
The interconnections problem consists of grouping all the interconnections into the
minimum pumber of busses. This problem is very similar to the registers and the . -
FUs allocation problem and it is solved in the same manner. A complete graph is
formed where nodes represent interconnections between hardware resources (regis-
ters and FUs) (Table 2.5). Edges that connect simultaneously used interconnections
are deleted. The clique partitioning algorithm is applied on the compatible graph

of Figure 2.16 and the interconnections are combined into eight buses. All the 17



Source | Destination | Indexing

Name Name Integer
V1 V12 1
Vi ALUl.Inl 2
V2 ALUl.In2 3
V3 ALUl.Inl 4
V3 ALU2.Inl 5
V4 ALU2.In2 6
V5 ALU2.In2 7
V5 ALU3.In2 8
Vé ALUl.In2 9

V10 ALU3.Inl 10
V12 ALUl.Inl 11

ALU1.0ut V2 12
ALU1.Out V3 13
'ALU2.0Out V1 14
ALU2.0ut V3 15
ALU2.0ut V5 16
ALU3.0ut V10 17

Table 2.5: Indices of interconnections.

(1,2) (1.4) (1,5) (1,6) (1,7) (1,8)
(1,9) (1,10) (1,11) (1,12) (1,14) (1,15)
(1,16) (1,17) (2.4) (26) (29) (211)
(2,14) (2.16) (3,4) (3,6) (3,9) (3,16)
(4,5) (47) (48 (4,10) (4,11) (4,13)
(4:14) (4,15) (4,17) (5,13) (6,7) (6,8)
(6,10) (6,11) (6,13) (6,14) (6,15) (6,17)
(1,8) (7,9) (713) (7,16) (8,9) (811)
(8,13) (8,14) (8,16) (9,10) (9,11) (9,13)
(9,14) (9,15) (9,17) (10,11)(10,13)(10,14)
(10,16)(11,18)(11,15)(11,16)(11,17)(12,13)
(18,14)(13,15)(13,16)(18,17)(14,15)(14,16)
(14,17)(15,16)(16,17)

Figure 2.16: The edge list of the interconnections compatible gréph.



interconnections of Table 2.5 are combined into 8 buses as follows:
Bus No. 1 replaces interconnections {13,14,15,16}.

Bus No. 2 replaces interconnections {1,2,4,11}.

Bus No. 3 replaces interconnections {6,7,8}.

Bus No. 4 replaces interconnections {3,9}.

Bus No. 5 replaces interconnections {5}.

Bus No. 6 replaces interconnections {10}.

Bus No. 7 replaces interconnections {12}.

Bus No. 8 replaces interconnections {17}.

2.3.2 Allocation in HARP

In HARP allocation is conducted in three phases: ALUs allocation, then registers

allocation, and finally, interconnections allocation. straight

ALU Allocation

The High-Level Description in HARP is a basic block (straight code) written in
FORTRAN 77 (see Figure 2.1). Scheduling and ALUs allocation are iterated in

HARP and they are conducted as follows:

1. The FORTRAN code of Figure 2.1 is translated into a DFG as in Figure 2.2.
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2. The DFG is scheduled in an ASAP way as shown Figure 2.17.

110 n 12 I4 16 100

112

Il 12 3

Figure 2.17: Initial schedule for the FORTRAN code of Figure 2.1.

3. Initial allocation is conducted by allocating one ALU for every operation.

4. A used/unused matrix is constructed in which each column represents an ALU
and each row represents a control step. If a specific ALU is used in a control . -
step then 1 is filled in the corresponding column/row location otherwise 0 is

filled, (see Table 2.6). The used/unused matrix is constructed as follows:

U 1, if ALU n is used at step s

0, otherwise



ALU Function Unit Definition
1 0 0 1 1| |ALUL:{+-AND}
s|1 1 0 1 of )ALU2:{*/}
tl1 1 1 0 0] |ALU3:{OR,+}
el1 0 1 0 0] |ALU4{=}
pi0 0 0 1 1| |ALUS:{=}

Table 2.6: Used/unused matrix.

5. From the used/unused matrix, a mutual correlation matrix is obtained as in

Table 2.8. The mutual correlation matrix elements are computed as follows:

M ( irj) = E.szfp Uio-an

where STEP is equal to the number of control steps.

Group Number Mergeﬁ'rible Operators
1 */
2 +,-,AND,or,
3 =

Table 2.7: Restriction database.

6. The mutual correlation matrix is searched for the minimum number and by
referring to a restriction database (Figure 2.7). Mergeable ALUs can be de-
tected and merged. For example, element (2,5) which indicates ALU2(*,/)
and ALU5(=) is found to be the minimum. By referring to the restriction

database, it is found that it is not possible to merge {*,/} and {=}. Next, '
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element (1,3) is found and ALU3 and ALU1 are mergeable, so they are merged

to form ALU1 (see Table 2.8).

Next function unit definition

42221

2 2 11 0| |ALUL:{+,,AND, OR}
2 1 2 0 0| |ALU2:{*/}

2 1 0 3 2| |ALU&{=}

100 2 2| |ALUS{=}

Table 2.8: Mutual correlation matrix.

7. After each ALU merge, the DFG is re-scheduled according to the new allo-

cation. This leads to an increase in the number of control steps (see Figure

2.18).

8. Steps 4 through 7 are repeated until a predetermined maximum number of
control steps is reached. In this case this predetermined number is 7 (see

Figure 2.18).

Registers allocation

A life-time table is constructed. The columns of the life-time table correspond to
variables and the rows correspond to control ;steps. In Table 2.9, “d” corresponds to
a variable definition and “r” corresponds to a variable reference. For each variable
(column), L (Live) is put in the interval [d,1], D (Dead) is put in the interval [r,d]

and U (Unknown) otherwise (see Table 2.10). In Table 2.11 entries that contain



100

Figure 2.18: Final schedule and the allocated ALUs.
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“U” are determined precisely and they are changed to either “I for Live or “d”

for Dead. Variables that do not have overlapping life-times can be allocated to the
same register. Example of that is merging I13 with 112, I2 with I7, I5 with I15...etc.

The heuristic that combines these registers is the left-edge algorithm which is widely

used for channel routing.

Step 12 1 3 2 13 7 6 5 4 11 10 8 9 14 15
entry

1 d r dr

2 r d drdr

3 r r d r d

4 T r d

53 T r

6 r d r r d
7 d r

Table 2.9: Definition and reference history.
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Table 2.10: Preliminary life-time table.
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Table 2.11: Final life-time table.

Interconnection Units Allocation

Resources with more than two outputs are merged into one data bus where possible.
This is possible only if both the connections are not used simultaneously. After that

multiplexers are inserted where needed.

2.3.3 Discussion

Many intermediate forms that are used in allocation have been discussed in this

section. In FACET the allocation process starts from a scheduled straight code. A

life-time table is built and a conflict graph is constructed. In HARP allocation also - '

starts from a DFG and then a used/unused matriz is produced and then mutual cor-
relation matriz is computed. A life-time table for compacting registers is obtained.
It is concluded that flow graphs are ideal for the discussed allocation techniques.
Moreover, it is observed that many additional intermediate forms are used to ac-

complish the allocation task. This is because allocation is usually conducted on all
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hardware resources like: functional units (FUs), registers and interconnections.

2.4 Conclusion

In this chapter, several scheduling and allocation techniques and the intermediate
forms used with them .have been discussed.

Overall, the following statements can be made:
e Most intermediate forms are data flow based.

e Sequencing and concurrency are supported in all studied intermediate forms,

since hardware systems are inherently concurrent.

o Hardware designs are concurrent in nature. In other words, operations in

hardware systems are executed as concurrent as possible.

¢ Some intermediate forms can highlight some hidden features of the system
behavior that even the high-level specification language cannot express.. For
example, concurrency is not highlighted in the high-level specification language . -

while it is clearly shown in some intermediate forms like CDFGs.

o This chapter shows the inter-dependencies between the various high-level syn-
thesis tasks which is the basis of the classification that will be introduced in

the next chapter.
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¢ Each scheduling and allocation technique can operate on a specific intermedi-

ate form.



Chapter 3

Classification of Intermediate

Forms

In this chapter we briefly overview high-level synthesis systems and their correspond-
ing intermediate forms. From these high-level synfhesis systems, a classification
frzﬁnework which classifies intermediate forms into two main classes: primary and
secondary is proposed. Primary intermediate forms_(PIF) and secondary interme-

diate forms (SIF), objectives and constraints of each system are highlighted.

3.1 Constraints

In the Webster dictionary “constraint” is defined as “compulsion”. When the term

speed constraint is mentioned, it means that the design is synthesized in such a way

55



56
so as to maximize its speed. The way of increasing speed can be achieved by mak-

ing the design more parallel. This takes place while scheduling or by allocating fast
hardware components, which takes place during ;llocation. Moreover, the design
speed can be increased by avoiding using multiplexers, which will be on the expense
of increasing the number of registers and interconnections. Another example is cost.
Reducing cost means reducing the design area, which can be achieved by reducing
the number of the hardware components (ALUs, registers, buses and muliplexers).
Satisfying one constraint will usually be on the expense of another, that is why com-
promise solutions are considered. Constraiﬂts are important and heavily influence

the scheduling and allocation algorithms.

3.2 Classes of Intermediate Forms

The high-level synthesis process starts as follows. The high-level language is first
transformed into an intermediate form (DFG, CDFG). This translation is necessary
because the high-level language is not a suitable format. Therefore, it is transformed
to a processible format (intermediate form) that can capture the specifications of the
high-level language and lend itself to synthesis tasks like scheduling and allocation.
The intermediate form that results from transforming the high-level language is
referred to as primary intermediate form (PIF). Synthesis tasks like scheduling and

allocation extract a subset of the specification from the primary intermediate form
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and build other intermediate forms referred to as secondary intermediate forms.

Therefore, intermediate forms can be classified according to the synthesis task

they are used in. We classify intermediate forms into two main classes:

o Primary intermediate forms (PIF).
These are the ones produced from transformation, since they inherit all the

system behavior and specifications from the high-level description.

e Secondary intermediate forms (SIF).
Those that extract a subset of the system specification from the PIF to perform

a specific task in synthesis. These are usually used in scheduling and allocation.

High-level synthesis systems follow different approaches. Each high-level synthe-
sis system synthesizes the input behavior nnde; specific constraints to match specific
objectives. In the following sections, some high-level synthesis systems are briefly
surveyed. Primary intermediate forms (PIF), secondary intermediate forms (SIF),

objectives and constraints of each system are highlighted when possible.

3.3 HAL Synthesis System

In HAL [22] the synthesis procedure starts with a high-level description. Some
speed and cost constraints are imposed like: number of control steps and functional
unit types. A scheduling technique called force-directed scheduling is used. This

scheduling method reduces the number of functional units, registers and buses. It
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places similar operations in different control steps so as to balance the concurrency
of operations so that each hardware resource has high utilization. This in turn re-
duces the number of hardware resources reqmred and hence reduces the area without
increasing the number of control steps. The synthesis procedure starts as follows:
first, a combined control-data flow graph ( CDFG) is generated from the high-level
description. Then, scheduling is iterated with allocation and the data path is gen-
erated (see Figure 3.1). This is achieved with the help of secondary intermediate
forms like: Time Frames and a Distribution Graph.

In HAL, the intermediate forms used are:

¢ The primary intermediate form:

Control Data Flow Graph (CDFG).
o Secondary intermediate forms:

— Time Frames: this intermediate form shows the probability of scheduling

each type of operation in each control step.

— Distribution Graph: this intermediate form is generated for each type of '
operation. The force is calculated for each (operations set, control step)
pair. An operation is assigned to the control step that has the minimum

overall force, where the strength of the force is inversely proportional.



High Level Description
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CDFG PIF

Find
ASAP &

SIF

Time Dlstrlbutlo
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Data Path Control Path
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Structural Description

Figure 3.1: HAL high-level synthesis system.



3.4 FACET Synthesis System

FACET high-level synthesis system uses a unified-procedure to accomplish the syn-
thesis tasks [31]. Constraints are to minimize the number of FUs, storage elements,
and interconnection units. The system synthesizes a code sequence (straight code).
Then a complete graph, where nodes corresponding to registers, is established. More-
over a life-time table is established from the code sequence. By referring to the life-
time table, edges that connect any pair of combinable registers are deleted. Then,
the clique partitioning algorithm is applied on the remaining compatible graph. The
resulting cliques represent the needed registers and the elements (nodes in each
group) represent the variables that use the same register. The same procedure is
applied to FUs where operations are numbered and a conflict graph is established
and partitioned. FUs that are in the same partition are merged together. The same
procedure is used in allocating interconnection units.

In this system intermediate forms can be categorized as follows:

o The primary intermediate form:
Code sequence (straight code) in which each line represents a control step and

operations that are in the same line are scheduled in the same control step.

e The secondary intermediate form:

— Compatible/conflict Graph.
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— Life-time table.

8.5 HARP Synthesis System

In HARP [27] the synthesis starts from a FORTRAN 77 plain code (see Figure 3.2).
A DFG is generated. After that, the minimum npumber of single function ALUs are
allocated. A used/unused matriz is generated and then a mutual correlation matriz
is generated. Then with the help of a restriction database ALUs are merged. Merg-
ing ALUs leads to an increase in the number of control steps required. Therefore,
.the ALU merging process continues until a limit (a maximum number of control
steps) is met [27). Using this scheduled DFG, a life-time table for variables is built
and then using the left edge heuristic, variables are merged to give the final number
of needed registers. After that, interconnecfions buses are synthesized and multi-
plexers are inserted when needed. After generating the data path the control path

is synthesized easily (see Figure 3.2). The intermediate forms used in HARP are:
¢ The primary intermediate form is:
- DFG.
o The secondary int.ermediéte forms are:

— Used/unused matrix.

— Mutual correlation matrix.



Allocate Alocae

Control Path

Structural Description

Figure 3.2: HARP high-level synthesis system.
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— Restriction database.

— Registers life-time table

3.6 Path-Based Synthesis System [3]

In this system the synthesis starts from a behavioral VADL. A CFG is built from
the VHDL code. After that, the CFG is transformed into a directed acyclic graph
(DAG). This is done by removing the feedback edges from the CFG. All possible
paths in the DAG are identified and scheduled independently in ASAP manner. A
path represents a possible sequence of operations. For each path all constraints are
computed. Each constraint can be interpreted as an interval that covers a set of
operations. An interval graph is formed for each set of constraints. In the interval
graph, each node represents an interval and an edge indicates that the two intervals
overlap. The number of cligues in a minimum clique cover corresponds to the
minimum number of control steps. Each clique corresponds to a cut. These cuts
give the minimum number of control states needed to e:.tecute that path. From these N
cliques, a finite state machine, which indicates which operation will be executed in
the corresponding control step, is constructed (see Figure 3.3). The intermediate

forms used in the Path-Based system are:
e The primary intermediate form is:

- CFG.



o The secondary intermediate forms are:
— Directed acyclic graph (DAG).
— Interval graph.

— Finite state machine (FSM).

Comre

[ Structural DuulpﬂonJ

Figure 3.3: Path-based high-level synthesis system.



3.7 Conclusion

In this chapter a classification of intermediate forms has been presented. It classifies
intermediate forms according to the synthesis tasks into two main categories namely:
primary and secondary. In Table 3.1 primary and secondary intermediate forms for
the presented systems are listed. Primary intermediate forms are complete. In other
words, an equivalent high-level specification can be rebuilt from the PIF. Sometimes
these PIFs help in highlighting information and details not explicit in the high-level
description. For examp_le, the DFG used in HARP synthesis system shows the
maximum potential parallelism in the FORTRAN 77 code. This parallelism is not

explicitly stated in the FORTRAN 77 code.

BASIC HAL FACET HARP
PIF | DFG + CDFG Code Sequence DFG
CFG
DPG | Time Frames, | Compatible Graph, | Used/Unused Matrix
SIF Distribution Conflict Graph, Mutual Correlation
CAG Graph. Life-time Table Matrix,
: Life-time Table

Table 3.1: Primary and secondary intermediate forms.

From this chapter we conclude that an ideal PIF should posses the following

features:

e Completeness. Which means that PIF should be able to capture all the infor-

mation in the original specification.
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o Extendibility. It should allow easy accommodation of additional user defined

constraints.
e Should provide a suitable representation across all synthesis tasks.
¢ Independent of any input language.
e Should not be tied to a particular architectural style.

e Not restrictive. It should explore all possible concurrency so as not to restrict

the search space.

e Should have simple syntax and can be easily manipulated.



Chapter 4

Generic Intermediate Form

Input behavioral specifications are typically compiled into flow graphs. The reason
is mainly because graphs are powerful mathematical abstractions which allow the
capture of all information in the original specification. Moreover, flow graphs are
very powerful structures and have been extensively étudied by scientists and engi-
neérs in various disciplines. As we have seen, most HLS tasks can easily be modeled

as graph problems (e.g. clique partitioning).

New trends in high-level synthesis systems are pointing towards using a combined . -

control and data flow graph (CDFG) as a primary intermediate form (PIF) {16]
rather than using two separate flow graphs; .one for data flow (DFG) and one for

control flow (CFG) [15]. Using two separate graphs (DFG and CFG) results in the

following:

¢ redundancy,
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o complexity in handling and applying synthesis algorithms, and
e limit on the search space for some synthesis algorithms.

The type of representation used has an important impact on the final design [1).
In the following sections a new PIF is proposed. The proposed PIF is called
Generic CDFG or (GCDFG). 1t is called so to differentiate it from other CDFGs.
First, the structure of this generic CDFG is defined, then a detailed explanation of
the constructs it supports follows. Illustrative examples are given when necessary. A
complexity analysis of this Generic CDFG is also presented. The complexity analysis
covers the derivation or (compilation) complexity as well as the space complexity.
After that an example is given to illustrate how the GCDFG is built. An example
is also given to illustrate how this intermediate form is used in synthesis tasks like
scheduling and allocation. Finally, a study that compares this proposed intermediate

form with others is conducted.

4.1 Introduction and Definition

The GCDFG is an enhanced CDFG. It isa ﬁmted graph G(V,E), where nodes are

connected by directed edges. There are two main types of nodes: )

1. Operation nodes. These are the nodes that correspond to operations (logical

and arithmetic) and they are labeled by their corresponding opera.;ion symbols.
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9. Control nodes. A control node can be one of the following types:

(a) S node. Start node that is used to indicate the beginning of a block.
(b) E node. End node that is used to indicate the end of a block.

(c) IN/OUT nodes. These types of nodes correspond to an Input/Output
operations. For example, Read/Write operations can be implemented

using IN/OUT nodes.

(d) Fork node. It is used to implement if-then-else statements, and For,

While and Repeat loops.

() Join node. This type is used with the fork node to indicate the end of an

if-then-else statement.
Edges in the GCDFG are of the following types:
1. Variable Edges. These edges correspond to variables.
2. Control Edges. These (dashed) edges are used for two purposes:

(a) To connect control nodes to other nodes.

(b) To connect two operation nodes which will force the source node operation

to be executed before the destination node operation.
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if (condition-body ) then

while condition_body do if. body
loop-body else
end while else_body
endif;
(a) (b)

Figure 4.1: Blocks in: (a) while loop (b)if-then-else statement.

4.2 Generic Control-Data Flow Graph (GCDFG)
Tran_sformation

To verify the power of this Generic CDFG, some examples from previous chapters
are expressed using this intermediate form. The Generic CDFG supports arithmetic
and logical operations, hierarchy, concurrency, control transfer like looping, condi-
tional constructs and special data structures such as arrays. The input behavioral
specification consists of blocks connected by control construct. Blocks can be loop
bodies, loop conditions, procedures, if-then-else statements bodies and conditions
(see Figure 4.1). Control constructs can be loops (for, while, repeat-until), condi- . -

tional constructs (if-then-else), procedure calls.

4.2.1 Transforming Blocks

As mentioned earlier, the GCDFG consists of nodes and directed edges. Nodes are

labeled and they represent operations or input/output relations. The directed edges
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which represent variables are labeled by the variable name. If the node represent an
operation then, its label is the mathematical symbol of the operation it represents
such as =, +, —, *, /, and, or ... etc. Operands can be variables or constants.
Constants are represented by an edge labeled by the constant value generated from
a constant generator node C.Gen. For example in Figure 4.2, c=a+ b, a and b are

incoming edges to the node +, and c is an outgoing edge.

Q,@@@

®

Figure 4.2: The GCDFG of c=a-+b.

In binary operations like “~" and “/, a convention is followed, the edge coming
from the left is the first operand and the right edge is for the second operand. This
GCDFG shows all the potential parallelism of a behavioral description. For example, .
the basic block in Figure 4.3 is transformed into the GCDFG of Figure 4.4. This
GCDFG shows the maximum potential parallelism in this basic block which can be
rewritten as in Figure 4.5. All nodes and edges are labeled by a unique identification

number. These numbers will be used to build node-list and edge-list as we will see

later.



Read (11)

Read (12)
I18=I1+12;

Read( 1})

Read( 16)
I5=I18-14;
I17=138%16;
Read(110);
118=I3;
Write(113)
I8=I8+15;
19=I1+1I7;
111=110/15;
112=11;

I14= (111 AND I18);
I15= (112 OR I9);
I=114;

I2=115;

Write( 11, 12)
END

Figure 4.3: FORTRAN code.



Figure 4.4: A GCDFG of the basic block in Figure 4.3.
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Read(11); Read(I12); Read(1}); Read(16);
18=I1+12; I12=11;

15=I8-I}, I17=18%*16; 118=I3; -

18=I3+15; 19=11+17;. 111=110/I5;
114=IAND(111,18); I115=IRO(I12,19);

I1=I114; I2=I15;

Write(113); Write(11); Write(I2);

STOP

END

Figure 4.5: Parallel FORTRAN code as per the GCDFG in Figure 4.4.

When transforming blocks, a start node (S) and an end node (E) are added at
the beginning and at the end of each block. These two nodes are added to indicate
the beginning and the end of each block. Moreover, the S node is connected to
ail independent operations (have no predecessor) in the block, like Read(I1) and
Read(I2) in Figure 4.3. The E node shows all operation that have no successor
operation in a block, like Write(I1) and Write(I2) in Figure 4.3. Adding S and E

nodes helps in scheduling and optimization as will be seen later.

4.2.2 Transforming Control Constructs

The GCDFG consists of blocks and control nodes connected by control edges. Con-
trol edges and control nodes are labeled. To differentiate control edges from variable
edges, control edges are made dashed. Control edges specify operations execution

order. A control edge connects two operation nodes, or an operation node to a
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control node. For example, if node A is connected to node B by a dashed (control)

edge, then operation A is executed before operation B even if they are not data
dependent. So control edges force execution order. Solid edges, which represent
variables, implicitly indicate data dependencies which in turn specifies execution

order as well.

Transforming Loops

For loops, while loops and repeat-until loops have a condition to be satisfied.
Based on this condition, the loop body is either repeated or halted. In our GCDFG
notation, loops are specified with the help of fork nodes. A fork node has two
incoming edges (condition and feedback) and two outgoing edges; the edge that
starts the loop is labeled as true and the edge that exits the loop is labeled as
false. The fork node receives the condition value (trué or false) from the incoming
condition edge, and based on that, a branch is selected (loop body branch (true) or

the exit branch (false)). An example of a for loop transformation into GCDFG is

shown in Figure 4.6. An example of a while loop that is transformed into GCDFGis . -

shown in Figure 4.7. In the same way, the repeat-until loop construct is illustrated

in Figure 4.8.



Read(x);
y:=0.22+0.89"x;
foriin1to 4 loop

y:e0.5"(y+xly);

oo EE S

Figure 4.6: The GCDFG of a for loop.
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Figure 4.7: The GCDFG of a while loop.
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Body
Until (Condition Block)

Figure 4.8: The GCDFG of a general repeat-until loop.

Conditional Constructs

Conditional constructs representations can be classified into two main categories

[24].

e Control select (C-select). In this representation condition select is per-

formed before executing any conditional operation from any branch (see Fig-

ure 4.9). So the decision as to which operations share resources is postponed . -

until scheduling or allocation is done.

o Data select (D-select). In this representation all conditional branches are
executed separately in parallel and correct data values are selected at the end
of the conditional branch, which might generate faster design (see Figure 4.9).

However, since mutual exclusive operations (operation in different branches)



ifq>0
a=b+C
else
a=c+
endif
Control
ce=-pl fqg>0 tq>0
T F

(a) C-solact representation

Figure 4.9: Conditional representation.

here are executed together, more ALUs might be allocated which might result

in an expensive design.

In GCDFG C-select representation is used. In GCDFG, the if-else construct
consists of tﬁree blocks: the condition block, the if block and the else block. The
condition block evaluates the condition and passes the result (true or false) via the
condition edge to the fork node which in turn selects the corresponding branch .
(true or false) (see Figure 4.10). The fork node has one incoming control edge and

two outgoing edges. The incoming edge carries the condition value. Based on the

condition value, one of the branches is executed.



Figure 4.10: A GCDFG of an if-then-else statement.
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4.2.3 Hierarchy

Procedures and subroutines in the high-level language are transformed first and then
are handled as blocks. S and E nodes are added at the beginning and end of each
procedure/subroutine. A procedure call statement is implemented by establishing a
control edge labeled call from the main program to the S node of the procedure and

an outgoing edge labeled return from the procedure E node to the calling program

(see Figure 4.11).
The main program
O
N
y
Procedure
body
G‘-l-o-.-.o';
Retum
Figure 4.11: A procedure call.
4.2.4 Arrays

To transform arrays into GCDFG, In-Array (I.Array) and Out-Array ( 0.Array)
nodes are used. When an array cell is read or written, we need to know the array

name and the cell index. If the array is a destination operand (a value is written



_ 82
to it) like A[3] = 5+ 6, then the Larray node takes two edges as inputs, the array

index which is 3 and the array name which is A (see Figure 4.12). If the array is a
source operand (a value is read from it) like Q = A[5] + 6 then the O.Array node
takes the array index which is 5 in this case as an input edge and output one edge

as the array cell (see Figure 4.12).
s 5
Array name v
Read(x);
~T A[3Js5+x;

Array Read(AlS));
index g=A[S}+4;

? Write(q):
(b)

Figure 4.12: (a) The GCDFG for write to array operation. (b) The GCDFG for
read from array operation.




4.3 Complexity Analysis

In this section, derivation and space complexity are analyzed for the GCDFG. To
build a GCDFG from a high-level language (behavioral description), the pa;rsing
algorithm in Figures 4.13, 4.14 and 4.15 is applied. This algorithm parses the
behavioral description and builds two lists; one for nodes and one for edges.

The parsing algorithm reads the input behavioral specification and works as

follows.

e When a beginning of a block is encountered, a S node is added to the edge-list.
After that, instructions within the block are transformed as follows: operations
are added to the node-list, variables instances are added to the edge-list. This

process continues until an end of a block is encountered; if so, then an E node

is added to the node-list.

o When a control constructs like: if-then-else, for, while and repeat until loops

or procedures calls, is encountered then:

— If an if-then-else statement is encountered, we add a fork node and '
three control edges. These are: one incoming edge labeled as ‘Cond’
to connects the if condition block and two outgoing edges; one to the
true branch and one to the false branch. To indicate the end of the if
statement, a join node and two edges one from each branch, are added

(see Figure 4.10).
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— If for, while or repeat-until loops are encountered, then a fork node and

three edges are added at the beginning of the loop (in case of repeat-until
it is added at the end ): an incoming edge to the fork node comes from
the loop condition block which is labeled as ‘Cond’. Two outgoing edges
from the fork node one to the loop body labeled as True and oné to loop

exit labeled as False.

— If a procedure is encountered then, as in blocks, a S node is added at
the beginning of the procedure then the procedure body is transformed.

Finally, an E node is added at procedure end.

.4.3.1 Space Complexity

As stated earlier, the aforementioned algorithm parses the behavioral description to
build the GCDFG which consists of two lists; node-list and edge-list. The node-list
has the following fields: Node ID, Label, Type (operation or control). Each edge
connects two nodes (a source node and a destination node), so the edge-list has the
following fields: Edge ID, Label, Type, Source Node ID, Destination Node ID. Nodes' .
and edges are given unique identification numbers. Each block with m operations
creates m + 2 nodes in the GCDFG because a S and an E nodes are added to the
node-list. The same applies for procedures. Each if-else statement in the high-level
specification creates a fork node and a join node in the GCDFG. Each loop in

the high-level specification creates a fork node in the GCDFG. Assuming that the
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behavioral description has n operations, b blocks, f if-else conditions, l loops and p

procedures, then the corresponding GCDFG has (n+2b+2f + 1+ 2p) nodes in the
node-list. .

Since the number of procedures, if-then-else statements, for loops, while loops
and repeat until loops is negligible with respect to n (the number of opellation),
then the space complexity of the node-list is O(n).

The number of GCDFG edges is not straightforward to calculate, since one edge
is created each time a variable is used. Hence, the number of edges in a block is equal
to the number of data transfers (variable instances). Besides, some control edges are
added with some control nodes. When a S node is added to indicate the beginning
of a block then, some edges are added between this S node and some operation
nodes. The same applies for the E node. In the worst case, all the n operations
of & block are connected to the S node and to the E node which creates 2n control
edges. Moreover, a feed-back edge, a condition, true and false edges are added when
a loop is encountered. Two branching edges (true branch and false branch), and
two joining edges, are added whenever an if-then-else statement is implemented. A - -
call edge and a return edge are added for each procedure call.

Assuming a behavioral description with e data transfers, n operations, f if-
then-else conditions, ! loops and ¢ procedure calls in a behavior description, then
the corresponding GCDFG contains (e +2n + 4f + 4] + 2¢) entries in the node-list.

Since the number of control constructs like: if-then-else statements, for loops, while
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loops ... etc., is negligible with respect to e and n, then the number of edges in the

GCDFG is O(n + €). So the space complexity of the edge-list is also O(n + e).

4.3.2 Derivation Complexity

The derivation complexity of the parsing algorithm is mainly the complexity of
building the node-list and the edge-list. To build an edge-list of size n + e, at least
n + e steps are required. Each time an edge is added to the edge-list, the node-list is
searched twice, once to.get the source node ID and once to get the destination node
ID, and since it takes n steps to search the node-list, the complexity of building

edge-lists is equal to O(n * (n +€)) = O(n® + n+e).

4.4 GCD Example

In this section, a behavioral VHDL description is transformed into a GCDFG. The
GCDFG is presented graphically. The node-list and the edge-list are constructed.
Figure 4.16 shows an example of a behavioral specification. It contains a VHDL .
program fragment, demonstrating assignment, arithmetic operations, a while loop
and an if-then-else statement. The node and edge-lists are shown respectively in
Tables 4.1, 4.2, 4.3 and 44.

The parsing algorithm works as follows:

e A statement is read form the behavioral description. It is identified as a while
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Procedure Process_Block
Begin
Add S node
Inner:=Inner+1;
While not ((Control construct encountered) or (End of Block)) do
Begin
Add_Operations_to_Nodes_List;
Add_Variables_to_Edges_List;
End{ While}
if (End of Block) then
Begin
add an E node;
Inner:=Inner-1;
End;
else
Return;
End {Procedure}

Procedure Process_If Statement
Begin '
Process_Block; { Transforming the condition}
add fork node to the Node-List;
add true edge to Edge-List;
Process_Block;
if (‘else’ encountered) then
begin
add false edge to Edge-List;
Process-Block;
end;
add joint node and join edges to Nodes and Edge-Lists;
End;

Figure 4.13: This algorithm parses the input and creates the node-list and edge-list,
(continued. next page).



Procedure Process_For.Loop
Begin
Process_Block; { Transforming the condition}
add fork node to the Node-List;
add loop body edge to Edge-List;
Process_Block;
add ezit edge;
End;

Procedure Process.While_ Loop
Begin
Process_Block; { Transforming the condition}
add fork node to the Node-List;
add loop body edge to Edge-List;
Process_Block;
add ezit edge;
End;

Procedure Process_Repeat.Loop
Begin
add fork node to the Node-List;
add loop body edge to Edge-List;
Process_Block;
Process.Block; { Transforming the condition}
add ezit edge;
End;

Figure 4.14: The parsing algorithm (continued from Figure 4.13).



Procedure Process_Procedures_Calls
Begin

add 2 control edges to Edge-List;

(one or calling and one for returning);
End;

Main
While not (EOF (behavioral input)) do
begin
Read a word from the input behavioral description;
if (a beginning of a block encountered) then
Process_Block;
else {( beginning of a control construct encountered)}
Case the control construct of:
“f’ then
Process_If-Statement_Body;
‘else’ then
Process_Else_Body;
‘while’ then
begin
Process. While_Loop_Condition;
Process. While_Loop.Body;
end;
‘for’ then
Process_For_Loop;
‘repeat’ then
Process.Repeat.Loop;
‘procedure’ then
Process_Procedure;
end;{ While}
End.

Figure 4.15: The parsing algorithm, (continued from Figure 4.14).
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entity EXAMPLE is
port (IN1, IN2, INS : in integer);
com : in bit;

end gcd;

architecture BEHAVIOR of EXAMPLE is
begin
process
variable A, B, C, D, E, F : integer;
while (E>F)
loop
if (com = ‘1’ ) then
E:= IN1;
F:= IN1;
A:= D + IN%;
B:= C - INS;
C:=A + B;
D:=C+8;
else '
E:= IN%;
F:= INS;
end if;
end loop;

Figure 4.16: A behavioral specification fragment in VHDL.



91

Figure 4.17: The GCDFG of the VHDL behavioral specification of Figure 4.16.
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statement. A S node is added to the edge-list to indicate the beginning of

while condition block. The while condition (E < F) is realized as follows. The
values of E and F are read by two IN nodes: Then they are are compared by
the operation “<”. This results in adding three nodes to the node-list (IN,
IN and “<”) and two edges to the edge-list (an edge that represent F and an

edge that represent E).

e An E node is added to the node-list to indicate the end of the while condition

block.

o A fork node is added to the node-list to branch to the while loop body (true
branch) or exit (false branch), and an edge labeled with Cond is added to

connect the E node from the condition block to the fork node.

e A S node is added to indicate the beginning of the while loop body. An edge
that is labeled true connects the fork node to the S node is added to the edge-

list. An E node and an exit edge that is labeled false is added to the node-list

and edge-list.

e An if statement is encountered. A S node is added to indicate the beginning

of the if block.

e The condition of the if statement is transformed in the same way as the while

condition.
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o A fork node, that implements the if-then-else statement, is added to the

node-list.

e A S node that indicates the beginning of the true branch is added. An edge
that is labeled true is added to the edge-list to connect the fork node to the

S node. The same is done to the false branch.

e The if statement body (true branch) is transformed. Then, the else body

(false branch) is transformed.

e A join node is added to indicate the end of the if-then-else statement. Two
edges that connect the end of the true block and the end of the false block to

the join node are added to the edge-list.

¢ Finally, an E node that feeds back to thé fork node is added to the node-list.
A feed back edge, that connects the E node to the fork node to restart the

while loop, is added to the edge-list.

4.5 Optimization

The GCDFG as a PIF facilitates high-level optimization. For example, useless code
can be detected and eliminated easily. This can be achieved as follows. While
transforming the high-level description into GCDFG, the GCDFG is checked for

dangling edges. Dangling edges correspond to variables calculated or assigned values
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Node ID | Node Label | Node Type
26 + 4)
27 + o
28 C.Gen. o
29 ouT C
30 E C
31 S C
32 IN (o}
33 = o)
34 (o) (o}
35 IN o)
36 = (o)
37 OUT o)
38 E C
39 JOIN C

40 E C
41 E C

Table 4.2: Continued..., the node-list

but never used. These dangling edges and their successor nodes that have no path
to the last E node in the block can be eliminated. This is done by scanning the

edge-list for edges that have a source node but no destination node (see Figures 4.18

and 4.19).

4.6 Scheduling and Allocation Example

In this section an example that illustrates how can the GCDFG be used in scheduling
and allocation is shown. First, the behavioral description of Figure 4.3 is transformed

into a GCDFG of Figure 4.4. After that, an ASAP scheduling is applied to the



1D | Label | Type | Source | Destination
1 S C 1 2
2 E v 3 4
3 F A" 5 4
4 - C 4 6
5 - C 2 3
6 - C 2 5
7|{Cond| C 6 7
| 8 | False| C 7 41
9 | True | C 7 8
10 | com A\ 9 11
11 1 \"/ 10 11
12 - C 11 12
13 - C 8 9
14 - C 8 10
15| Cond | C 12 13
16| True | C 13 14
17| IN1 A" 15 16
18| E \"/ 16 17
19| IN1 A" .15 18
2| F \" 18 19
21 - C 14 15
2| D A" 20 21
23 | IN2 A% 22 21
24| A A% 21 26
25 - C 14 20

Table 4.3: The edge-list, continued in the next page.



ID| Label | Type | Source Destination
26 - C 14 22
27 C \Y% 23 24
28 IN3 \Y 25 24
29 - C 14 23
30 D \% 14 25
31 B \Y% 24 26
32 C A% 26 27
33 3 A% 28 27
34 D \% 27 29
35 - C 19 30
36 - C 17 30
37 - C 29 30
38| False C 13 31
39 IN2 \Y% 32 33
40 E \Y% 33 34
41 - C 31 32
42 IN3 v 35 - 36
43 F \" 36 37
44 - C 31 35
45 - C 34 38
46 - C 37 38
47 - C 30 39
48 - C 38 39
49 ~ C 39 40
50 | Feedback | C 40 2

Table 4.4: Continued

the edge-list.
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Figure 4.18: High-level optimization: (a) High-level code with useless statement. (b)
The corresponding GCDFG and the dangling edge. (c) The high-level code after
eliminating useless statements. .

Search the Edges List;
If an edge is found with no destination node ID then
Delete this edge from the Edges List;
While (Not reached to a S node) Do
begin
Delete the Source node from the Nodes List
Delete all edges that
have this node ID in their source
end;

Figure 4.19: Useless code detection and elimination algorithm.
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GCDFG. Finally, registers allocation is performed using a life-time table extracted

from the GCDFG.

4.6.1 Transformation

The behavioral description of Figure 4.3 is transformed into GCDFG of Figure 4.4

and two lists are built; a node-list and an edge-list. The lists are built as follows:

e The first instruction is “Read” and since it is not a control construct, then a

block is encountered.
e An S node is added to the node-list to indicate the beginning of a block.

o The first instruction “Read(/1)” is transformed. An “IN” node is appended
to the node-list and an edge labeled with I1 is added to the edge-list. The

same is done for all Read instructions.

e The instruction I3 = I1 + I2 is transformed. I1 and I2 are read (using IN
nodes), then the “+ " operation node is appended to the node-list and its ID
is filled at the J1 and I2 destination node ID in the edge-list. A new edge

labeled I3 is added to the edge-list.

e All instructions are transformed in the same way. Operation nodes that are

not dependent on any other operation are connected to the S node.
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o A “Write” operation is transformed using OUT node that is added to the

nodes list and an edge pointing to that node to the edge-list.

e Operation nodes that have no predecessor are connected to the E node through

control edges.

The node-list and the edge-list are shown in Tables 4.5 and 4.6.

Node ID | Node Label | Node Type
1 S C
2 IN o
3 IN o)
4 + o
5 IN o
6 - o
7 IN o
8 * o
9 = o
10 + o
11 + o)
12 IN o
13 / o)
14 = o
15 AND o
16 OR o
17 = o
18 = O
19 OUT o)
20 OouT 0
21 OUT o
22 E C

Table 4.5: The node-list.



ID | Label | Type | Source | Destination
1 - C 1 2
2 - C 1 3
3 n A" 2 4
4 12 \Y% 3 4
o I3 \" 4 6
6 - C 1 5
7 - C 1 7
8 I4 A" 5 6
9 I5 A" 6 10
10] 13 A" 4 8
11] I6 \Y 7 8
12 17 \'/ 8 11
13} - C 1 12
14| I3 C 4 9
15| 113 \'% 9 21
16| I3 \' 4 10
17| I8 A" 10 15
18| I v 2 11
19 I9 A" 11 16
20| 110 A" 12 13
21| IS A% 6 13
22| 111 Vv 13 15
231 11 A" 2 14
24| 112 \" 14 16
251 14 \" 15 17
26 | I15 \Y% 16 18
27| 11 A" 17 19
28 12 A" 18 20
29| - C 21 22
30| - C 19 22
31 - C 20 22

Table 4.6: The edges-list.
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4.6.2 Scheduling

In this section ASAP scheduling is performed on the GCDFG example of Tables
4.5 and 4.6. The ASAP scheduling algorithm is shown in Figure 4.21. Then ASAP

schedule is shown in Figure 4.20. The schedule is stored in the GCDFG by adding

C.Step 1

C.Step2

C.Step3

C.Step 4 ﬁ T & B@) é
C.Step 5 ”Eé) ‘ "'u'
C.Step 6 é 'E
C.Step7 é 'é /,'l

il T T

Figure 4.20: An ASAP schedule of the GCDFG of the behavior in Figure 4.3.

an extra field called Control_Step to the node-list. This field holds the control step
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From the Node List Read the 1st S node ID
i:=0;

Put S node ID in CONTROL_STEP[i];
While not (all nodes marked) do

Begin
Procedure Search.Edge_List(CON TROL_STEP[i])
i=ti+1;
end;

Procedure Search.Edge_List(CONTROL_STEP[i]);

n
While not EOF(Edges List) do
begin
for all nodes in (CONTROL_STEPY[i]) do
if ( Destination Node ID = node in CONTROL_STEP[i] ) then

begin
Add Destination Node ID to CONTROL_STEP[i+1]
Mark added nodes
endif;
) end;
End;

Figure 4.21: ASAP scheduling algorithm.

number for each operation (see Table 4.7).

4.6.3 Allocation

In this section, register allocation is performed using the technique of the FACET
system [23]. Register life-time table is constructed by scanning the edge-list. As
explained earlier, the columns of the life-time correspond to variables and the rows

correspond to control steps. A register is live in the interval between its first defini-



Control Step | Node ID | Node Label | Node Type
- 1 S C
1 2 IN 0
1 3 IN (0]
2 4 + 0
1 5 IN 0]
3 6 - 0]
1 7 IN (0]
3 8 * 0]
3 9 = 0]
4 10 + 0
4 11 + o
1 12 IN 0]
4 13 / 0]
2 14 o= 0]
5 15 AND 0
5 16 R (0]
6 17 = 0
6 18 = 0
7 19 ouT 0]
7 20 OuT . 0]
4 21 ouT o
- 22 E C

Table 4.7: The scheduled GCDFG.
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tion and last reference. The life-time table construction algorithm is given in Figure

4.22 and works as follows. The control step in which a variable is first defined is
detected by searching the edge-list for all edges that are labeled with the variable
name. For each edge, the source node ID is read and the node with the smallest
control step number is where the variable is first defined. For example, the variable

“I3” has three occurrences in the edge-list.
o First occurrence is in record 3:

— Source node ID is 4, which is in control step number 2

— Destination node ID is 6, which is in control step number 3
e Second occurrence is in record 9:

— Source node ID is 4, which is in control step number 2

~ Destination node ID is 9, which is in control step number 3
o Third occurrence is in record No. 11:

— Source node ID is 4, which is in control step number 2
— Destination node ID is 10, which is in control step number 4
Therefore, variable “I3" is first defined in control step 2 and referenced in control

step 4. Therefore, variable “I3" is live in the interval [2,4]. In the column corre-

sponding to “I3”, L is filled in rows 2, 3 and 4 which correspond to control steps 2, -
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for all edges in the Edges List
if the edge belong to a variable then
Begin
Read(Destination Node ID);
Search the Node-List for(Destination Node ID)
if (Destination Node) is of type “O” then
Read ( Control Step No.) ;
{ This is where the variable is first referenced }

Read(Source Node ID);
Search the Node-List for(Source Node ID)
if (Source Node) is of type “O” then
Read ( Control Step No.) ;
{ This is where the variable is first defined }

Figure 4.22: Algorithm for constructing life-time table from GCDFG.

3 and 4. This last procedure is repeated for all variables. The edge-list is scanned

and the life-time table (Table 4.8) is filled accordingly. Variables that do not have

overlapping life-times can be allocated the same register. For example “I2” and

“J8" can share the same register since they have non-overlapping life-times. After

Step 11 12 I3 14 I5 I6 17 I8 19 110 I11 112 N3 14 115
1 L L

2 L L L L L L L

3 L L L L L L L L L

4 L L L L L L L L L

5 L L L L L L
6 L L
7 L L

Table 4.8: Life-time table.

constructing this life-time table, heuristics can be applied to compact and allocate
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registers. Example of these heuristics are: clique partitioning algorithm and the

left-edge algorithm which is widely used for channel routing.

4.7 GCD-List

The GCDFG is stored as an ASCII text file called GCD-List file which is a format
for exchanging GCDFG descriptions. This GCD-List file has a lisp-like format and

offers the following advantages:
o It allows adding user constraints (or what we refer to as constraints).
e Since it is ASCII text file, then it is machine processible.
o It can be transferred between different platforms.

The GCD-List is nothing but the node-list and the edge-list. The GCD-List file

is organized as follows (see Figure 4.23):

e The file starts with a header which states the file name, date and time (see

the example in Figure 4.24).

o The header is followed by an input/output section. All input/output ports,
their ID, node number, source node and destination node are included (see

Figure 4.24).

e The I/O section is succeeded by the node-list follows (see Figure 4.25).
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o Finally, the last section gives the edge-list (see Figure 4.26).

Lines starting with “%” are comments.

In the following, an example that shows how this attribute format help the
GCDFG accommodate constraints. A number, which represent the maximum al-
lowed delay time for an operation, can be added to each node (operation). The
delay of an operation is specified as a number at the end of the list of each operation

node (see Figure 4.27).

4.8 Conclusion

After presenting the GCDFG notation, we conclude the following:

o Flow graphs are ideal intermediate forms in high-level synthesis since they are
powerful mathematical abstraction that can capture all the information in the

behavioral description.

e Behavioral specification is transformed to flow gfaph in two ways. Either two

separate flow graphs (control and data) or a combined control-data flow graph.

e A new flow graph called GCDFG is proposed. This graph is used as a primary
intermediate form since it can capture all necessary high-level constructs like

loops and conditional jumps.



%GCD.LIST FILENAME DATE
(DECLARATION
(VARIABLES
(NAME ATTRIBUTE!
)
(PORTS
(INPUT
(ID1 ID2 IDS
)
(OUTPUT
(ID1 ID2 IDS ID§
)
)
)
(NODE_LIST
( ID ATTRIBUTE!
( )
(
)
(EDGE_LIST
( ID ATTRIBUTE!
( ) )
(
)

TIME

ATTRIBUTE? ...)

ID4 ID5)

ID5)

ATTRIBUTE? ..)
. )
)

ATTRIBUTE? ..)

)
)

Figure 4.23: The format of the GCD-List ASCII file.

109



%GCD.LIST EXAMPLE2.GCD JUNE 01, 1994 14:15

(DECLARATION
(VARIABLES
( I <8
( 12 <&
( I8 <&
( b/ <8
( I5 <&
( I6 <&
( I7 <&
( I8 <8
( I9 <8
( 1o <&
( 111 <8
( 12 <&
( 138 <&
)
)
(PORTS

(INPUT

(2 3

)

(OUTPUT

(11 20 21)
)
)

Figure 4.24: An example of a GCD-List ASCII file.

\'\'\-\-\-\—\,\,\—\—\_\—\—

9)
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(NODE_LIST
Label

22”

%%QQ%&%N&G
Ty
2+

§
QOQQOQQOOOOQQQOCOQOOQQ%

(Y
™
W n g>ll\§++ll *5'

W
S
QO
SIS
i B B |

d
o
B S i N N N N O O e g

\,\—\\—\A\‘\;\N‘\—\—\—\a\—\a\a\‘\‘\a\‘\—\a\ &
~
LY

Figure 4.25: Example of GCD-List file (continued).
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(EDGE.LIST

% ID LABEITYPESRC DST
( 1+ - ¢ 1 2 )
( 2 - ¢ 1 8 )
( 8 nn v 2 4 )
( 4 I Vv 38 4 )
( 5 I8 V 4 6 )
( 6 - € 1 5 )
( 1 - ¢ 1 1 )
( 8 WL Vv 5§ 6 )
( 9 I5 V 6 10 )
( 10 I8 V 4 8 )
( 11 I Vv 1 8 )
( 12 nn v 8§ 1 )
( 18 - ¢ 1 12 )
( 44 I8 C 4 9 )
( 15 Hns v 9 2 )
( 16 I8 V 4 10 )
( 17 18 V 10 15 )
( 18 11 v 2 11 )
( 19 19 V 1 16 )
( 20 Ino v 12 138 )
( 22 I5 V 6 18 )
( 22 Im Vv 138 15 )
( 28 N Vv 2 4 )
( 2 In2 v 1y 16 )
( 2 I4y vV 15 171 )
( 26 I5 VvV 16 18 )
( & I v 11 19 )
( 28 I2 V 18 2 )
( 29 - ¢ @21 22 )
( % - ¢ 19 28 )
( & - C 20 2 )
)

Figure 4.26: Example of GCD-List file (continued).
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(NODE_LIST

% ID Label Type Delay
( 1 S c - )
( 2 IN O § )
( 8 IN O § )
( i + 0 4 )
( 5§ IN O 5 )
( 6 IN O 5 )
( 7 - 0 1 )
( 8 o 4 )
( 9 IN O 5 )
( 10 = 0 1 )
( 1 ouro 5 )
( 12+ o 9 )
( 18 + 0 9 )
( y o 12 )
( 15 = 0 1 )
( 16 AND O 5 )
( 17 OR O 8 )
( 18 = o 1 )
( 19 = o 1 )
( 20 oUro 5 )
( 21 OUT O § )
( 22 E c - )
)

Figure 4.27: A part of the GCD-List file showing constraints.
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o Using the GCDFG as a primary intermediate form facilitates the two main

high-level synthesis tasks (scheduling and allocation).

o The GCDFG notation is expressed in a lisp-like format called GCD-List. This
makes it able to accommodate user stated constraints. For example, a user
constraint which states that some operations should be bounded by a time
unit.

e The GCD-List is stored in ASCII text file which makes it exchangable and

machine processible.



Chapter 5

Comparative Study of Flow

Graphé

In this section, the GCDFG is compared to other primary intermediate forms (PIFs)
like Value Trace (VT), SALSA and the exchange DFG. The structure of each PIF is
studied (edges, nodes, types of nodes, types of edges ... etc.,). There are some

essential features that should be possessed by an intermediate form to make it

suitable for high-level synthesis. One is, the PIF should inherit all the necessary - -

constructs and details from the high-level specification. It should also support all
high-level constructs such as arithmetic and logical operations, hierarchy, conditional
constructs and looping, some common data structures like arrays and user defined
constraints. However, there are other features that are desirable but not necessary

like supporting specific application oriented constructs.
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5.1 Value Trace (VT)

Value trace is an intermediate form used in CMU-DA HLS system [19]. In CMU-DA
synthesis system the ISPS description which is very similar to structured program-
ming languages is used as input. ISPS allows the specification of certain structures
like word length, sequencing methods, and control transfer [8, 14, 18]. ISPS is
translated into an intermediate form called VT which specifies all the data flow and
control flow information in the original ISPS description.

The VT is a “directgd acyclic graph very much like a data flow graph except
that control constructs have been retained and translated into their equivalents”
[18]. In short, the VT consists of a collection of graphs (VT-bodies) linked by
conditional or concurrent control constructs. The blocks in ISPS (procedures, loop
bodies, labeled blocks) are translated into VT-bodies. Each VT-body is a set of
operations which can be invoked or left as a unit. The nodes in VT correspond
to operations (activities). The control nodes, such as subroutine call operation,
are called (instantiations). Edges in VT correspond to values (variables). The
VT is interpreted as a database. The VT basically has two parts: (i) descriptor |
for all entities declared in the ISPS description. (ii) operations (VT-bodies). The
compiler parses the ISPS description and generates a file with extension ‘GDB’
(Global DataBase), which is in the form of a tree. This ‘GDB?’ file is translated into

VT which is then stored as an ASCII file.
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The VT intermediate form supports all high-level constructs like control se-

quence, loops, conditional constructs and special data structures like arrays. Since
it is a flow graph, it also supports concurrency.
In addition to the aforementioned necessary features, the VT has the following

desirable features:

e The VT allows user defined constraints such as choosing the design style; use

off-the-shelf TTL chips or customs LSI chip.

e The VT representation is unified and this facilitates the following: (i) it allows
communication between various levels (ii) it avoids repeating the verification
done at the high-level and some optimizations that are applicable to all levels

(iii) it avoids the overhead of translating between data structures.

e It contains various control constructs that allow synchronization such as con-

trol nodes (STOP, DELAY, WAIT).
e Several types of optimizations can be conducted on the VT like:

— Dead code elimination can be detected and eliminated by using the use-
list for output values. If an operator does not affect synchronization
by causing a WAIT, DELAY, or STOP and does not cause a jump in
the control, and its values are not referenced anywhere then it is a dead

code. This dead code can be eliminated by taking the operator out of
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the sequencing lists and eliminating its inputs from the use-lists of the

values they reference.

— Constant folding can also be achieved easily in VT. For example if I =7
is an operator in the ISPS description, then in the VT it can be detected
that 7 is a constants and all occurrences of the variable I can be replaced

by the constant 7.

— The third optimization technique involves moving operations in the VT
without violating data dependency. Moving operations will be for the
sake of achie.ving more parallelism. An operator can be moved backward
as long as: (i) it does not move into another branch or VT-Body, (ii)
it does not move past any of the operators that produce values which
it requires as input, and (iii) it does not move past any operator that

requires synchronization.

— Code motion is also applied in VT. Operations that are not related to a
branch of a FORK or a loop body can be detected and moved outside

the loop or outside the branch.

5.1.1 The MIN example

In this section an example that illustrates most of the constructs and features sup-

ported by the VT is presented. Figure 5.1 gives an example of ISPS description.
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min:= BEGIN
** INPUTS **
n<5:0> ! number of words in the array
S[0:127]<15:0> ! the array and scratchpad

** OUTPUT **
2<15:0> ! the minimum value

** INDEX **
i<5:0>

** The Algorithm **
start:= BEGIN
i<-n nezt
loop:= BEGIN
IF i EQL #00 => (2<-S[0] next stop() ) next
DECODE (S[2%-1] LEQ S[2%]) =>
BEGIN
0/ false:= Sfi-1]<-S[2*%i],
1/true := Sfi-1]<-S[2%-1]
END next
i<-1-1 nezt
RESTART loop
END END END

Figure 5.1: ISPS of MIN [17]

This example is represented graphically in Figure 5.2 and the VT database file shown .
in Figures 5.3, 5.4 and 5.5. The ISPS description in Figure 5.1 finds the minimum

of an array. The array is sorted in the upper half of S, beginning at S[n+1.]
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Figure 5.2: VT representation of the MIN example of Figure 5.1




sl

*

%sl
%s1
%s1
%sl
%s1
%v5

ENTITY DECLARATIONS
! Typ/ID Decl in FLAGS
! MAP

To Wd Fact Ed Offs
000000000000001000
000000000000010000
000000000000010000
000000000000010000
000000000000010000
000000000001000100
000100000101000100

CONSTANT
Value Size

ID
cl
c2
c3
c4
cd
c6

VTBODIES

1D OPCODE (INPUTS)
OUTPUT: ID

v6 %v5 000100000101000100

Word Structure Bit Structure Na

Bit Offs
*
*

[0:127]

*x

*
*
*

<6>
<2>
<7>
<3>
<2>
<8>

CARRIER SIZE

*

*

<5:0>
<15:0>
<15:0>

<5:0>
*

*

NAME

LO

Figure 5.3: The Value Trace of the MIN example of Figure 5.1
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i1 r4 <6> I
i2 r2 <16> S
i3 r3 <16> Z
x1 EQL (v6. i1; 1) (*.c1=0)
pl * <1> *
x2  SELECT
@bl  %x5 (OTHERW)
x3 1] (v6.i2:5)  (*.c2=0)
pl r3 <16> z
x4 STOP
=bl %x5 (x3.pl:z)
@b2 %x5 [0]
=b2 %x5 (v6.i3:2)
x5 ENDSEL (x1.pl)
pl r3 <16> Z
x6 * (*.c4=2) (v6.iL:I)
pl * <9>
X7 - (x6.p1) (*.c5=1)
pl * <10> *
x8  <rd> (x7.P1) * (*.c6=0)
pl * <>*
x9 [ (v6.12.8)* (x7.pl)
pl * <16> *
x10 <r> (x6.p1)  (*.c6=0) :
pl * <7>
x11 () (v6.12.S) (x6.pl)
pl * <16> *

Figure 5.4: The Value Trace of MIN (Continued from 5.3).



x12 LEQ (x9.p 1)
pl
x13 SELECT
@bl =bl %x14
@b2 %ox14 (1]
=b2 %x14 (x9.p1)
x14 ENDSEL (x12.pl1)
pl *
x15 - (v6.i1:])
pl
x16  [w] (v6.i2.S)
pl
x17 - (v6.il:1)
ol
x18 RESTART V6:LOOP
ol
o2
o3
v5 %sl1 000000000001000100
il
i2
i3
x1 CALL @v6:LOOP
pl
p2
p3
LEAVE @vS:STAR (xl.p3:1)
ol
02
od

Figure 5.5: The Value Trace of MIN (Continued from 5.4).

(x11.p1)

*

(x11.pl1)

<16>

*

(x15.pl)
r2
(*.c5=1)
r4
(x17.pl:)
r3

r2

r4

<1> *

*

(*.c5=1)

<> *
(x14.pl) (*.c6=0)
<16> S

<6> 1
(x16.pl:S)  (x5.pl:Z)
i16; y/
i16¢ S
i6i I

ST

<6> 1
<16> S
<16> Z
(v5.12:8) (v5.13:2)
<16> Y/

<16> S

<6> 1
(x1.pz:S)

<6> 1

<16> Z

<16> S
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5.2 SALSA

SALSA is a modified Control-Data Flow Graph (CDFG) that allows alternative
schedules to be quickly explored while maintaining timing constraints. SALSA is
a directed graph in which nodes represent operations and edges represent ordering
dependencies between operations. Source and sink nodes represent the beginning
and end of activities in the graph. Edges between nodes represent three different

types of ordering dependencies. They are:

1. Data edges, which represent the flow of data from one operation to another,

implying an ordering relationship because the data must be computed before

it is used.

2. Control edges, which represent ordering relationships associated with control

operations such as conditional constructs.

3. Timing edges, which represent constraints between two operators that must
be satisfied in a correct design. There is a minimum timing constraint and a

maximum timing constraint.

Formally, SALSA can be represented by a directed graph G(V,E) where V rep-
resent the set of nodes and E represent the set of edges. The set of nodes include
a source nodé Vgre, & SiDk Node v,k and operation nodes v; to vp. Each of these

nodes has a delay attribute to help explore different schedules.
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SALSA supports all necessary high-level constructs like hierarchy, conditional

constructs and looping. It is not clear whether it supports arrays or not. Conditional
constructs in SALSA are implemented as showx; in Figure 5.6. A list of input
conditions is attached to each operation representing the condition under which it
is activated. Each row of this list represents a set of input conditions encoded as
0,1 or X (don’t care). The universal condition (XXX) is attached to unconditional
operations. Conditional operations, that produce data values require a multiplexer

node to select the proper branch (see Figure 5.6). Control operators that change

Condition Unconditional
Cube Operator
xx0

5 O
=

Figure 5.6: Conditional operations in SALSA.

control flow (like loop restart) do not require a multiplexer. Each branch of a
conditional construct has a list of operations. If the intersection of the two branch

lists is empty then, the two branches are mutually exclusive and can share the same

functional unit.
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SALSA allows the use of subroutines. A single instance of the subroutine is
transformed. Then, the subroutine can be called as many times as needed. Each
subroutine call node (see Figure 5.7) calls the transformed subroutine by a pointer
pointing to the location of the transformed subroutine instance. Loops are treated

Calling context Subroutine graph X

Const 1

wt T &

Figure 5.7: Subroutines in SALSA.

as a special case of subroutines. Each loop is represented by a separate graph.
Loop execution is initiated using a CALL node and new iterations are initiated
using a RESTART operation. Like in VT, WAIT ope;rations are used for external
synchronization.

The main desirable feature of the SALSA intermediate form is its ability to

explore the scheduling space by trying different schedules.
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5.3 Exchange DFG

As seen in Chapter 1, in ESPRIT [28] synthesis system the high-level language is
translated into an extended DFC in which data and control flow graphs are combined.
The DFG nodes represent operations in the behavioral specification, and the edges
model the transfer of values between operations. Several node types are defined in
this DFG. These types of nodes allow the DFG to support various constructs (see

Chapter 1).

5.4 Generic CDFG

As seen in Chapter 4, GCDFG supports all high-level constructs like hierarchy,
looping, conditional constructs and arrays.
The proposed Generic Control and Data Flow Graph (GCDFG) has the following

extra features over ordinary CDFGs:

o Adding a control edge (dashed edge) between two operations (nodes at the
same level) will force one to be executed before the other. This facilita.tes‘

forcing a specific execution order of operations.

e User defined constraints can be easily specified. For example, adding a delay
field to the node-list makes it possible to limit the operation delay time, which

means facilitating constraints compulsion. In fact, any user defined constraints
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on nodes (operation) or edges (variables) can be added easily. This is due to

the attribute format of the GCD-List.

It is complete. In other words, given the GCDFG of a behavioral description,
an equivalent behavioral description can be rebuilt from the corresponding
GCDFG. This allows some high-level optimization techniques to be directly
applied on the ilitermediate from. For example “code motion” can be easily
applied on the GCDFG, this is done easily by just modifying few entries in

the edge-list.
Independent of any input language.

The GCDFG is simple, only four types of control nodes are used to express all
control constructs like: if-then-else, while loops, for loops, repeat-until loops,

procedures and procedure calls. These control nodes are: S, E, fork and join.

Scheduling information can be stored using this intermediate form. This has
been illustrated by an example and it is achieved by adding a control step field
to the node-list. This field is filled for operation nodes only and it contains '

the control step number in which the corresponding operations are scheduled.

Information necessary for allocation can also be extracted from the GCDFG.
For example, life-time table of variables is built from their life-time intervals.

A life-time interval of a variable can be obtained from the GCDFG as seen
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earlier.

o The GCDFG is stored in a GCD-List file. This GCD-List file can be used
in all synthesis procedures. This is because the attribute format allows it
to accommodate as many details as needed. For example, schedules can be
interpreted using the same GCD-List file. This is done, as seen earlier, by

adding a control step field to the node-list.
o It is not tied to a particular architectural style.

Table 5.4 compares the various intermediate forms discussed in this chapter.



Intermediate | Exchange SALSA Value Generic
 Form DFG Trace CDFG
Representation Graph Graph Language, | Graph
Graph
Structure
Nodes
_ Operations | Operations | Operations
IN,OUT, CALL, BR, IN,OUT,
BRME, SRC, SELECT, S,E,
GET,PUT, SINK LEAVE, FORK,
ARRAY,UPD STOP, JOIN
DELAY, | ARRAY
| WAIT,
Edges transfer Conditions variables,
L control control
Constructs '
Concurrency Yes Yes Yes Yes
Arrays Yes No Yes Yes
Hierarchy No Yes Yes Yes
Conditional Yes Yes Yes Yes
Looping Yes Yes Yes Yes

Table 5.1: Intermediate Forms Comparison.
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Chapter 6

Conclusion and Future Work

This research has introduced high-level synthesis, its main tasks and the intermedi-
ate forms used. The intermediate form is an internal representation of a specification
that is more suitable for automatic handling. Then, a comparative study discussing
synthesis tasks (transformation, scheduling and allocation) versus several interme-
diate forms has been conducted.

In Chapter 2, a classification framework has been introduced to classify inter-

mediate forms according to the synthesis tasks. Two main categories are identified: . -

primary and secondary. Primary intermediate forms (PIF) are those that inherit
all the details from the high-level specification and result from the transformation
step. Secondary intermediate forms (SIF) are those that extract specific information

from the primary intermediate form to perform a specific synthesis task (scheduling

and allocation).
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Finally, a generic, modular and flexible primary intermediate form, that is called

generic control-data flow graph (GCDFG), has been introduced. It is generic be-
cause it supports common high-level constructs like, arithmetic and logic operations,
control transfer (looping, conditional constructs, hierarchy) and special data struc-
ture like arrays. This PIF is expressed in a lisp-like format called the GCD-List. The
Lisp-like format gives the GCDFG flexibility because attributes can be added as re-
quired. The GCD-List is stored as an ASCII file which makes it machine processible
and portable to different platforms [13].

Since this PIF is a flow graph then, it detects the potential parallelism in a
behavioral specification. A complexity analysis has been conducted to show the
space and the transformation complexities of the proposed intermediate form.

A comparative study that compares the GCDFG with Value Trace, SALSA and
the Exchange DFG has been conducted. Necessary ax.1d desirable features of each
intermediate form has been surveyed. From the comparative study we conclude that
the proposed intermediate form supports all the generic features in other forms.
However, it is simpler and easier to manipulate.

From the above we conclude that flow graphs are the ideal intermediate forms

in high-level synthesis because:

o They inherit all necessary details and constructs from the behavioral specifi-

cation.
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o They carry all necessary details down to secondary intermediate forms to per-

form the rest of the synthesis tasks.
e Most scheduling and allocation techniques are applicable to flow graphs.

The proposal of this new CDFG, can be the stepping stone in defining new stan-
dards and solid definitions of primary intermediate forms that are used in high-level
synthesis. As future work, experimental evaluation should be conducted on the

GCDFG. Moreover, the GCD-List format needs more fine tuning.
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