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Chapter 1

Introduction

With its high speed, high reliability and compact implementation, digital technol-
ogy has infiltrated every field of modern electronics, and used in assembling com-
puters, Hi-Fi systems, camcorders, audio-visual devices, security systems, washing
machines, microwave ovens, and even video toys.

The design of modern digital systems requires contributions from several engi-
neering specialists. First, a system designer, or system architect, determines the
described characteristics for the final system and prepares a detailed specification
that should define all inputs, outputs, environmental conditions, operation speeds,
etc. A logic design engineer translates the system specification into a logic design
that can meet the functional requirements. The task of the circuit engineer is to de-
sign circuits that provide the required logic functions. He has the option of designing
the complete circuit using available off-the-shelf digital components (integrated cir-
cuits), or designing some parts of the circuit using VLSI (very large scale integration)
technology and implementing his own IC (integrated circuit) [22].

Digital circuits have attracted international attention. Different nations using



different languages had to deal with them, so instead of using a bulky schematic de-
scription of a digital circuit, hardware description languages (HDL’s) were invented
to ease understanding of digital circuits specifications by different language speakers.
HDL’s were used in different fields of digital research and teaching.

Before 1970, digital circuits were analyzed and designed almost exclusively by
hand. However, designing a digital system by hand is not easy. It requires three
different engineers. Each of them has to make a lot of decisions and spend enough
time that is practical in terms of days or months —~depending on the complexity of
the system~ to accomplish his task.

As digital circuits increased in complexity and variety of use, there was a need
for inventing fast ways of developing these circuits. This was the motive for finding
what is known as a hardware programming language (AHPL), which is an integrated
environment of an HDL and a hardware compiler that translates the description of
the circuit into a logic design that meets the functional requirements. This compiler
was to replace the task of the logic design engineer, because the compiler works much
faster, more accurate, and produces more optimized designs. Designing complex
digital systems using hardware programming languages has been in vogue in the
last decade.

The task of translating HDL descriptions to silicon can be divided into two stages.
The first stage consists of the translation of the language model to an intermediate
logic level description (hardware compilation), and the second stage is the translation
of logic level description to VLSI layouts (physical design).

The project implemented in this thesis (called Auto VLSI) addresses the physical

design stage. Universal AHPL (UAHPL), an extension of A Hardware Programming



Language (AHPL), with its built-in hardware compiler is used for generating the
logic level description of the digital circuit. AutoVLSI receives the logic description
of a circuit generated by UAHPL and generates a VLSI layout for this description.
The logic level description is characterized by two lists. The first shows what digital
gates are used in the design, and the second gives details about the interconnection
between inputs and outputs of these gates. This is called a netlist description of the
circuit.

AutoVLSI system is not restricted to UAHPL as the generator of the circuit
netlist description. It accepts any netlist description whose gates are all available in
the system library of VLSI cells. However, AutoVLSI supports logic assignment for
the types of gates used by UAHPL and does not have VLSI cells representing them in
the system library. Suppose, for example, that UAHPL uses in its generated netlist
an 8-input AND gate which is not available in the system library, then AutoVLSI
assigns four 2-input AND gates and one 4 -input AND gate —assuming of course that
both types of gates exist in the system library— to replace the 8§ -input AND gate
used by UAHPL.

Physical design problem can be broadly divided into two stages. Placement stage
which gives the exact place of each VLSI cell on the layout plane, and detailed routing
stage which wires the interconnection of these placed cells. Achieving complete
routing for all nets is a must. One net which is not completely routed results in
a malfunction in the circuit. Usually an intermediate stage called global routing is
inserted in between the above two stages to predict the paths of wires and facilitate
the detailed routing stage. Each stage of the physical design process consists of many

tasks and will be described later in this chapter.



The detailed routing stage, was studied earlier at King Fahd University of Petroleum
and Minerals (KFUPM) in 1987. A maze router that follows Lee algorithm was im-
plemented in FORTRAN [23].

In this thesis work, we address the other two stages of physical design, namely
placement and global routing plus integrating the whole work of logic assignment,
placement, global routing and detailed routing into a complete digital automation
system that automatically produces VLSI design layouts for digital circuits described
in UAHPL. The proposed system will also produce additional data for simulation
and verification of the generated layouts.

Many heuristics and algorithms related to these above mentioned topics have
been carefully studied, analyzed, and examined. Finally, a subset of them were
adopted, modified as needed, and implemented to generate Auto VLSI system. All
programs except those for the detailed routing stage, were implemented in the Turbo
C programming language from Borland company using an 80486-microprocessor
IBM personal computer. Many other supporting utility programs were also imple-
mented. Some of them find an estimate for the chip area and compute space utiliza-
tion. Others, plot a symbolic graph of the layout showing the relative placement and
the paths of routes. A brief description of every software used in Auto VLSI system
is given in Appendix A. Moreover, the system flow-chart is illustrated in Appendix

B.

1.1 Logic Design

A digital system is any system for transmission or processing information that is

represented by physical quantities (signals) that can take only one of the two discrete



values: 0 or 1.

A logic designer translates the system specification into a logic design that can
meet functional requirements. The task of the circuit engineer is to design circuits
that provide the required logic functions. Digital circuits differ in terms of difficulty.
They might consist of a few gates, or they can have Arithmetic/Logic units, mul-
tiplexers, buffers, and even microprocessors. The first choice when implementing a
digital circuit is to use some ready-made integrated circuits (ICs). A definition of

an IC is quoted from [22]:

A circuit consisting of active and passive elements fabricated on a single

semiconductor chip and mounted in an individual package.

Digital circuits can be implemented using only SSI (small scale integration) ICs
if they are very simple, MSI (medium scale integration) and LSI (large scale integra-
tion) ICs or a combination of them, if they are more complicated. Once the designer
decides upon what ICs the circuit needs, he lays them out on a PCB (printed circuit
board) and makes the external interconnections between different pins of each IC to
complete the design.

Regardless of the kind of ICs by which the circuit is implemented, there could be
some ICs that are not 100% utilized while taking space on the PCB. Moreover, the
external interconnections decrease the reliability of the circuit and might introduce
some timing problems. And, finally, every digital circuit of adequate size will have
components such as arithmetic/logic units, shift registers, multiplexers, buffers, and
so on. Some of these components might not be available as off-the-shelf components.
Therefore, for one or more of the above reasons, the designer might have to choose

implementing the special part of his digital circuit on a VLSI chip. In such a case,



he might prefer to integrate all of the digital circuit he is designing into one chip.
In summary, there are many reasons that push a designer to use VLSI technology
and fabricate his own IC instead of completely depending on off-the-shelfcomponents

to design his circuit (or part of it).

1.2 Hardware Programming Languages (HPLs)

To aid communication between digital circuit designers, computer description lan-
guages(HDLs) evolved from the research field. HDLs were initially designed to
describe digital circuits at the behavioral level. Later on, other applications for
HDLs emerged. They have been used as input to a simulator at the register transfer
level, and as input to a hardware compiler that automatically translates the high
level description to logic design.

As digital circuits increased in complexity and the variety of uses, the benefits
of HPLs increased more and they started to be a universal tool for designing digital
circuits. An example of a hardware programming language that supports HDL, a
hardware compiler and a register transfer level simulator is UAHPL (Universally A
Hardware Programming Language).

UAHPL, an extension of A Hardware Programming Language (AHPL), is used as
the register transfer language for specifying a digital design. It is a simple language
yet sufficient to model highly complex digital systems such as parallel processors
and data flow machines. It has a compiler that converts the circuit specifications
into an intermediate representation in form of tables after performing syntax and
semantic analysis. This intermediate form can be used by the supplied simulator

to verify whether the specification exhibits the desired behavior described in the



‘Circuit in UAHPL
Description
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"NETLIST"

Figure 1.1: Diagram of UAHPL system.

specification. Another compiler translates the intermediate tabular form to logical
netlist that gives details about the gates needed for the design and their relative

interconnections. A diagram of UAHPL system can be seen in Figure 1.1.

1.3 VLSI Technology

VLSI or Very Large Scale Integration, refers to a technology through which it is pos-
sible to implement large circuits —circuits with up to a million transistors— in silicon.

VLST has been successfully used to build microprocessors, memory controllers, I/O



controllers, and interconnection networks. It can also be used to implement complete
digital systems in silicon as opposed to using MSI and LSI off-the-shelf components

[2].

There exist many advantages for implementing digital systems in silicon such as:

o Achieving additional complezity in silicon. VLSI allows complexity to be in-
cluded on a single silicon substrate. This means that complex digital functions,
requiring tens of ICs, can fit onto a single silicon die and be integrated in one

IC. This will enormously reduce board space requirements.

o Increasing reliability. Board design reliability increases as fewer parts are
placed on a circuit board. This reliability continues to improve as a lower

parts count contributes to a reduction in connections and traces on the circuit

board.

o Mazimizing performance. Timing problems will be reduced by using as less

ICs as possible on the circuit board. The same goes for power requirements.

o Providing security for new designs. Using off-the-shelfICs provide the design-
ers with a very little security for their designs. The only way of securing their
designs is by clearing the IC title from the top side of the case. On the other
side, no one can predict the circuit implemented by a private IC. Thus, designs

that uses at least one private IC will be protected from illegal copies.

Designing a VLSI circuit involves a trade-off between cost, performance, ease of
design, time, and many other factors. A good layout is one which occupies minimum

area, uses short wires for interconnection, and uses as few vias as possible [2].



Since the complexity of VLSI circuits is in the order of millions of transistors,
designing a VLSI circuit is a complex task. Clearly it is not possible to sit down
with paper and pencil to design a million-transistor circuit. Instead, there evolved
many styles for designing a VLSI layout that extensively reduce the amount of effort
and time exerted by the engineer. Also many computer software were implemented

to aid the design of a VLSI layout.

1.3.1 Layout Styles

There are several styles for a VLSI layout. Mainly, the style of the layout is deter-
mined by the way it is designed, and by the type of VLSI cells used. Some of these

layout styles are:

e Full custom,

o Gate array,

Standard-cells,

General-cells,

PLA (Programmable Logic Arrays),

FPGAs (Field Programmable Gate Arrays).

The complexity of implementing a VLSI layout decreases from top to bottom
for these styles. Full custom layouts are completely designed by hand using a layout
editor. The concept of VLSI cells does not exist in such style. The designer has

to implement all VLSI circuits that represent the digital components of the circuit.
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In standard- and general-cell styles, a set of pre-designed VLSI circuits are used to
represent different digital components. These VLSI circuits are called macro-cells
(cells for short) or modules!. The difference between these two styles is the type of
cells they use. In standard-cell style, usually all different cells have fixed height, as
opposed to cells of the general-cell style which can be of varying heights.

A detailed description, merits, and shortcomings of each of these styles can be

found in [2], [5].

1.3.2 Generating VLSI Layouts

Physical design of a VLSI circuit is the phase that precedes the fabrication of the
circuit. The performance, area, and reliability of the circuit depends critically on the
way the circuit is physically laid out. As a conclusion, physical design is a complex
optimization problem. It is therefore customary to subdivide the problem into more

manageable subproblems. A common subdivision is as follows

e Logic assignment
e Cells Placement

e Nets Routing

Logic Assignment

The compiler of the hardware description language (HDL) used to generate the
design of a digital system represented in netlist format will have its own set of gates

which are used to specify the logic design. For example, it could have a 20-input

1The terms cell and module will be used interchangeably throughout the chapters of this thesis.
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AND gate, 4-input OR gate, 9-input NOR gate, 5-input AND gate, etc. It is
not practical to implement all VLSI cells to represent all different gates used by the
hardware compiler. Moreover, some of these gates might not have a feasible VLSI
design, while others could need special technology to be implemented.

Logic assignment is the process of unifying these parameters. A pre-specified set
of universal gates is prepared for the system and during the assignment stage, all
gates of the digital system’s netlist are replaced by an equivalent design of gates in
the system. A new netlist that has only gates available in the system library will
be generated in the assignment stage. Each gate of the system library has a VLSI
design that represents it. When creating the final VLSI layout, each gate or cell is

replaced by its VLSI design that is already available and previously simulated and
checked [19].

Cells Placement

Placement is the task of finding the exact positions of each cell in the new netlist that
are to be placed in the VLSI layout. Added to the two main objectives which are
minimizing total wire length and layout area, placement has one major objective to
satisfy and that is facilitating routing. A router uses the space area between placed
cells to connect different pins of the cells with each other. In the placement stage,
enough spacing must be afforded to allow routing of all nets.

Many techniques exist for the placement task. They can be broadly divided
into two categories: constructiveand iterative. A constructive technique will usually
begin by placing one cell in the layout, then it starts picking other cells one at a

time and tries to find the most suitable place for them. It is fast, but usually does
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not generate optimistic layouts [2], [5].

ITterative techniques begin by a complete initial layout that could have been ac-
quired randomly or from a constructive algorithm, and improve upon this initial
solution to reach a better one. They consume a lot of execution time, yet sometimes

might not markedly improve the initial solution.

Nets Routing

Routing is usually the most difficult and time consuming stage. Detailed routers
connect all physical pins of a net on different cells to each other randomly using
some connecting material like silicon or metal. From an electrical point of view, it
means to keep them at the same potential.

A detailed router for the general-cell style is restricted to put these routes only
in a space area between the cells of the layout. Since routing all nets of a VLSI
design is a must, then insuring enough space ahead of the routing stage will save a
lot of time. Thus, a step called global routing is usually done ahead of the detailed

routing.

Global Router This task is usually inserted exactly after the placement stage
to help achieve complete routing of the design. The space area between two cells
that is parallel to the vertical borders of the cells is called vertical channel If this
space area is parallel to the horizontal borders of cells, then it is called a horizontal
channel

The placement stage can be modified so that it produces the data of the exact
location and dimensions of every channel in the layout after the initial placement

task. Global routing uses these data and the data of available nets according to the
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netlist and determines the exact channels used to connect different pins of different
cells. Moreover, it can tell how many wire segments are to pass in each channel
assuming that the router will always select the shortest path to connect pins of a
net. This assumption is safe, and in fact supports the objective of minimizing the
total wire length.

According to the information gained from the global routing task, spacing be-
tween cells can be exactly determined, and in most cases will be enough to route
all nets. The initial layout acquired from the placement stage can be modified to

support this amount of free space.

Detailed Router The detailed router receives data from the placement stage that
has the exact locations of cells in the layout. According to the netlist, it connects
every two pins at a time using the shortest available path. Global routing will
certainly improve the routing process but there still could be some connections not
accomplished due to the fact that the detailed router may not use the same channels
that were predicted in the global routing stage. The detailed router will of course
tell if any of these non-accomplished connections exist. A designer can finish these

connections by hand using a layout editor.

1.3.3 VLSI Layout Programs

Many computer programs that aid the design of VLSI layouts were implemented by
different universities, research institutes, and commercial companies. They support
the process of designing a layout by tools that check the design correctness against

VLSI rules and simulate the functionality of the final design [1], [3], [6].
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One of these famous programs is MAGIC. It is a VLSI layout editor with a
built-in simulator. It supports also a circuit extractor that saves the layout in many
different formats used by other tools for electrical verification, simulation, or printing

for example [3], [17].

1.4 AutoVLSI

AutoVLSIis an integrated system that automatically generates VLSI mask layout for
any digital circuit described by a netlist. This netlist description can be obtained
from the hardware compiler of any hardware programming language (HPL). For
several years in KFUPM, a hardware programming language called UAHPL has been
used to describe digital circuits, simulate them, and generate their corresponding
netlists. The system proposed in this thesis was tuned to UAHPL type of netlists.
The system main objective is to minimize turn-around time. Other objectives
are to minimize total wire length and total layout area. AutoVLSI system has a
library of general VLSI cells. All these cells were designed and simulated to make
sure that generated layouts using these cells will be correct by construction.
AutoVLSI system can be broadly divided into four basic stages. The first stage
assigns VLSI cells from the cell library of the system to gates of the layout netlist
description. The second stage is placement. It finds the best position of each cell
according to its size and the connectivity relation between it and all other cells in the
layout. The third stage which is global routing, predicts where the detailed router
is expected to run wires on the layout and adjusts the layout such that enough
space is supplied between cells of the layout. Finally, the fourth stage is the detailed

routing. A software that uses Lee algorithm is used to connect different pins of cells
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which belongs to the same net by wire segments of different materials. Segments are

placed in a way that each different net is electrically isolated from any other net.
Each one of these stages has several tasks (see Figure 1.2). Many heuristics and

algorithms were studied, modified as needed, and then implemented to achieve a

system that best accomplishes its objectives.

1.5 Description of Contents

Chapter 2 addresses logic assignment. It explains the methodology of general cell
library and the rules of designing general cells to be used by AutoVLSI system. A
sample set of VLSI cells used by AutoVLSI are described in this chapter, and a
procedural algorithm which assigns these cells to gates used by UAHPL is given.

Chapter 3 is about the placement stage. It starts by giving an introduction
about placement problem, how it is defined, the complexity of the problem, and how
a layout quality is found. Then different techniques of placement are discussed, and
finally how placement is done in AutoVLSIis explained.

Chapter 4 explains how global routing is done to predict wires’ paths on the
layout plane ahead to the detailed routing stage. The global routing algorithm
adopted by AutoVLSI is explained, and the complete operation is illustrated by a
small layout example.

Chapter 5 starts by giving an overview about the functicn of detailed routers.
It focuses on maze routing, and finally explains how the router program that was
earlier implemented is integrated with other software to form the Auto VLSI system.

Chapter 6 is the conclusion of this thesis. It summarizes the work, and shows

some results and statistical data. It explains how compaction can be applied and



VLSI Cells Assignment

- Generate new netlist according to
the system library of cells.

v

Placement

- Linear ordering for cells.
- Folding in a 2-dimensional plane.

v

Global Routing
- Catching channels of the layout.
- Predicting wires paths.
- Adjusting initial layout.

\2

Deatiled Routing

- Generate minimal spanning tree.

- Find dimensions of wires paths.

- Build physical routes from
connecting materials.

Figure 1.2: Stages of AutoVLSI system including their tasks.
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finally gives some ideas about future work.

17



Chapter 2

Logic Assignment

The problem of designing general-cell style layout, is very much similar to that of
designing a PCB (Printed Circuit Board). However, instead of selecting off-the-shelf
SSI or MSI components, we have to select components from a pre-designed VLSI
cell library. And, instead of placing the components on a PCB, we place the cells in
silicon. A common advantage is that designs can be completed quickly [2].

If we assume that there exist for every gate in every possible netlist description ~
generated by the HPL used~ a VLSI circuit (or cell) that matches the gate’s function,
inputs, and outputs, then there is no need for any logic assignment. The designer
must only be concerned about where to place each VLSI cell on the layout floor and
how to interconnect different pins of the cells according to the netlist description.

However, the above assumption does not apply for UAHPL and many other
HDLs. A stage called logic assignment is needed to transform the input netlist into

a netlist of cells available in the system library.

18
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2.1 Logic Assignment for UAHPL Gates

Not all gates used by UAHPL have a corresponding cell in the library. For example,
UAHPL could use a 10-input AND gate in its generated netlist. The solution
depends absolutely on available VLSI cells in the system’s library of cells. If there
exist 3-input and {-input AND VLSI cells, then the 10-input AND gate will be
replaced by three 8-input AND cells and one 4-input AND cell (see Figure 2.1 (a)
).

In general, it is not possible to try matching all possible gates used by an HPL.
The alternative is to have in the library of VLSI cells the modules for the universal
logic gates which are 2-input NAND cell or 2-input NOR cell. If we want to replace
the 10-input AND gate, then we would need six 2-input NAND cells and three
2-input NOR cell as the circuit shows in Figure 2.1 (b).

AutoVLSI system first reads the types of VLSI cells available in the system
library. Then it checks for every gate if an equivalent cell exists with the same
number of inputs. If so, it does not take any action for such a gate. On the other
hand, if there does not exist an equivalent cell for one of the gates, then it substitutes
that gate by universal cells (NAND/NOR) as needed.

The software that does the logic assignment is called COOKNET. It receives
three input files. The first is GATES.LIB which is prepared by the user and contains
the data for the VLSI cells available in the system library. The other two input files
are the ones generated by the hardware compiler of UAHPL and represent the
netlist description of the design. They should have been extracted from a file that
has the extension “ERD”. These two files are to be named G1.DAT & I01.DAT.
COOKNET produces two output files, namely G2.DAT & I02.DAT. All gates
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(a) 10-input AND gate using3-input and 4-input AND cells.

\ID

Pl

(b) 10-input AND gate using universal-input NAND and 2-input
NOR cells.

Figure 2.1: Logic assignment for a 10-input AND gate.
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represented in G2.DAT file have equivalent VLSI cells in the system library as was
imposed by the user.

Beside performing logic assignment, COOKNET will also eliminate buffers used
in the design, redundant inverters, and any isolated gates which neither their inputs

nor output are connected to other gates.

2.1.1 AutoVLSI Library of VLSI Cells

A very small library of primitive VLSI cells was prepared while developing Au-
toVLSI system. The current library has ten different cells that are needed by the
logic assignment stage to replace different gates of netlist descriptions generated by

UAHPL for any digital design. These are:

1. Ez-input (External Input) cell.

2. Ez-output (External Qutput) cell.

3. 1-input NAND cell, to work as an INVERTER.

4. I-input NOR cell, to work as an INVERTER (same as the cell in 1).
5. 2-input NOR cell.

6. 3-input NOR cell.

7. 2-input XOR cell.

8. D Flip-Flop cell with SET control.

9. D Flip-Flop cell with RESET control.
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10. D Flip-Flop cell with ENABLE control.

Each VLSI cell is carefully hand designed using the MAGIC layout editor, and
simulated using both its built-in RSIM simulator and RNL [1],[17]. The cells
layouts are given in Figure 2.2.

Simulation outputs of the INVERTER (1-input NAND gate), 2-input NOR, and
D Flip-Flop with SET control cells using MAGIC built-in RSIM simulator are
given in Figures 2.3 ,2.4, and 2.5 respectively.

The data file GATES.LIB for the above library of VLSI cells have five records
only. The first two cells (Ez-input/output) and the last three cells (D Flip-Flop)
do not need to be specified since their existence is mandatory to UAHPL for all
designs. Each record representing a cell would consist of three pieces of information:
cell name, type number, and number of inputs of the cell. Cell name can be any
combination of letters or numbers, while type numbers are predefined according to
the gate type and they are given in Figure 2.6. These type numbers are the ones
used by UAHPL to identify the gates used in the netlist description. They can be
seen in G1.DAT file. GATES.LIB file for the above list of cells is given in Figure
2.7.

COOKNET software modifies the type numbers of all cells in its output files.
It replaces the second digit from the left of the type number by the number of
inputs of the cell as found in GATES.LIB file. For example, the I-input NAND
cell would have a type number 4102, while the 2-input NOR cell would have a type
number 4205. These modified type numbers are very important to be understood

since actual cells files will be named after them.
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Figure 2.2: VLSI circuits of the cells in AutoVLSI library.
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Figure 2.3: RSIM simulation output for cell 4102.MAG (i.e., INVERTER gate).



Figure 2.4: RSIM simulation output for cell 4205.MAG (i.e., 2-input NOR gate).
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Figure 2.5: RSIM simulation output for cell 4336.MAG (i.e., D Flip-Flop with SET
control).



TYPE NUMBER| GATE TYPE [TYPE NUMBER GATE TYPE
3998 PASS 4017 BUSEST
3999 WIRE 4018 EXOUTPUTS
4001 AND 4019 EXOUTPUTS
4002 NAND 4020 EXBUSES
4003 OR 4021 EXBUSESO
4004 XOR 4022 EXBUSESA
4005 NOR 4023 EXBUSEST
4006 DFCS 4024 CLUNIT
4007 DFF 4025 CLUI
4008 AUX 4026 CLUO
4009 MEMCK 4027 CTERMS
4010 MEMEN 4028 FNREG
4011 MEMJK 4029 CND
4012 INPUTS 4030 ORCS
4013 OUTPUTS 4031 CLAND
4014 BUSES 4032 CLNAND
4015 BUSESO 4033 CLOR
4016 BUSESA 4034 CLXOR

Figure 2.6: Table of predefined gates’ type numbers.

NAND1
NOR1
NOR2
NOR3
XOR2

4002
4005
4005
4005
4004

N WA i

Figure 2.7: List of GATES.LIB file.
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2.2 AutoVLSI General-cell Library

The general-cell layout style relaxes a lot of the restrictions imposed by standard-cell
layout style. Cells can have any rectangular shape resulting in a better arrangement
and a more compact floorplan. The main advantage of the general-cell style is the
ability of storing larger blocks such as arithmetic/logic units, registers, and memories
in the cell library. Such blocks can be designed to have efficient layout characteristics
[2].

However, there are some rules when designing a general-cell used by AutoVLSI

system. These rules are explained in the following subsection.

2.2.1 Rules of Designing a VLSI Cell for AutoVLSI System

As mentioned above, AutoVLSIimposes some rules on the VLSI cells used. Some of
these rules are mandatory while others are optional. However, they are very easy to
apply and do not violate the relaxation of geneml-cell style. These rules are listed

below and illustrated in Figure 2.8.

¢ Cells must be of rectangular shape.

e For the purpose of satisfying VLSI design rules explained in Section 4.3, Au-
to VLSI assumes the layout to be a 2-dimensional grid plane where a grid size
is (8 x 8)A, and the minimum allowed spacing between any two cells is 4.
Every cell must be centered in between h x w grid units such that space strips,
considered as part of the cell, of width equal to 2) are left empty all around
the cell (see shaded area in Figure 2.8). By doing so, AutoVLSI satisfies the

limitation of leaving at least 4) of space between any two cells placed on the
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floor even if they were placed next to each other. Each cell’s height or width
will be a multiple of 8 plus 4)\. For example, if a cell occupies one grid unit
such as Ez-input or Ez-output cells, then actual cell height and width will be
4)X. A cell occupying 5-vertical grid units will have actual height equals to
[(5—1) x 8] +4 = 36). Also a cell occupying 3-horizontal grid units will have
actual width equals to [(3 — 1) x 8] + 4 = 20\.

Pins of a cell [inputs, outputs, clock (Clk), power (Vdd), or ground (Gnd)]
must lie on the borders of the cell. If on a horizontal border then they must
be of polysilicon material, else if they are on a vertical border then they must
be of metall material. If a port resides on a corner then it must be a contact

point between polysilicon and metall materials.

The material of a pin should at least cover the middle 4 of the grid they are

laid on.

It is preferable that every pin has two or more occurrences on different borders
of the cell since this will offer the router several choices to reach that pin in

order to connect it to other pins.

Pins on a cell can be named individually for the purpose of clearance and
simulation. However, we suggest to name the clock pins as CK!, the power
pins as Vdd!, and the ground pins as GND!. Putting an exclamation mark
after these names will indicate them as global pins (i.e., all pins named Vdd!

are supposed to have the same value at all times).

Once a VLSI cell design is completed, it should be simulated individually to

make sure that it is functioning correctly as expected.
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Figure 2.8: Illustration of the rules of designing a VLSI cell for Auto VLSI system.

o A cell must be saved in MAGIC format and named according to the type
numbers which COOKNET software adopts. The file names for the above
listed library of cells are given in Figure 2.9. Cells files should be available in

a sub-directory called “mag” which branches from the design main directory.

Saving the Data of VLSI cells

After designing the VLSI cells to be used by AutoVLSI system, the user has
to create two data files which hold the information about the cells. The first
file should be named AGHW.DAT which stands for “Actual Gates Heights
& Widths”, and will be used in the placement stage. While the second file
should be named POC.DAT which stands for “Pins on Cells”, and will be used
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CELLDESCRIPTION |FILE NAME
EX-INPUT 4018.MAG
EX-OUTPUT 4013.MAG
1-input NAND 4102.MAG
I-input OR 4105.MAG
2-input NOR 4205.MAG
3-input NOR 4305.MAG
2-input XOR 4204.MAG
D Flip-Flop with SET control 4336.MAG
D Flip-Flop with RESET control 4346.MAG
D Flip-Flop with ENABLE control 4309.MAG

Figure 2.9: Files names of VLSI cells in AutoVLSI system library.

in both global and detailed routing stages.
The Format of AGHW.DAT File

Every cell in the library should have a corresponding record in the file A GHW.DAT.
A record would consist of three pieces of information: cell type, cell height,
and cell width. Cells’ height and width values should be in terms of grid units

rather than A.

AGHW.DAT file created for the above mentioned library of cells is given in
Figure 2.10.

Format of POC.DAT File

This file should include all cells and define the coordinates in grid units for

their pins with respect to the cell origin (0,0). There is a standard format for



4018 1 1
4013 1 1
4102 6 3
4105 6 3
4205 9 4
4305 9 6
4204 11 7
4309 14 47
4336 14 48
4346 14 48

Figure 2.10: List of AGHW.DAT file.

defining the coordinates of pins for every cell. The format is as follows:

— Cell Type #
NUMBER OF PINS FOR THE VDD

Coordinates for the first Vdd pin

Coordinate for the last Vdd pin
NUMBER OF PINS FOR THE GND
Coordinates for the first Gnd pin

Coordinates for the second Gnd pin



Coordinate for the last Gnd pin

Number of Input pins

NUMBER OF PINS FOR THE FIRST INPUT
Coordinates for the first pin of the first Input

Coordinates for the second pin of the first Input

Coordinates for the last pin of the first Input

NUMBER OF PINS FOR THE THIRD INPUT

NUMBER OF PINS FOR THE LAST INPUT
Coordinates for the first pin of the last Input

Coordinates for the second pin of the last Input

Coordinates for the last pin of the last Input

Number of Output pins
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NUMBER OF PINS FOR THE FIRST QOUTPUT
Coordinates for the first pin of the first Output

Coordinates for the second pin of the first Output

Coordinates for the last pin of the first Qutput
NUMBER OF PINS FOR THE SECOND OUTPUT
Coordinates for the second pin of the second Output

Coordinates for the second pin of the second Output

Coordinates for the last pin of the second Output

NUMBER OF PINS FOR THE THIRD OUTPUT

NUMBER OF PINS FOR THE LAST OUTPUT
Coordinates for the last pin of the last Qutput

Coordinates for the last pin of the last Output

34
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Coordinates for the last pin of the last Qutput

For the Ez-Input and Ez-Output cells, there is no Vdd or Gnd pins. Thus, the
first two lines of their records in POC.DAT file have 0. For the D Flip-Flops,
there are five inputs as imposed by UAHPL language. The first input stands
for D, the second stands for CLK!, and the third input is either ENABLE,
SET, or RESET control pins. The last two inputs are each assigned to one
pin whose coordinates are (—1,—1) to indicate that it is not used. Each of
these Flip-Flops has one output which stands for Q. The records for both,
2-input NOR cell and D Flip-Flop with ENABLE control cell are given in
Figure 2.11.
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4204 4309
2 2
110 113
3 13
2610 5
10 00
60 5100
2 2
2 03
10 09
110 2
2 10
30 013
3 10 2
1 2 0
2 2 13
63 11 1
6 4 )
-1 -1
1
2
46 0
416 1

Figure 2.11: Records of 2-input NOR cell and D Flip-Flop with ENABLE control
cell in POC.DAT file.



Chapter 3

Placement

3.1 Introduction

3.1.1 Definition

In most general terms, placement consists of assigning rectangular modules to loca-
tions on a two-dimensional surface while satisfying given constraints and optimizing
a given objective. Examples of constraints are to have all modules of standard shape
and size. An example of an objective would be to minimize wire length.
Constraints on modules affect to a certain extent the complexity of placement.
If the modules are of standard shape and size, then it will be easy to place them in
fixed row/column fashion as in the standard-cell layout style (Figure 3.1).
However, when the size of modules is allowed to be different while conserving the
same shape as in the general cell layout style, the problem becomes more difficult.
Modules in the last case can no more fit in row/column fashion without wasting a

lot of space. Obviously, the worst case is when both size and shape of modules can
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Figure 3.1: An example of a standard cell style layout.
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vary.

3.1.2 Cost Function

The overall objective of placement is to facilitate routing. Other objectives are
minimizing turn-around time (i.e., the time needed to finish generating the layout),
minimizing overall area of the layout, and finally minimizing the total estimated
wire length to be used later for routing nets. Facilitating routing objective is given
the first degree of interest since placing blocks without being able to route them will
result in a useless design. Chip area is important to be optimized in order to be able
to put more functionality into a given chip. Minimizing the wire length will reduce
the capacitive delays associated with longer nets and speed up the operation of the

chip.

Turn-around Time

Turn-around time is the execution time needed for AutoVLSI system to generate
the required layout. In many occasions, it is more important to the designer to
accomplish the layout as fast as possible rather than producing a highly optimized
layout nor a very short wired one. In AutoVLSI system, turn-around time is given

a higher priority than both minimizing layout area and total wire length.

Estimating Total Chip Area

The layout is a grided two-dimensional plane that has a positive X-Y coordinate
system (i.e., the lower left corner of the layout has 0,0 coordinate). In the general

cell layout style, modules are defined to be rectangular boxes of different sizes. Each
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Algorithm for finding an estimate for the chip area
1 - Find the Module m which has the maximumh(m)+y(m)
2 - Find the Module m’ which has the maximumw(m)'+x(m)’
3 - Estimate area to be = [ h(m)+y(m) ] * [w(m)'+x(m)']

Figure 3.2: Algorithm for estimating layout area.

module m would have four characteristics: w,, module width, A,, module height,
T, the X coordinate of the module when placed, and y,, the Y coordinate of the
module when placed. The chip area is the sum of modules area and the spacing left
between placed modules for the purpose of routing. In AutoVLSI, a conservative
assumption that no wiring is to be done above the highest module placed on top of
the layout nor wiring is done to the right of the widest module placed in the most
right boarder, will allow us to find an estimate for the chip area according to the
algorithm in Figure 3.2.

Figure 3.3 shows an example of m and m’ in a general cell layout.

Estimation of Total Wire Length

In estimating total wire length, we assume Manhattan geometry. The estimation
procedure must be as quick as possible since circuits usually contain hundreds of
multi-point nets. Next we briefly describe several techniques used for wire length
estimation.

The shortest route for connecting a set of pins together is Steiner tree (Figure 3.4
(a) ). In this method, a wire can branch at any point along its length. This method
is usually not used by routers because of the complexity of computing both the

optimum branching points (the Steiner points). Minimal spanning tree connections
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Figure 3.3: An example to illustrate m and m’in the algorithm for estimating layout
area.

(Figure 3.4 (b) ), allow branching only at the pin locations. Algorithms exist for
generating a minimal spanning tree given the netlist and modules’ coordinates. An
example of a minimal spanning tree algorithm is Kruskal. Such algorithm has a
polynomial time complexity and requires long time to execute. Chain connections
technique (Figure 3.4 (c) ) does not allow any branching. Each pin is connected to
the next one in the form of a chain. Algorithms for accomplishing such connections
are simpler to implement and faster but result in slightly longer interconnections.
The most widely used technique for its simplicity, ease of implementation and speed
of execution is the semi-perimeter approximation (Figure 3.4 (d) ). The technique
is to find the smallest bounding rectangle for all points to be connected by the wire,
and estimate the wire length by half the length of the perimeter of this bounding

rectangle.
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Figure 3.4: Different techniques of estimating the wire length.
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For Manhattan wiring, this method gives the exact wire length for all two-pin
and three-pin nets. For four-pin nets, the semi-perimeter estimate will predict a
wire length 33% less than both the chain connection and spanning tree techniques.
However, in practical circuits, two- and three-pin nets are most common. This

technique was adopted by Auto VLSL

The Cost Function

It is common practice to define a cost function or an objective function, which
consists of the sum of turn-around time, total chip area, and total estimated wire
length. It has been stated that all these three objectives need to be minimized in
order to achieve high quality layouts in a reasonable amount of time. The cost

function used by AutoVLSI to evaluate the generated layout quality is as follows:

Cost = oT + A+ YW

where o, # and v are factors for turn-around time, chip area, and wire length
relatively. These factors constitute the weight for each of the function objectives.
They are set to 3, 2, and 1 relatively. These values indicate that turn-around time is
the most expensive objective while area of the layout comes next in order. Finally,
wire length is the cheapest and the objective to minimize it is given the lowest

priority.

3.1.3 Complexity of the Placement Problem

The placement problem is an NP-complete problem and, therefore, can not be solved

in polynomial time.
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Even for the simplest placement style, namely standard-cell placement where
modules are of fixed size and are to be placed in row/column fashion, there exist as
many as n! different layouts for placing » modules [2]. Therefore, it is not practical to
try all possible layouts to find the best solution. Instead, many heuristic techniques
were developed to give good solutions for the problem, not necessarily the best
solution but they reduce the time of generating the layout a lot. Some of these

heuristics are discussed in the following section [8].

3.2 Techniques of Placement

The placement problem involves the assignment of building blocks of the layout to
specific locations. This includes the assignment of logic gates within a gate array,
the placement of cells in a standard cell layout, or the placement of macro cells in a
general cell layout [2], [5].

Placement algorithms may be subdivided into two basic categories: constructive
placement and iterative improvement. Constructive placement algorithms build a
placement from initial data such as sizes of the cells to be placed and the netlist (i.e.,
the interconnections between cells). Iterative improvement algorithms start with a
given initial placement (which can be given by the user or obtained by a constructive

placement algorithm) and modify the layout to improve its quality [5].

3.2.1 Constructive Placement Algorithms

A constructive placement algorithm constructs a solution by placing one module at

a time. Two decisions have to be made and these are:
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1. which module to pick from the unplaced list of modules, and

2. where to place the selected module.

Most constructive placement algorithms are based on primitive connectivity
rules. Typically, a seed module is selected and placed in the chip layout area. Then
another module is selected according to the connectivity between it and the placed
modules (most connected first) and is placed at a vacant location close to the placed
modules, such that the wire length is minimized. These algorithms are generally
very fast, but usually results in poor layouts. They take a very small amount of
computation time compared to iterative algorithms.

Some constructive placement algorithms are: linear placement & folding, numer-
ical optimization, placement by partitioning, and force-directed technique. A full

description of each can be found in [5], [3].

3.2.2 Iterative Improvement Algorithms

Iterative improvement algorithms produce good placement but require enormous
amount of computation time. They start by a given placement solution that could be
user defined, randomly built, or an output from a constructive placement algorithm,
and try to improve layout cost by running several iterations.

The simplest iterative improvement strategy interchanges randomly selected
pairs of modules and accepts the interchange if it results in a better cost. The
algorithm terminates when no improvement is observed after a given large num-
ber of trials, or after running the algorithm for some maximum given amount of

execution time.
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Currently popular iterative improvement techniques include simulated annealing,

genetic algorithm, and some force-directed techniques.

3.3 Placement in AutoVLSI

The placement procedure used in AutoVLSI system to place general cells is con-
structive and consists of two phases. Its objective is to compromise between the
speed of generating the layout, layout area, and total wire length; plus of course
assuring full routibality. The first phase is to linearly order the cells in terms of
their interconnection, in order to minimize wire length. Linear ordering of cells pro-
duces a one-dimensional layout as if a matrix consisting of one row or one column.
The second phase is to fold these ordered cells on the two-dimensional layout in a
manner that minimizes the layout area. It does so by leaving the minimum allowed
spacing between each cell and its neighbors.

How much space to leave between a module and its neighboring modules is de-
termined by the VLSI design rules. AutoVLSIdeals with the layout as a rectangular
array of grid cells. Every module when placed will occupy one or more grid cells.
Routing material is supposed to run in the space between modules to connect dif-
ferent pins of different modules. In SCMOS technology, the common factor of the
minimum allowed distance between any two layers is 4\, and the common factor of
the minimum width of a routing material (metal or polysilicon) is also 4 (Figure
3.5 (a) ). Thus, we restrict our grid unit size to (8 x 8) A. This means that leaving
one grid unit between any two modules will be sufficient to run one wire (whose
width is 4)) in between them while leaving a space of 4\ between the wire and its

neighboring cells (Figure 3.5 (b) ). From now on, the dimensions of a module are
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(b) Wires running between cells.

Figure 3.5: Illustration of a grid cell and VLSI design rules.
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Figure 3.6: Actual size of a cell.

relative to grid cells rather than ). If a module’s width equals to 3, and height equal
to 2 then it is assumed to occupy a box whose width equals 3 grid cells, and whose
height equals 2 grid cells, but the actual size of the module in terms of lambda js
(28 x 12) A%, since we leave 2) from each side of the cell to afford the 4\ spacing

constraint if a wire is to pass close to it (Figure 3.6).

3.3.1 Phase I: Linear Ordering of Cells

Linear ordering can be defined as follows: given a circuit consisting of modules
interconnected with nets, put the modules in a linear sequence such that the number
of nets cut by a plane separating two adjacent modules is minimized (2], [16].

The circuit will be described in this section by a set of modules and a set of
nets. A net is a set of modules which are interconnected by one wire. The algorithm

starts by selecting a seed module which will be the first module in the order, then
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Figure 3.7: Illustration of terminated, continuing, and new nets.

enters a Repeat loop. In each iteration of this loop a gain function is computed for
every module in the set of unordered modules. The module with maximum gain is
selected, removed from the set of the unordered modules, and added to the sequence
of ordered modules. Before explaining how a seed module is selected, and how the
gain is computed, let us define the terms terminated net, continuing net, and new
net.

A net n is said to be terminated by module m and called terminating net if
module m was the only remaining unordered module included in the set of modules
of n. On the contrary, if none of the modules in the set of modules of net n is
ordered, then n is a new net for all its modules. If some of the modules of a net n
are ordered and more than one unordered modules belong to the set of modules
of n, then n is a continuing net for those remaining unordered modules. Figure 3.7
illustrates graphically these three types of nets.

Now we can define the gain function for module m to be:
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gain., =number of nets terminated by m—number of new nets started by m.

When computing the gain for the unordered modules in order to select the next
one in sequence, a tie (i.e., more than one module having the same gain) could
exist. A tie is solved by selecting the module which terminates the largest number
of continuing nets. If another tie exist, the module that is connected to a larger
number of continuing nets is preferred. If we have another tie, the most lightly
connected module is selected. In case of another tie, the module that has the lowest
index (was encountered first in the set of unordered modules) is selected. A Pascal
like description of the linear ordering algorithm is given in Figure 3.8.

The following example (taken from [2]) is used to illustrate the linear ordering

algorithm.

Example 3.1 Given the following netlist with 6 modules [M1, M2, M3, M4, M5,
M6) and 6 nets NI= {M1, M3, M{, M6}, N2={MI1, M3, M5}, N3= {M1, M2,
M5}, N4= {M1, M2, M4, M5}, N5= {M2, M5, M6}, N6= {M3, M6}, linearly
order the cells so that the number of cut nets by a plane between any two cells is

minimized. Assume M1 to be the seed cell.
o Solution:

The linear ordering heuristic of Figure 3.8 will produce the following sequence (M1,
M4, M5, M2, M3, M6). At the first step, M1 is placed in the first location of
the order since it is the seed cell. Then every module gain is computed and M4
comes to have the maximum gain, so it is placed in the second location. At
the second step, we have a tie between modules M2, M3, and M5 having all a

gain equal to —1. All three cells do not terminate any net. However, module
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Linear_Ordering Algorithm
S:=Set of all modules;
- Order:=Sequence of ordered modules; (* initially empty *)
Begin
Seed:=Select seed module;
Order:=[seed];
S:=S-{seed};
Repeat
ForEach module min S Do
Compute m gain as follows:
gain = number of terminated nets by m - number of new nets starting by m;
End ForEach
Select the module m* with maximum gain;
If there is a tic Then
Select the module that terminates the largest nymber of nets;
If there is a tie Then
Select the module that has the largest number of continuing nets;
If there is a tie Then
Select the module with the least number of connections;
If there is a tie Then
Select the module that satisfies the previous " If" and has lowest index;
End If;
End If;
End If;
End If,
Order:=[Order,m*];
S:=S-{m*};
Until S is empty;
End.

Figure 3.8: Linear Ordering algorithm.
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M5 has the largest number of continuing nets and therefore it is selected in
the second If statement of the algorithm and placed in the third location of
the order. At the third step, M2 has a maximum gain and placed in position 4
of the order. At the fourth step we have a tie between the remaining modules
M3 and M6 since they both have a gain equal to 0. The first If statement in
the algorithm fails because both terminate one net. The second If statement
also fails because they have the same number of continuing nets, and the third
If statement fails also because they are both connected to the same number
of nets. The Else statement of the algorithm directs to select M9 since it has
the lower index. Finally, at the fifth step only M6 is left and so it has the
maximum gain and selected to occupy position 6 in the order. A step-by-step
execution of the algorithm showing how cells were selected in order is given in

Figure 3.9.

A graphical representation of the ordered cells with their interconnection is shown

in Figure 3.10.

In AutoVLSI system, N9.DAT is a file that has the data about each cell and
the nets it participates in. In order to achieve linear ordering for cells, we need
this data in a format of nets and their participated cells. The GNETS software,
reads in N9.DAT file and produces NETS.GNE file that follows such format. Every
net, followed by the cells participating in, reserves one entry in this file. The LOC
software reads NETS.GNE file, and GP2.DAT file which shows the type of each
cell. The LOC software starts by sorting all cells according to their index number.
Then it sequentially moves input cells of the type “4018” from the main list of cells

to put them at the beginning of the sequence of ordered cells since they are to be
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Step Module Terminated New Nets Gain Continuing
# Nets Nets
0 |[MI* = N1, N2, N3, N4 -4 |NI, N2, N3, N4
1 M2 = N5 -1 N3, N4
M3 = N6 -1 N1, N2
M4* = = 0 N1, N4
M5 = N5 -1 M2, N3, N4
M6 = NS5, N6 -2 NI
2 M2 = N5 -1 N3, N4
M3 N6 -1 N1, N2
M5 * N5 -1 N2, N3, N4
M6 = NS5, N6 -2 NI
3 |M2* N4 = 1 N3, N5
M3 N2 N6 0 N1
M6 = N6 -1 N1, N5
4 |M3* N2 N6 0 NI
M6 N5 N6 0 NI
6 |M6* N6 = 1 =

Figure 3.9: Execution table of Example 3.1 [2].
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Figure 3.10: A graphical representation of the ordered cells of Example 3.1.

placed in a separate row in the layout. At the same time, it removes any output
cell of the type “4013” encountered in the main list of cells to a temporarily list
because they are known to be placed at the final top row of the layout. Secondly, it
linearly orders remaining cells which are neither input nor output cells according to
their interconnection relationship, and moves them to the sequence of ordered cells.

Finally, it moves output cells sequentially from the temporarily list to the sequence

of ordered cells. The ordered sequence of cells is saved in CELLS.LOC file.

3.3.2 Phase II: Folding Cells in Two-dimensional Plane

In phase I, cells of the circuit have been ordered in one-dimensional sequence ac-
cording to their interconnection details. This will minimize the wire length needed
to connect different pins of the cells. If the layout can be one dimensional, then
we can directly place cells in one row or one column next to each other as they
appear in the sequence. This is absolutely impractical since layouts of very small or

very large aspect ratio (i.e., ’;—’:j%) would result. Instead, many techniques exist for
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I :

(a) Snake folding  (b) Row folding (¢) Circular folding

Figure 3.11: Different techniques of folding a sequence of cells.

folding this one-dimensional sequence of cells into a two-dimensional plane to form
the chip layout. Some of these techniques are graphically presented in Figure 3.11.

The easiest way of folding is called row-folding and is shown in Figure 3.11 (b).
This technique places cells in a left-to-right direction next to each other starting
from the bottom of the layout until the layout maximum width (MW) is reached.
Then it searches for the highest cell in that row and reconstructs another row whose
bottom is the top of the highest cell. It continues placing cells in order after chang-
ing direction (right-to-left). Row-folding is a very fast technique and has been used
successfully for standard-cell layouts (Figure 3.12). If the same technique is to be
used for general-cell layouts, an enormous amount of dead space would result reflect-
ing an increase in both chip area and wire length. Figure 3.13 shows an example of
general-cell folding into a two dimensional plane using row-folding technique. The
hashed boxes represent dead space. A modified version of row-folding technique
does the same style of folding but takes into consideration the shape of the top face

of the layout (to be called front-face). This front-face will have some gaps -according



Figure 3.12: Row-folding example for standard-cell layout.
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Figure 3.13: Row-folding example for general-cell layout.
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to differences in cells’ height- that can be filled by the coming cell in order. Such a
gap could be neighboring the last placed cell and then the next cell will be placed
directly without disturbing the order of cells. In other cases, the gap could be away
from the neighbor of the last placed cell. Such position could increase or decrease
wire length and layout area. The decision of where to place the next cell is taken
according to a cost function computed for each proposed position. First, the cost of
placing the cell next to the previously placed one is computed. Then, if there are
any gaps where the cell can fit, the cost for placing the cell in any of these gaps is
computed. The cell is placed in the position where the cost is lowest. The front-face
of the layout is saved after every new cell is placed. The cost function is the sum of
an estimate for the chip area and an estimate for the wire length.

A description of the modified Row-folding algorithm is given in Figure 3.14.

Example 3.2 Given the following cells along with their dimensions (width, height):
M1 (3,2), M2 (1,1), M3 (2,2), M{ (2,3), M5 (2,4), M6 (2,3), M7 (1,1), M8
(1,1), M9 (4,2) and the following linear order: [M6, MS, M1, M4, M3, M7, M5,
M2, MY9]. Use row-folding technique to place these cells in a two-dimensional layout,
then use the modified version (algorithm in Figure $.14 ). Consider MW (mazimum
width of the layout)= 13, and the cost function equals the estimate of the layout

area.
o Solution:

1. The Row-folding algorithm is applied without any modification. The place-
ment starts by M6 and assigns it to location (1,1) since there should be a
minimum spacing of one grid unit between cells and the left /bottom bound-

aries of the layout. Originally, the algorithm starts by a left-to-right direction
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Algorithm for the Modified Row-folding technique

1 - Define MW to equal maximum width of the layout.
2 - Start placing cells in order next to each other, in the direction left to
right in the most bottom row of the layout; Until MW is reached.
3 - Flip direction of placement (Right to Left ; Left to Right).
4 - Pick a position for new cell:
4.1 - Save the Front-face of the layout.
4.2 - Pick next cell m* in order.
4.3 - Compute the cost of placing m* next to the last placed cell.
4.4 - If there exist any gaps in the Front-face where m* can fit
4.4.1 - Compute the cost of placing m* in every one of these gaps.
4.4.2 - Place m* in the position that yields the lowest cost.
4.5 - Else
4.5.1 - Place m* next to the last placed cell.
5 - If there exist more cells and MW is Not reached
51-Goto4.
6 - If there exist more cells
6.1 -Goto3.
7 - Quit.

Figure 3.14: Algorithm for the modified version of Row-folding technique.
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of placement, so M8 is assigned to location (4,1) (i.e., to the right of M6)
leaving one grid of space, M1 is assigned to location (6,1), and M/ is assigned
to location (10, 1). When M3 is checked for placement, it appears that placing
it adjacent to M4 will exceed MW, so the row is locked and the direction of
placement is switched to right-to-left. In the locked row, M6 has the maximal
height which is 3 and its Y-coordinate is 1. The new started row Y-coordinate
is set to the sum of the Y-coordinate and the height of the highest cell in the
previous row, and increased by one spacing grid. Thus the next module in or-
der, M3 is assigned to location (11,5). Note that there is no need for spacing
between a cell and the right boundary of the layout. M7 comes in sequence
and is placed to the left of M3 leaving a space of one grid, at location (9, 5).
Proceeding in the same manner, M7 is assigned to location (6,5) and M2 is
assigned to location (4,5). M9 has a width of 4 grid units, and does not fit
in the current row, so the direction of placement is switched and a scan to the
current row reveals that the highest cell is M5 having a Y-coordinate equals
to 5 and width equals to 4. M9 is assigned to location (1, 10) leaving one grid
unit of space between it and the left boundary of the layout, and one grid unit
of space between it and the highest cell in the last row. An estimate for the
area of the final layout can be computed according to the previous algorithm
in Figure 3.8 and it is found equal to 156 grid units. The layout is shown in

Figure 3.15.

. If we apply the modified version of the Row-folding algorithm, the first row will
not change. However, after placing modules M6, M8, M1, and M/, a front-

face is saved and we encounter one gap between M6 and the right boundary



Layout area = 13*12 = 156

Figure 3.15: The layout of Example 3.2 generated by Row-folding algorithm.
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of the layout. It appears that placing module M? in the gap will result in
smaller chip area rather than placing it in the sequenced location (11,5). So
M3 is assigned to location (11,4) and a new front-face is saved. M7 does fit
in the gap between M6 and M3; so it is placed next to M3 at location (8,4).
M5 fits in the gap between M6 and M7 and is assigﬁed to location (6,4). M2
is placed in location (4,4) and a new front-face is saved. In this last front-face
there is a gap between M5 and the left boundary of the layout that is enough
to hold M9. So, instead of placing M9 in the sequenced location (1,10), it is
inserted into the gap and assigned to location (1,6). The resulting layout is

shown in Figure 3.16, and has an estimated area equals to 104 grid units.

3. For this very small example, the modified version of the Row-folding algorithm
was able to save 52 grid units of the layout area which is about 33% of the
layout area found by applying the original algorithm. Moreover, the space
utilization = (1—5% X 100) = 76.3% of the layout generated by Row-folding
algorithm, is larger than the space utilization = (% X 100) = 64.4% of

the layout generated by the modified version of the algorithm, which means

that less space was wasted in the second layout.

It should be very clear that this modified version of the algorithm will not nec-
essarily produce smaller layout. In many examples it may result exactly in the
same layout structure and area. This is absolutely dependent on the dimensions of
modules, the sequence they are encountered when being placed, and the maximum
width of the layout. However, it is guaranteed not to produce a larger layout than

what the original Row-folding algorithm produces.
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Layout area = 13*8 = 104

Figure 3.16: The layout of Example 3.2 generated by the modified version of Row-
folding algorithm.



Chapter 4

Global Routing

4.1 Introduction

Physical design of a VLSI circuit consists of two tasks. Placing cells of the VLSI
circuit in a two-dimensional plane to form the circuit layout, and connecting different
sets of pins on these cells by routes of wires made of some connecting material that
is usually metal or polysilicon {2]. The main objectives that must be achieved are
minimizing both total wire length used for connections and total layout area.

The first objective was approached by linearly ordering the cells according to
the interconnections between them such that highly interconnected cells are put in
sequence close to each other. This ordering results the minimum length of wires
representing these interconnections if the cells are placed in one row or one column.

Since cells of the circuit are pre-determined in the cell assignment stage and
each of these cells have a fixed size and area, then minimizing the layout area is
concerned by the amount of space in the layout to be used by the router to place

the wires between these cells. The necessary routing space is iteratively determined
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by starting with minimum space in the layout without disturbing the linear order,
and then increase this space as needed to accomplish all wiring.

The layout first was created by folding the ordered cells in a row fashion using
Jront-face technique while keeping the minimum spacing that VLSI design rules
allow. An assumption that only one wire can pass between a cell and its neighbors
yielded a minimum space of one grid unit. This assumption is absolutely impractical
but yields a minimum total layout area. If we directly submit such layout to the
detailed router, it will not be able to find enough space for routing all wires.

Global routing is a pre-routing stage done to predict where the detailed router
is going to run wires on the layout floor. Once it predicts such information, it adds
enough spacing between the circuit cells to allow the detailed router to place these

wires [2], [12].

4.1.1 Definitions and New Terms

A netis defined to be a set of points (also called pins) on the boundary of some cells
of the layout that must be electrically connected with each other [2]. These points
could be inputs, outputs, ground, or power ports for a cell. When cells of Auto VLSI
were designed, there was a restriction to put such points of the cell on the boundary
of the cell and to assign one grid unit to each point. The same point could exist
more than once on the cell boundary, so for each existence it is assigned one grid
unit. An example of a VLSI cell (2-input NOR) showing how points like IN1, IN2,
OUT, GND, and VCC are laid on the boundary of the cell and each is assigned one
grid unit is given in Figure 4.1.

When two cells are vertically neighboring each other there will exist rows of
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Figure 4.1: Illustration of the ports of a VLSI cell. The cell represents a 2-input
NOR gate.

space grids between the cells. These rows are defined as the horizontal channel
between these two cells. If two cells are horizontally neighboring each other, then
the columns of space grids between them are defined as a vertical channel (see
Figure 4.2) [11], [13]. For layouts generated by AutoVLSI system, the concept of
horizontal and vertical channels is eliminated. Simply, a rectangular area consisting
of some empty grid units is defined to be a channel A channel has both vertical and
horizontal capacity which equals the number of grids vertically or horizontally that
are on the borders of the channel. For example, the horizontal channel of F igure 4.2
has a horizontal capacity of 2 grids, and a vertical capacity of 8 grids. Wires routed
on the layout are to run only in these channels and according to VLSI design rules,
each wire unit is assigned to one grid. A wire segment will usually occupy some grid
units that are either horizontally or vertically sequenced. Thus, the capacity of a
channel is equal to the number of wire segments it can have. The horizontal channel
of Figure 4.2 can have 2 horizontal wire segments, and 8 vertical wire segments.
A congested channel is defined to be any channel whose capacity is less than the
number of wire segments which are to pass through it.

If the designer knows prior to the detailed routing stage the information about
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Figure 4.2: Illustration of Horizontal and Vertical channels.

the places of wire segments on the layout (i.e., which channels they are going to
pass), then channels capacities can be increased as needed to eliminate any congested
channels.

A channel’s vertical field (VF) is the area bounded by the channel Xmin and
Xmaz, and on top of the channel Ymaz, while a channel’s horizontal field (HF) is

the area bounded by the channel Ymin and Ymaz, and to the right of the channel

Xmaz.

4.1.2 Tasks of the Global Routing Stage

Global routing stage can be divided into three tasks. The first task, is to determine
the channels of the layout based on the information given for the cells. Each cell

origin X,Y-coordinates, width, and height are known. A procedure is implemented
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to identify channels according to this information. The task is called “channel
identification”.

The second task is to predict for each net, the channelsit is going to pass by (i.e.,
to determine a routing plan for each net). This prediction will determine if there are
any congested channels, in order to resolve them before the detailed routing stage.
A channel connectivity graph for the final set of channels found in the first task
is constructed. This graph gives details about how channels are connected to each
other, and will be used in the “determination of wires paths” procedure.

The third task consists of resolving any congested channels. This is done by
increasing channels horizontal and vertical capacities to make them able to accom-

modate more wires. This task is called “routing region adjustment”.

4.2 Task I: Channel Identification

A channel is determined by its lowest left corner (llp) and its most upper right corner
(urp) X- and Y-coordinates. These coordinates are formulated between brackets as
follows: (llp-X, llp-Y, urp-X, urp-Y). The coordinates of these two points are used
to compute both, the channel horizontal capacity (CHC) and the channel vertical

capacity (CVC) as follows:

CHC =urp.Y - lipY (4.1)
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CVC =urp X —llp X (4.2)

4.2.1 Procedure for Channel Identification

The procedure of identifying channels on a layout consists of 6 steps. It assumes
cells data (i.e., X-coordinate, Y-coordinate, width, and height) are saved in a list

[11], {13].

o First step: From each cell, two vertical lines are created and inserted in a list
of vertical lines. The first vertical line X-coordinate equals the X-coordinate
of the cell, while the second line X-coordinate equals the cell X-coordinate
+ the cell width. Each vertical line minimum Y-coordinate (Ymin) is found
by scanning all cells to determine which cell the line hits first when extended
downward from the border of the current cell. If such a cell exists, then the
line Ymin will equal the sum of that cell Y-coordinate + that cell height. If
an extended vertical line does not hit any cell, then its Ymin is taken to be
0. Similarly, the maximum Y-coordinate (Ymax) is found. But this time, the
vertical line is extended upward to find the first cell it hits. In case it hits a
cell, its Ymax will equal the cell Y-coordinate. Otherwise, if the V-line does
not hit any cell when extended upward, its Ymax is set to oo (infinity). Finally,
one extra vertical line whose X-coordinate equals the maximum X-coordinate
of all V-lines in the list 4+ 1, and whose Ymin is 0, and Ymax is oo, is inserted

in the list of V-lines to simulate the right border of the layout.
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o Second step: The list of vertical lines created in the first step is scanned
to eliminate any duplicated lines having the same X-coordinate, Ymin, and
Ymax. Each one of the remaining V-lines will have a unique combination of
X-coordinate, Ymin, and Ymax. The list of vertical lines is sorted in ascending

order according to the lines X-coordinate values.

o Third step: Two horizontal lines (H-lines) are created for each cell in the list.
The first H-line has a Y-coordinate equals to the Y-coordinate of the cell, while
the second H-line has a Y-coordinate equals to the sum of the cell Y-coordinate
and the cell height. Another list is created for horizontal lines coinciding with
the cells top or bottom horizontal borders. A horizontal line is extended to
the left and checked if it will hit any cell. If it does, then its Xmin is set to
the cell X-coordinate + the cell width, otherwise its X-coordinate is set to 0.
The Xmax of a H-line is found by extending it to the right to detect the first
cell it hits [if any]. Its Xmax is set to the cell X-coordinate if it was hit first
by the H-line, or otherwise it is set to co. Once all cells are scanned, one more
H-line whose Y-coordinate equals the maximum Y-coordinate of all H-lines in
the list + 1, and whose Xmin and Xmax are equal to 0 and oo is added to the

list of horizontal lines to simulate the upper boundary of the layout.

e Fourth step: Duplicated H-lines which have the same X-coordinate and the
same Ymin and Ymax are deleted from the list leaving one line to represent
them. Then the list is sorted in ascending order according to the lines Y-

coordinate values.
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e Fifth step: The identification of channels starts by picking the first horizontal
line in the list and scanning the vertical lines list. On the first intersection
between the horizontal line and a vertical line, a channel lower left point(llp)
(X,Y) coordinate is determined, while on the second intersection in order,
the same channel upper right point(urp) X-coordinate is determined, and a
new channel llp (X,Y) coordinate is determined. When the current horizontal
line intersects with the last vertical line in the list, the last channel urp X-
coordinate is determined and a new horizontal line is picked in order from the
list of horizontal lines. The same operation goes for the new selected horizontal
line, but this time once an intersection with a V-line is encountered, then a
previous channel urp Y-coordinate is determined in addition to determining a

new channel llp (X,Y) coordinate or a previous channel urp X-coordinate.

e Sizth step: Channels identified in the previous step are boxes resulting from
intersections between H-lines and V-lines. Some of these channels will over-
lay cells’ boxes. These channels can not be used for routing since they are
already occupied by the cells, so they are eliminated from the list of chan-
nels. Any channel whose Xmin and Ymin are equal to any of the cells X- and

Y-coordinates is eliminated from the list.

The pseudo-code of this algorithm is given in Figure 4.3, and is illustrated with

the following example.

Example 4.1 A layout consists of the following cells: C1 (10, 6, 3,2), C2 (11, 1,
2,2),C3(14,1,2,2), C4(8,1,2,2), C5 (1, 6, 5, 2),C6(7,6,2,3), C7 (1, 1, 6,

4). Each cell C is given along with its (X — coordinate, Y — coordinate, width, and
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Procedure Identify_Channels

structure vetrical line {x, yl, y2 :integer; } vli;

structure horizontal_line { y, x1, x2 :integer; } hli, prev_hli;
structure channel {x1, y1, x2, y2 :integer; } cli;

hli=First H-line in the list;
prev_hli=NULL;

Begin
While (hli is not the last H-line) Do
begin
vli=First V-line in the list;
While (vli exists) Do
begin
If ( hli intersects with vli ) Then
begin
If ( hli and vli are one of the 2 patterns
begin
Start New Channel with Coordinates (vli->x, hli->y, , );
If (there are any previous channels and prev_hli=hli) Then
begin
Update the last channel before New Channel coordinates (*, *, vli->x, *),
Update_prev_Channels(cll->prev);
end;
Mark New Channel as not Complete;
end
Else If (there are any previous channels and prev_hli!=hli) Then
begin
Update previous Channels (*,* vli->x, *);
Update_prev_Channels(cll->prev);
end;
prev_hli=hli;
end;
vli=next V-line in the list;
end;
hli=next H-line 1n the list;
end;
Remove last New Channel;
End.

) Then

Figure 4.3: Algorithm for identifying channels.
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height). Apply the channel identification algorithm given in Figure 4.8 and show

graphically the resulting channels.
o Solution:

A V-line will have three coordinates and will be formulated between brackets as fol-
lows (X-coordinate, Ymin, Ymax). Similarly for H-lines and their coordinates

will be formulated as follows (Y-coordinate, Xmin, Xmax).

1. Creating V-lines list: Cl1 will generate the first two V-lines, V1, and V2.
The first (i.e., V1) will have X-coordinate equals to C1 X-coordinate = 10.
When V1 is extended downward it does not hit any cell, thus its Ymin equals
0. When it is extended upward then again it does not hit any cell so its Ymax
is set to co. V1 coordinates are (10,0, 00). V2 X-coordinate equals the sum of
C1 X-coordinate and C1 width value (sum = 13). When extending V2 in both
directions upward or downward, it does not hit any cell; so V2 coordinates will
be (13,0,00). C2 generates V3 whose X-coordinate equals C2 X-coordinate.
Extending V3 downward does not hit any cell; so its Ymin is set to 0. However,
when V3 is extended upward, then the first cell it hits is C1. Thus, V3 Ymax
is set to C1 Y-coordinate. V3 has the coordinates (11,0,6). V4 is generated
by the right border of C2 and have coordinates (13,0, 00). Each other cell will
generate another two V-lines making a total of 18 V-lines. After all cells are
scanned, two vertical lines V19 and V20 whose coordinates are (0,0, c0) and
(17,0,00) are added to the list to model the layout left and right borders. A

list of all generated V-lines in sequence is given in Figure 4.4 (a).
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2. Removing duplicated V-lines and sorting: Duplicated V-lines are V4,
V8, V13, and V14. They are deleted from the list of V-lines and the list is
ordered according to the X-coordinate value. The final list of vertical lines is
given in Figure 4.4 (b). A graph of the layout with the last list of vertical lines

is given in Figure 4.5.

3. Creating H-lines list: Cl will generate two H-lines. The first (H1) has a
Y-coordinate equals to the Y-coordinate of C1. When H1 is extended in either
direction, to the left or to the right, it does not hit any cell, so its Ymin is set
to 0, while its Xmax is set to co. H1 coordinates are (6,0,00). The second
H-line (H2) generated from C1 has a Y-coordinate equals to C1 Y-coordinate
+ C1 height. When it is extended to the left, it hits C6 and thus its Xmin
is set to C6 X-coordinate + C6 width. However, when it is extended to the
right it does not hit any cell and its Xmax is set to co. H2 has the coordinates
(8,12, 00). After all cells are scanned to generate the corresponding horizontal
lines, two horizontal lines that represent the layout top and bottom borders
are added to the list. The one representing the bottom border has coordinates
(0,0, 00), while the one representing the top border has X-coordinate equals
to the maximum X-coordinate of all H-lines +1. Its coordinates are (13,0, 0o0).

A complete list of all generated horizontal lines is given in Figure 4.6 (a).

4. Removing duplicate H-lines and sorting: The list of horizontal lines after
removing duplicated ones and sorting is given in Figure 4.6 (b), while a graph

of the layout with the final list of horizontal lines is given in Figure 4.7.
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V-line X- min, Y- max. Y-
# | coordinate | coordinate | coordinate
1 0 0 s
2 1 0 o
3 4 8 ©
4 6 5 .
5 7 0 ©
6 8 0 6
7 9 3 o
8 10 0 o
9 11 o] 6
10 12 8 o
11 13 0 o
12 14 0 o
13 16 0 o
14 17 0 0

V-line X- min, Y- max. Y-
# | coordinate | coordinate | coordinate
1 10 0 pos
2 13 0 ©
3 1 0 6
4 13 ) 0
5 14 0 o
6 16 0 0
7 8 0 6
8 10 0 00
9 1 0 ©
10 6 5 0
11 7 0 ©
12 9 3 0
13 1 0 Fe)
14 7 0] 0
15 10 0 ©
16 12 8 0
17 4 8 ©
18 6 5 o
19 0 0 0
20 17 0 0

(a) The Vertical-lines list for Channels

(b) Resulting list from (a) after Step 2.

Identification Example. List generated at Step 1.

Figure 4.4: Vertical lines lists for Example 4.1.
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(0’0)1 7 8 10 11 13 14 16 17

Figure 4.5: Illustration of vertical lines for the layout of Example 4.1.
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H-line Y- min. X- max. X-
# | coordinate | coordinate | coordinate
1 0 0 pos
2 1 0 fre)
3 3 7 00
2 | & 0 ©
5 6 0 o)
6 8 9 ©
7 8 0 7
8 9 0 0
9 10 0 o
10 12 0 0
11 13 0 00

H-line Y- min, X- max. X-
# | coordinate | coordinate | coordinate
1 —6 0 P
2 8 9 0
3 1 0 7
4 3 7 ©

5 1 0 ©
6 3 — 7 o

7 1 0 0
8 3 — 7 0
9 6 0 Pe)
10 8 0 7
11 6 0 0
12 9 0 e
13 1 0 0
14 5 0 0
15 10 0 e
16 12 0 0
17 10 0 o
18 12 0 0
19 0 0 00
20 13 0 0

(a) The Horizontal-lines list for Channels

Identification Example. Generated at Step 3.

Figure 4.6: Horizontal lines list for Example 4.1.

(b) Resulting list from (a) after Step 4.



7

13 Hil I

Figure 4.7: Illustration of horizontal lines of the layout of Example 4.1.
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5. Channel Identification: The first horizontal line H1 in the final list of hori-
zontal lines (Figure 4.6 (b) ) is picked. A scan of the vertical lines in the final
list of vertical lines (Figure 4.4 (b) ) will reveal that H1 intersects with V1. A
new channel CH1 is started with lower left point (Ilp) X-coordinate equals to
V1 X-coordinate, and llp Y-coordinate equals to H1 Y-coordinates. So far, its
set of coordinates will be (0,0, —, —). Then H1 is found to intersect with V2 in
order. Since V2 is not the last V-line in the list, two actions are taken. First,
CH1 Xmax is determined and is equal to V2 X-coordinate. The coordinates
of CH1 are updated to be (0,0,1,—). The second action taken is to start
a new channel CH2 with coordinates (1,0,—,—). The same two actions are
done when V5 is found to intersect H1. CH2 coordinates are updated to be
(1,0,7,—), and a new channel CH3 is started with the coordinates (7,0,—,=).
When the final vertical line V14 is encountered, one action only is taken which
consists of updating the last channel CH9 coordinates to (16,0,17, —). H2 is
now picked and the whole operation is repeated while adding some more ac-
tions as follows. V1 is the first V-line that intersect with H2. As before, a new
channel (CH10) is created with the following coordinates (0,1, —, —). Now a
new action is taken. All previous channels are checked. If any channel’s coor-
dinates are all determined except the last coordinate, and the third coordinate
equals V1 X-coordinate, then the last coordinate of that channel is updated to
H2 Y-coordinate. For the instance, for V2, there does not exist any previous
channel whose third coordinate equals to 0. However, when V2 is scanned in
order since it intersects with H2, CH1 third coordinate is 1 and its last coor-

dinate is not yet determined, so it is set to H2 Y-coordinate which is 1. While
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H2 is scanned with V5, V6, V8, V9, V11, V12, V13, and V14, the coordinates
of all previous channels CH2, CH3, CH4, ..., etc., until CH9 are completed
by V2 Y-coordinate. A new H-line is picked now and the whole operation is
repeated. A list of all created channels along with their coordinates is given in
Figure 4.8. The reader can notice that these cells can be obtained graphically
by overlapping the layout with the vertical lines of Figure 4.5 over the layout

with horizontal lines of Figure 4.7. The resulting graph is given in Figure 4.9.

6. Eliminating occupied channels: Finally, the list of identified channels in
step 5 is scanned to eliminate those channels which overlay cells of the layout.
CH11 has coordinates (1,1,7,5), and C7 has coordinates (1,1), so CH11 is
eliminated. Similarly for CH13, CH15, and CH17 since they overlay cells C4,

C2, and C3 relatively. The final set of channels is shown in Figure 4.10.

4.2.2 Merging Channels

Practical experience revealed that the number of identified channels according to
the given procedure can be very large. The previous small example, the number of
identified channels is equal to 80 (see Figure 4.10). For a layout with one cell only,
there exists as many as 9 channels no matter what the cell coordinates or dimensions
are. Since the system needs to save channels data in the memory, then it tries to
reduce the number of channels as much as possible. This is done by merging adjacent
channels together.

The algorithm for merging channels is shown in Figure 4.11 and is illustrated in
the following text.

Channel data is assumed to be stored in a linked list structure where each item
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CH | min. | min. | max. { max. min. | min. | max. | max.
# 1 X | Y| X]|Y} X]Y}|X]|Y
T o o[ 1 1| 6 | 6 | 17 | 8
2 | 1 [ © 7 Tl 47| o 8 1 E)
3 |7 0 8 (B G 8 3 9
7 | 8 6 [ 1o [ 1 4| 4 8 6 9
5 | 10 | 0 | 1 | 1 B0 s 8 7 9
6 11 | o | i3 | 1 |45 | 9 8 | 10| o
7 | 13 | 0 | 14 | 1 Ifs2] 10| 8 | 12 | 9
8 | 14 [ o0 | 16 [ 1 | 12 | 8 | 13 | 9
9 | 186 0 17 1 13 8 14 9
0| 0O 1 1 5 | 14 |8 | 16 | 9
I I 7 | 5 | 6 | 8 | 17 |9
12 | 7 1 8 31 0 9 1 10
13| 8 1 10 | 3 K 1 9 4_| 10
L3 AT T O O I 9 6 [ 10
(3 I N R . [ 7_| 10
16 | 13 | 1 14 | 3 z 7 9 9 | 10
17 | 14 | 1 16 | 3 | 9 9 [ 10 | 10
18 | 16 | 1 17 | 3 % 10 | 9 [ 12 | 10
19 | 7 3 8 5 I 12 | 8 | 13 | 10
20 | 8 3 9 5| 18 |9 | 14 [ 10
21 | 9 3_| 10 | 5 [k 14 | 9 | 16 |10
22 | 10 | 3 | 11 5 I% 16 | 9 [ 17 | 10
23 [ 11 |8 13 |5 I 0 | 10 | 1 12
22 | 13 | 3 | 14 | 5 %;J 1 0 | 4 | 12
25 | 14 | 3 | 16 | © l%; 4 | 10 [ 6 | 12
26 16 | 3 | 7 [ 5 1 8 | 10 [ 7 | 12
27 | 0 | 5 | 1 [ 6 [i} 7 | 10 [ 5 [ 12
28 | 1 3 6 6 9 [ 10 [0 | 12
29 | 6 5 7 6 | 10 | 10 | 12 | 12
30 | 7 5 | 8 6 12 | 10 | 13 | 12
31 | 8 5 9 6 13_|_10 | 14 | 12
32 | 9 5 10 | 6 %l 14 | 10 | 16 | 12
33 [ 10 [ 5 | 11 | 6 i 16 | 10 | 17 [ 12
3@ | 11 | 5 | 13 | 6 :g' 0 | 12 | 1 13
3 | 13 | 6 | 14 | 6 | 1 12 | 4 | 13
36 | 14 | 5 | 16 | 6 H 81 | 4 | 12 | 6 | 13
37| 16 | 5 | 17 | 6 hi 82| 6 | 12 | 7 | 13
38| © 6 1 8 7 | 12 | 9 | i3
39 | 1 6 6 8 9 [ 12 | 10 | 13
30 | 6 6 7 8 10 | 12 | 12 | 13
a1 | 7 6 9 9 12
42| o 6 | 10| 8 13
43 | 10 | 6 | 13 | ® 14
24 | 13 | 6 | 14| 8 16
45| 14 | 6 | 16 | @

Figure 4.8: Complete list of channels identified from the layout in Example 4.1.
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——— e e

80

1 2 3 4 5 6 7

(0,0)

Figure 4.9: Graph of the layout in Example 4.1 showing final set of channels.

1 78 1011 1314 1617



CH # | MO | MiN. | max. |max.f] ..., |min | min fmax |max.
XY | X]|YE X|]Y | X|Y

1 0 0 1 1 a1 1 8 4 9

2 |1 o | 7 1 42 | 4 8 6 9

3 7 0 8 1 43 6 8 7 | 9

4 8 0 10 1 4 | 9 8 10 9

5 10 0 11 1 45 | 10 8 12 9

6 11 0 13 1 a6 _| 12 8 13 9

7 13 0 14 | 1 47 _| 13 8 14 9

8 14 | © 16 1 bl 48 | 1a | s 16 9

9 16 0 | 17 | 1 i a9 | 16 8 | 17 9

0 | © 1 1 5 50 | 0 9 1 10

11 7 1 8 3 51 i 9 4 10

12 10 1 11 3 52 | 4 9 6 10

13 13 ] 14 | 3 B 63 | 6 9 7 10

14 16 | 1 | 17 3 pf 54 7 9 9 10

15 7 3 8 5 [y 55 9 9 10 |10

16 8 3 9 5 |4 56 | 10 ] 12 | 10

17 9 3 10 | 65 W67 | 12 9 13 | 10

18 10 3 11 5 |l 58 | 13 9 14 _| 10

19 11 3 13 5 Ff 59 | 14 9 16_| 10

20 13 3 14 | 5 |4 60 | 16 9 17_| 10
21 14 3 16 5 [ e1 0 10 1 12
22 16 3 | 17 5 |1 62 1 10 4 | 12
23 0 5 1 6 il 63 | 6 10 7 12
24 1 5 6 6 I 64 7 10 9 12
25 6 | 6 | 7 6 il es | o 10 | 10 | 12
26| 7 | § 8 6 i 66 [ 12| 10 | 13 | 12
27 8 5 9 6 | 67 | 13 1 10 | 14 | 12
28 9 5 10 | 6 (68 | 14 | 10 | 16 | 12
29 10 5 11 6 4 69 | 18 10 17 12
30 11 5 13 6 1l 70 | o 12 1 13
31 13 | 6 12 | 6 [ 71 1 12 4 13
32 14 | & 16 6 Iy 72 | 4 12 6 13
38 | 16 |6 | 17 | e 473 | 6 | 12 | 7 | 13
33 0 6 1 8 il 78 | 7 12 9 13
35 6 6 | 7 | 8 ¢ 75 9 12 | 10 | 13
36 9 8 10 8 4 76 | 10 | 12 | 12 | 13
37 13 6 14 | 8 | 77 | 12 | 12 | 13 | 13

38 14 | 6 16 8 [[§f 78 | 13 | 12 | 14 | 13

39 16 6 | 17 | 8 | 79 | 14 | 12 | 16 | 13

40 0 8 1 9 ffd 8o | 18 | 12 [ 17 | 13
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Figure 4.10: Channels list of the layout in Exampl 4.1 showing final set of channels.
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Merging-Channels Algorithm

Structure channel { x1, y1, x2, y2 : integers

next : pointer to channel } CH1, Ch2;

Load channels in a linked list of the structure channel LOO);
Repeat
Flag=False;
Assign CHI1 to first channel in LOC;
While (CH]1 is not the last channel in LOC) Do
{

CH2 = CH1 -> next;

While ( CH2 exists ) Do
{

If ( CH2->x1 == CH1->x2 .and. CH2->yl = CH1->y1
.and. CH2->y2 == CH2->y2 ) Then
{

Flag = True;

CH1->x2 = CH2->x2;
Delete CH2 from LOC;
CH2 = CH1 -> next;

}
Else If ( CH2->yl = CH1->y2 .and. CH2->x1 == CH1->x1
.and. CH2->x2 == CH1->x2) Then
{
Flag=True;

CH1->y2=CH2->y2;

Delete CH2 from the list of channels;
CH2 = CH1 -> next;

}
Else

CH2 = CH2 -> next;
}
CH1 = CHI1 -> next;

}
Until Flag=False;

Figure 4.11: Merging-Channels algorithm.
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in the list has the four coordinates of a channel, in addition to a pointer that points
to the next channel in the list. First channel c1 is picked from the list of all channels
and checked if it horizontally or vertically neighbors any other channel in sequence.
Two channels (ch! and ch2) are considered horizontal neighbors if and only if chl
min.Y=ch2min.Y, and ch! max.Y=ch2max.Y, and ch! max.X=ch2min.X. If chl
min.X=ch2 min.X, and ch! max.X=ch2 max.X, and chl max.Y=ch2 min.Y, then
ch1 and ch?2 are vertical neighbors.

If the picked channel ¢! whose coordinates are (clz1, clyl, clz2, cly2) is found
to neighbor any other channel (c2), then the two channels are merged into one as

follows:

o If c1 horizontally neighbors c2, then ¢! coordinates are changed to (clz1, clyl,

c2z2, cly2).

e If c1 vertically neighbors c2, then ¢! coordinates are changed to (clzl, clz2,

clyl, c2y2).

Once c! and c2 are merged, channel c2 is deleted from the linked list of all
channels.

After checking c! with all other channels, c! is assigned to the next channel
of the linked list and the whole operation is repeated again. After scanning all
channels, if there is any merging in that iteration, then the operation is repeated
again and cl is assigned to the first channel of the list. This is so because in case
of any merging, the new merged channel might be capable to unify with previous
channels. If no merging resulted from an iteration, then the process terminates with

the new channels saved in the linked list.
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Example 4.2 For the list of 80 channels found in the previous ezample, apply
the Channels Merging algorithm given in Figure 4.11 and show the list of resulting

channels and a graph for the layout with the channels merged.
o Solution:

1. In the first iteration of the Repeat loop, channel number 1 is horizontally
merged(HM) with channels 2,3,4, 5,6, 7,8, and 9 consequently. Channel num-
ber 10 is vertically merged(VM) with channels 23, 34, 40, 50,61, and 70. Chan-
nel 11 is VM with channels 15, and 26. As a matter of fact, there exist 22
merging processes in the first Repeat loop. They are summarized in the table

of Figure 4.12 (a).

2. In the second iteration of the Repeat loop, only 3 merging operations exist.
Namely, channels number 7 and 10, 14 and 16, and 15 and 18. The number of

channels is reduced in this loop from 22 to 19 channels (see Figure 4.12 (b) ).

3. In the third iteration of the Repeat loop, no merging exist, thus Flag keeps its
False value, and the algorithm terminates. The final list of channels is shown

in Figure 4.13.

The layout with the new channels is shown in Figure 4.14.

4.3 Task II: Constructing CCG and Determining

Wires Paths

After channel identifying task, the detailed router is supposed to pick each net (a

collection of wires) and try to determine a routing plan (path) for each [2], [12].



Repea New Unified Channels RepeaI New Jnitied
Loop # Channel Numbers Loop # Channel}] Channels

# # Numbers
1 1234567809 T |
2 102334405061 70 | 2 |2
3 11 15 26 3 3
4 12 18 29 4 |4
5 1320 3137 47 5867 78 | 5 5
6 14 22 33 39 49 60 69 80 6 |6
7 |16 17 7 |7 10
8 19 30 8 [8
9 |2425 N CHE
10 |27 28 10 |11

- 11 |35 135363 73 11 (12
12 |36 44 5565 75 12 |13
13 |41 42 13 |14 16
14 |45 46 14 |15 18
15 |51 52 15 |17
16 |54 64 74 16 |19
17 |56 57 17 |20
18 |62 71 18 (21
19 |66 77 19 |22
20 |72
21 |76

()

Figure 4.12: Execution table for Example 4.2.




CH | min. | min. | max. | max.
# |1 X| Y| XY
T ] O 0 0 1
2 0 1 1 13
3 7 1 8 6
4 10 1 11 6
5 13 1 14 | 13
6 16 1 17 | 13
7 8 3 10 6
8 11 3 13 6
) 14 3 16 | 13
10 1 5 7 6
11 6 6 7 13
12 | 9 6 10 | 13
13 1 8 6 10
14 | 10 8 13 | 10
15| 7 9 9 13
16 1 10 4 13
17 | 12 | 10 | 13 | 13
16 | 4 12 6 13
19| 10 [ 12 | 12 | 13

Figure 4.13: List of channels for the layout in Example 4.2.
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1 78 1011 B 1617
(0,0)

Figure 4.14: Layout of Example 4.2 showing the resulting unified channels.
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A main objective is to minimize the total length of all wires of all nets. A wire
connects two ports of a cell or two different cells. Each port is one grid unit layer,
so the wire must connect between two different grids. In order to minimize wire
length, the router usually starts by finding the shortest path between the two grids.

If it fails, then it tries to use longer paths.

4.3.1 Construction of the Channel Connectivity Graph (CCG)

The final set of channels generated in task I is supposed to be covering all routing
area of the layout. This space is between different cells and around the boundary
cells of the layout. Two channels are said to be connected if they are neighboring
each other, or in other words, if they share a border. If the shared border is vertical
then the two channels are horizontally connected, and if it is horizontal then they
are vertically connected.

The CCG is a nondirected graph that reveals the connectivity information be-
tween channels of a layout. In CCG, channels are represented by nodes, and an arc
between two nodes indicates that corresponding channels are connected. Each arc
is labeled either by “V” or “H” to tell if the corresponding channels are vertically
or horizontally connected [2]. In our implementation, the CCG is represented as
an adjacency list structure in which all the “connections” are explicitly recorded as
pointers in a linked list [24]. Vertices or nodes of CCG are represented as records of

a linked list of the format:

Number |llp X | Up Y |urpX|urpY |CHC|CVC |NextVertex| EdgeList

Number is the channel number, followed by four fields representing the four

coordinates of the channel. CHC and CVC are channel horizontal and vertical
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capacities. NextVertex is a pointer to the next channel in the set of channels.

EdgeList is a pointer to another linked list whose records are of the format:

Label |Successor| Nezt Edge

Label tells if the two channels are vertically or horizontally connected. It is one
of the two characters “V” or “H”. Successor is a pointer to a vertex that represents
an arc between its own vertex and the one it is pointing to. NextEdge is a pointer
to next successor in the EdgeList. To better understand this adjacency structure,
an example is given in Figure 4.15 showing the adjacency structure for the given
connectivity graph.

The algorithm that creates a CCG for a set of channels is given in Figure 4.16,

and the following example illustrates the algorithm.

Example 4.3 Apply the algorithm given in Figure .16 to the following set of
channels: {(1, 0, 5, 1), (0, 1, 5, 2), (5, 0, 6, 3), (1, 2, 5, 4)}. Show resulting

adjacency graph and CCG.
e Solution:

1. The channels are graphically presented in Figure 4.17 (a). The set of channels
is loaded in an adjacency structure G and each channel CHC & CVC are
computed and entered in each vertex record. Also each vertex EdgeList is

initialized to NULL and represented graphically by a crossed box.

2. In the first iteration of the outer while loop, CH1 is assigned to channel 1,
1.e., the first vertex of G. In the first iteration of the inner while loop, CH2 is

assigned to channel 2. CH1 is found to be at the bottom of CH2 so L is set to
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(b) Adjacency structure for the graph in (a).

Figure 4.15: Example to clarify Adjacency Structure.
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Creating-CCG Algorithm

Load the set of channels (in any order) with thier coordinates in G adjacency
structure;
Compute for each channel its horizontal and vertical capacity and save it in
the channel record;
Initiate the EdgeList of each vertex of G to NULL;
CH1:=First Vertex in G;
While CH]1 exists Do
{
CH2:=CHI1->NextVertex;
While CH2 exists do
{
L:=""; Confirmed:=False;
If CH1 is to the right or left of CH2 Then
{
L:=|IH";
If CH1 and Ch2 have a common border Then
Confirmed:=True;

}
If CH1 is to the top or bottom of CH2 Then
{

LZ="V";

If CH1 and CH2 have a common border Then
Confirmed:=True;

}
If Confirmed Then

{

Append CH1 Edglist with new Edge such that:
Successor:=CH2, Label:=L, NextEdge:=NULL;

Append CH2 Edglist with new edge such that:
Successor:=CH]1, Label:=L, NextEdge:=NULL;

}
CH2:=CH2->NextVertex;
}
CH1.=CHI1->NextVertex;
}

Figure 4.16: Creating-CCG algorithm.
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“V”. They share a border so Confirmed is set to True. The EdgeList of CH1 is
appended with a record whose successor points to channel 2, Label=“V”, and
NextEdge is NULL. At the same time, CH2 EdgeList is appended with the
same record but the successor is pointing to channel 1. In the second iteration
of the inner while loop, CH2 is assigned to channel 3 which is found to be to
the right of CH1 and sharing a border with it. This time, two records labeled
with “H” are appended to CH1 and CH2 EdgeLists. The first one’s successor
points to channel 3, while the second one’s successors points to channel 1.
In the third iteration of the inner while loop, CH2 is assigned to channel 4.
CH2 is found to be on top of CH1 so Label is set to “V”. However, CH1 and
CH2 do not share any border, thus Confirmed stays False and no records are
appended to any vertex. This ends the first iteration of the outer while loop.

The resulting adjacency structure is shown in Figure 4.17 (b).

. In the second iteration of the outer while loop, CH1 is assigned to channel 2.
The inner while loop starts by assigning CH2 to channel 3. Label=“H” since
CH2 is to the right of CH1 and Confirmed is set to True since they CHI and
CH2 share a border. Two records are added to the EdgeLists of CH1 and CH2.
Then CH2 is assigned to channel 4 which is to the top of CH1. Label=“V”

and Confirmed is set to True. Another two records are added.

. Finally the third iteration of the outer while loop assigns CH1 to channel 3.
The inner while loop assigns CH2 to channel 4. CH2 is found to the left of
CH1 so Label=“H". They share a border so Confirmed=True. A record labeled
“H” is added to the end of CH1 EdgeList. Its successor points to channel 4.
Also another record labeled “H” is added to the end of CH2 EdgeList and its
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(a) Layout of the Channels.
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(b) Adjacency structure after the first iteration of
the outer While loop is completed.

Figure 4.17: Illustration for Example 4.3.
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successor points to channel 3.

5. CH1 is assigned to NULL so the outer while loop terminates and the algorithm

ends.

The resulting adjacency structure and CCG are shown in Figure 4.18 (a) and (b).

4.3.2 Determination of Wires Paths

The routing problem can be defined as follows: given a set of cells on a two-
dimensional plane and a set of pairs of points, generate the coordinates of hori-
zontal and/or vertical lines segments needed to connect every two points of a pair,
such that no horizontal segments nor vertical segments overlay any cell or another
horizontal or vertical line segment.

It is clear from the definition that every wire path on the layout must lie in the
routing area of the layout. In previous section, a list of channels which covers all
empty space in the layout (i.e., a space between a cell and its neighboring cells or
a space between cells and layout boundaries) were identified. A wire path must lay
on these channels in order to connect a pair of points.

Every point involved in a wire connection must be on the boundary of a cell,
thus it must also be on the boundary of a channel. To predict the path of a wire
connecting two points, we proceed as follows.

The system automatically finds the coordinates of each pair of points that must
be connected together according to the netlist and cells coordinates resulting from
the placement stage. Determination of wires paths procedure starts by assigning a
channel for each point, say ch, and chy; standing for start and final channel conse-

quently. Then, according to the CCG, a shortest path is found between these two
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(a) Final Adjacency Structure.

On

(b) CCG for the final adjacency structure.
Figure 4.18: Final Adjacency Structure and CCG for Example 4.3.
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assigned channels. Since the router objective is to minimize wire length, then it is
expected to use this shortest path when connecting the corresponding pair of points.

For the channels of the CCG, every channel horizontal and vertical capacities
were computed and saved in the record of the channel. When a wire segment passing
by channel ch; is vertical, then ch; vertical capacity (CVC;) is reduced by 1. On the
other hand, if the wire segment is horizontal then ch; horizontal capacity (CHC;) is

reduced by 1. The procedure adjusts these capacities starting from ch; as follows:

e For chf & chs, if the point lays on the horizontal border of any of these
channels then the corresponding channel CVC is reduced. Otherwise, the

channel CHC is reduced.

e Assign current to the first channel in the shortest path between chs and chf.

Thus, current = chf.

e If the arc between current and current — prev is labeled by “H” and the
point on chf lays on a vertical border, then reduce current.cvc. Else if the
arc is labeled by “V” and the point lays on a horizontal border, then reduce

current.chc.

e set the variable dir to “ 7.

e While current # chs, check if the arc between current and current — prev
is labeled by “V”, then reduce current — prev.cvc and if dir # “V” then
reduce current.cvc and set dir = “V”. Else, if the arc between current and
current — prev is labeled by “H”, then reduce current — prev.chc and if
dir # “H” then reduce current.chc and set dir = “H”. Assign current to

current — prev and loop until the “While” condition is false.
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o If dir = “H” and the point on chs lays on a vertical border, then reduce
chs.cvc. Else, if dir = “V” and the point lays on horizontal border of chs,

then reduce chs.che.

There exist many algorithms for finding the shortest path between a source vertex
and a destination vertex in a non-directed graph. However, for CCG application,
arcs do not have any weight to compute the length of path and decide upon the
shortest one [24]. A path length will be measured by the number of vertices on
the path. In case more than one path have the same number of nodes, another
criteria is considered and that is to select the path which has minimum number of
segments. A line segment is counted when an arc label connecting two vertices of
a path is changed from the label of the arc that was connecting the previous two
vertices. In other words, a path that has the minimum number of switching direction
is preferred. The reason for this will be explained in the following chapter.

The algorithm of the above-outlined procedure is given in Figure 4.19. The
syntax for reducing a variable by one is analogue to that in the C language (i.e.,
——). A small example consisting of three cells and three pairs of points is given

below to illustrate the procedure.

Example 4.4 Given the following pairs of points that must be connected on the
layout of Figure 4.20, [(4, 1), (8, 4)], [(4, 4), (8, 2)], [(2, 1), (2, 5)]; and the
following set of cells along with their coordinates and dimensions {C1(1, 1, 2, 5),
C2(7, 1, 5, 2), C3(1, 4, 2, 5)}, show a list of the merged channels of the layout
and create the CCG for these channels. Then use the algorithm in Figure 4.19 to
predict the paths for the wires connecting each pair of points. Show a final list of all

channels along with their new capacities values.



- Predicting-Wires-Paths Algorithm

chs = GetChannel(plx,ply);
chf = GetChannel(p2x,p2y);

If ( (p1x,ply) lays on Horizontal_Border of chs ) Then
{ chs.vw--; }

Else
{ chs.hw--; }

If ( (p2x,p2y) lays on Horizontal _Border of chf) Then
{ chf.vw--; }

Else
{ chf hw--; }

current = ShortestPath(chs,chf);

If ( current and current->prev are Vertically connected &&
(p2x,p2y) lays on Horizontal_Border of chf) Then
{ chf hw--; }
Else If ( current and current->prev are Horizontally connected &&
(p2x,p2y) lays on Vertical_Border of chf) Then

{ chf.vw--; }
dir=""
While ( current |=chs ) Do
{
If ( current and current->prev are Vertically connected ) Then
{

current->prev->vw--;
If (dir I="v') Then
{ current->vw--; }

dir="";
3

Else /* current and current->prev are Horizontally connected */
{

current->prev->hw--;
If (dir '="h') Then
{ current->hw--; }

dir ='h';
}
current = current->prev,

3

If ( dir="H' && (p1x,ply) lays on Vertical_Border of chs ) Then
{ chs.vw--; }

Else If (dir="V' && (plx,ply) lays on Horizontal_Border of chs ) Then
{ chs.hw--; }

Figure 4.19: The algorithm of Predicting-Wires-Path procedure.

99
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Figure 4.20: The layout of Example 4.4.

o Solution:

1. Identifying Channels and Merging Channels procedures are applied to the
layout. Resulting channels are graphically presented in Figure 4.21, and a list

of these channels along with their computed capacities is given in Figure 4.22.

2. Applying the Creating CCG procedure yields the non-directed graph in Figure
4.23.

3. For the first pair of points [p11(4,1), p12(8,4)], it is found that pll lies on
a vertical border of channel number 1, so ch, = ckl and chs VC is reduced,
while p12 lays on a horizontal border of channel number 4, so chy = ch4 and
chf HC is reduced. On the CCG, we find the shortest path between chf and
chs. The path has one arc only which is labeled by “V”, and since pl2 lays

on a vertical border of chf, then neither of the “If” statements before the
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Figure 4.21: Graphical representation of the channels of the layout in Example 4.4.

CH | min. | min. |max. [max. crc leve
# 1 X1 Y| XY
=1 ] 0 1 0.1 10 1 T TO
2 0 1 T 7 ] 1
3 6 1 7 7 © 1
4 9 1 10 7 5 1
5 1 3 ] 4 T 5
6 1 6 6 7 T 5 |
7 7 6 ) 7 T 2

Figure 4.22: Channel list for the layout in Example 4.4.
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Figure 4.23: Channel Connectivity Graph for the layout in Example 4.4.

“While” loop are executed. dir is set to “ ” and the “While” is entered with
current = chf. The arc between current and current — prev is labeled by
“V” and dir # “V” so both chf and chs VC’s are reduced and dir is set to
“V”. current is set to current — prev which is chs, and the algorithm exits
the “While” loop. dir = “V” and pll lays on a horizontal border of chs so
chs HC is reduced.

. For the second pair of points [p21(4,4),p22(8,2)], we see that p21 lays on a
horizontal border of channel number 5, so chs = ch5 and chs VC is reduced.
p22 lays on a vertical border of channel number 4. So chf = ch4 and chf HC
is reduced. There exist three paths on the CCG between chf and chs each of
shortest length. These paths are: [4,1,2,5], [4,1,3,5], and [4,7,3,5]. Tracing the
labels of the arcs in every path reveals that both the first and the second paths
have a change in the direction while the third path has no changes, so the third
path is chosen as the predicted path. The first arc in this path is labeled by

“H”, and since p22 lays on a vertical border of ch f, then chf VC is reduced.
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dir variable is set to “ ”, and the “While” loop is started with current = ch f
and current — prev = ch7. The first arc between chf and ch7 is labeled “H”
and dir # “H”, so both chf and ch7 HC’s are reduced. dir is set to “H”
and current = current — prev. In the second iteration of the “While” loop,
current = ch7 and current — prev = ch3. The arc in the path between ch7
and ch3 is also labeled by “H” as its predecessor arc (since dir = “H ), so
this time the HC of ck3 only is reduced. In the third iteration, current = ch3
and current — prev = ch5. The arc between them is labeled by “H” so the
HC of the chb only is reduced. current is set to current — prev = chs, so
the algorithm exits the “While” loop. dir = “H” and since p21 lays on a
horizontal border of chs, then neither of the “If” statements after the “While”

loop are true and no further reduction is done.

. For the last pair of points [p31(2,1),p82(2,5)], we see that p31 lays on a hori-
zontal border of channel number 1, so chs = ¢kl and chs VC is reduced. p32
lays on a horizontal border of channel number 6. So chf = ch6 and chf VC
is reduced. There exist two paths on the CCG between chf and chs each of
shortest length. These paths are: [6,2,1], [6,3,1]. Tracing the labels of the
arcs in every path reveals that both paths have one change in the direction so
the system chooses any one of them. Let us assume that the first path was
chosen as the predicted path. The first arc in that path is between chf and
ch2, and is labeled by “H”. However, p32 lays on a horizontal border of ch f, so
neither of the “If” statements before the “While” loop are true. The “While”
loop is entered with current = ch6 and current — prev = ch2 after dir is

set to “”. Both chf and ch2 HC’s are reduced and dir is set to “H”. In the
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C#H CHC | CVC
1 -1 6 |
2| 5 0
3| 5 1
4 3 -1

5 0 4
6 0 4
7 0 2

Figure 4.24: List of channels in Example 4.4 after applying Predicting-Wires-Paths
algorithm.
next iteration, the arc between current = ch2 and current — prev = chs is
labeled by “V”. ch2 VC is reduced and because dir # “V”, then chs VC is
also reduced. current = current — prev = chs, and the “While” loop is exit.

dir = “V” while p31 lays on a horizontal border of chs, so chs HC is reduced.

6. A final list of all channels showing resulting capacities values is given in Figure

4.24.

4.4 Task III: Routing Regions Adjustment

After all wires paths have been determined in task II, the system is now supposed
to provide the required spacing in terms of channels CHC & CVC. The new channel
table determines how much every channel CHC & CVC must be in order for each
channel to accommodate expected wires routes.

A channel whose CHC = bk is less than zero, must be expanded vertically by |A|

grid unit(s). Similarly, a channel with CVC = v where v < 0, must be expanded
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horizontally by |v| grid units. This operation of expanding channels as required by

Task II is called adjusting the layout.

4.4.1 CHCs Adjustment

If a channel ch; is found to have a negative CHC(= k) after task II, then this channel
must be expanded vertically by inserting g = |A| row(s).

Insertion of rows is done by pushing all cells above ch; upward by g grid unit(s).
Pushing a cell upward by g units is done by adding g value to the cell Y-coordinate.
Which cells must be pushed is an important issue and is carried as follows. If a cell
Y-coordinate is greater than chi(y) + chi(k) and interferes ch; VF, then the cell is
pushed and its move flag is set to true. This guarantees all cells in the VF of ch;
to be pushed up. But what about cells that are not in the VF of ch; but in the VF
of a cell ¢; that has been pushed up? Pushing ¢; could probably make it overlap
it with other cells interfering with its VF but not interfering with ch; VF. See for
example the cell ¢, in Figure 4.25. Graph (a) shows the positions of chi, cl and ¢2
before pushing ¢l while graph (b) shows their positions after pushing cell cl by 2
grid units.

As can be see in Figure 4.25 (b), pushing cl only because it interferes with chs
VF will result in an overlap between cl and ¢2. To avoid such overlapping, the
pushing procedure is done iteratively as follows. Once a cell ¢i is found to need
pushing because it interferes with chi, its new Y-coordinate is saved, its move flag is
set to true, and this cell becomes the active object for pushing. All other cells are
checked if they interfere with c¢i VF using ci original Y-coordinate value. Now any

cell interfering with ci VF is pushed-up by ¢ units, and becomes the active object
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(a) Positions before pushing-up.

l

.
|
|

%%

(b) Positions after C1 is pushed-up by
2 Grid units.

Figure 4.25: An example to illustrate the pushing operation.
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after setting its move flag to true.
By setting the move flag of each cell, the procedure avoids pushing the same
cell more than once even though it interferes with the VF of more than one active

object.

4.4.2 CVCs Adjustment

The same terminology works when a channel ch; is found to have a negative CVC(=
v) after task II. However, this time the channel must be expanded vertically by
inserting g = |v| column(s).

Insertion of columns is done by pushing all cells to the right of ck; right-ward
by g grid unit(s). Pushing a cell right-ward by ¢ units is done by adding g value to
the cell X-coordinate.

Again, which cells must be pushed is decided by checking which cells interferes
with ch; HF. If a cell does interfere with chi HF then it is pushed, its move flag is set
to true, its new X-coordinate is saved, and it becomes the active object for pushing.

The algorithm for adjusting channels is given in Figure 4.26. It illustrates how to
check mathematically if a cell interferes with an active object’s vertical or horizontal

fields.

Example 4.5 Apply the algorithm given in Figure 4.26 to adjust the channels in
the layout of example 4.4 according to the resulted channels CHC & CVC values.

Show a list of the cells with their new coordinates.

o Solution:

After cells data (i.e., X & Y coordinates, heights and widths) and channels data
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Procedure Adjust_Layout
struct CELLS { x, y, nx, ny : Integer;

h, w : Integer;
moved : Boolean;
next : Pointer to next

element in CELLS; }

struct CHANNELS { x1, y1, x2, y2 : Integer;

he, vc : Integer;
next : Pointer to next element
in CHANNELS; }

Begin
- Load Cells data in CELLS structure {nx =X, ny = y};
- Load Channels data in CHANN structure;
- Clear_Moved();
- Assign ch to first channel in CHANNEL structure;
- While (ch)
If (ch.hc < 0)
Push_Cells_UP(ch.x1, ch.yl, ch.x2, ch.y2, - ch.hc);
ch = ch.next;
- Update y coordinate for every cell from ny;
- Clear_ Moved();
- Assign ch to first channel in CHANNEL structure;
- While (ch)
If (ch.vc < 0)
Push_Cells_Right(ch.x1, ch.yl, ch.x2, ch.y2, - ch.vc);
ch = ch.next;
- Update x coordinate for every cell from nx;
END.

Figure 4.26: Adjust-Layout algorithm. Continued in Figure 4.27.
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Procedure Clear Moved()
begin
- Assign c to first cell in CELLS structure;
- While (c¢)
c.moved = False;
end;

Procedure Push_Cells Up(x1, y1, x2, y2, g)
begin
- Assign c to first cell in CELLS structure;
- While (¢)
If ( (c.moved=False) && (c.x <x2) &&
(cxtcw>x1) && (c.y>=y2))
c.moved = True;
c.ny =c.ny + g;
Push_Cells _Up(c.x, x.y, c.x+c.w, c.y+c.h, g);
C = c.next;
end;

Procedure Push_Cells_Right(x1, y1, x2, y2, g)
begin
- Assign c to first cell in CELLS structure;
- While (c¢)
If ( (c.moved=False) && (c.y <y2) &&
(c.ytch>yl) && (c.x>=x2))
c.moved = True;
cnx=c.nx-+g;
Push_Cells_Right(c.x, x.y, c.x+c.w, c.y+c.h, g);
C = c.next;
end;

Figure 4.27: Continuation of Figure 4.26.
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(i.e., X & Y coordinates and CH & CV capacities) are loaded, the variable
moved in all cells records is set to False and the algorithm starts the first
while loop. The first channel that has a negative HC is ch1, and the procedure
Push_Cells_Up is called with the following list of parameters: (0,0,10,1,1).
The last parameter is the absolute value of chl HC. This procedure will start
checking for all cells if any interferes with chl VF. It will detect that C1
interferes, so its ny coordinate is updated to become 2 and its moved variable
is set to True. Now the procedure Push_Cells_Up is called recursively with
a new list of parameters, that is: (1,1,6,3,1). The coordinates now are for
cell C1 which was pushed in the first iteration. This time the procedure
will start all over checking for all cells if any interferes with C'1 VF. It will
detect that C3 does, so C3 ny coordinate is updated and it becomes 5 and its
moved variable is set to True. Again the procedure is called recursively with
a new list of parameters (4,1,6,6,1) which stand this time for C3 coordinates.
There does not exist any cell that interferes with C3 VF, so the procedure
terminates and backup one step. Again, no other cells interfere with C'1 VF,
and the procedure backup one more step to continue checking for more cells
interfering with chl. It will detect that C2 does interfere with chl VF, so its
ny coordinate is updated to 2 its moved variable is set to True, and recursively
the procedure is called with the coordinates for C'2 as its passing parameters.
No cells interfere with C2 VF, so the procedure backup one step and continue
searching for other cells interfering chl VF. Again, it will detect that C3
interferes but since its moved variable is set to True, then no action is taken

and finally the procedure terminates. Back to the while loop, the algorithm
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CELL
s | X |mX |y |ny
1 T 11 1] 2
2 7 7 1 2
3 | 1111|415

Figure 4.28: The new coordinates for cells in Example 4.5 after applying Adjust
Layout algorithm.

will exit since only chl was found to have a negative HC.

The algorithm next steps are to copy all cells ny values to the cells y coordi-
nates, reset all cells move variable to False, and then to start the second
while loop. The first channel that has a negative VC is ch4. The procedure
Push_Cells_Right is called with the following list of parameters: (9,1,10,7,1).
The last parameter is the absolute value of ch4 VC. This procedure will start
checking for all cells if any interferes with ch4 HF. It will detect that no cell
interferes, and the procedure terminates. ch4 is the only channel with negative
VC, so the algorithm will exit the second while loop without any changes to
cells coordinates and they all will retain the same value for their move variable

which is False. A list of the cells new coordinates is shown in Figure 4.28.



Chapter 5

Detailed Routing

Detailed routing is the most time consuming stage between all stages of the process
of automatic design of VLSI layouts. The task of detailed routing (routing for
short) is to find precisely paths on the layout floor, on which conductors that carry
electrical signals are run.

The large number of nets for most designs and large number of constraints make

routing a difficult task. Moreover, routing highly depends on placement stage [2],

[8].

5.1 Maze Routing

A class of general purpose routing algorithms which assumes the layout as a grided
two-dimensional plane are named as maze routers. All ports, wires, and edges of
bounding boxes that enclose the cells are aligned on the grid. The size of grid cells
is defined such that wires belonging to different nets can be routed through adjacent

cells without violating the width and spacing rules of wire. In AutoVLSI system,
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grid size was set to (8 x 8)\ (refer to Chapter 2 for more details).

The most widely known maze routing algorithm for finding a path between two
points on a grid that has obstacles is Lee algorithm [2], [18], [23]. When trying to
route a path r for example, the obstacles are the cells, and other paths that were
found on the layout ahead to routing r.

Lee algorithm guarantees finding a path between two points if one exists. In
addition, if more than one path exists, it guarantees to pick the shortest one, which
satisfies the third objective of the system, that is minimizing total wires length. The

algorithm has three phases which are explained in the following subsection.

5.1.1 Phases of Lee Algorithm

Lee algorithm connects a pair of points at a time. It does so through the following

three phases:

Phase I: Filling

The first phase is called filling or wave propagating because grids of the layout are
filled with integers in a circular way analogous to waves resulting from dropping a
stone in a still lake. First, the pair of grid cells to be connected are labeled by S and
T. Then, a “while” loop is started with the variable i = 1 as follows. At iteration
¢, every unoccupied grid at Manhattan distance i from S is labeled by i. Then 7 is
increased by one and the algorithm loops until on the j** step one of the following

is valid:

o The grid cell T is reached; or
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o T'is not reached at step j, but there are no empty grids adjacent to the grids

filled with j —1; or

o T'is not reached and j equals M, where M is an upper bound on the layout

height and width in terms of grid cells.

If grid cell T was reached in step j during the filling phase, then there is a path
between S and T points whose length is j. However, if at step j there were no empty
grids adjacent to cells labeled with j — 1, then the required path does not exist on
the layout and thus could not be found. If j = M where M is the upper bound on
the path length while T is not reached, then again a path on the current layout does

not exist. The process of filling is illustrated in Figure 5.1.

Phase II: Retrace

The second phase of Lee algorithm is called the retrace phase. The actual shortest
path is found in this phase as follows. If grid cell labeled with T was reached in
the filling phase at step i, then surely there exists an adjacent grid whose label is
J — 1. Likewise, there will be a grid labeled with j — 2 adjacent to that labeled by
J — 1, and so on until a grid whose label is 1 which will be adjacent to grid cell S.
The path is formed from those consecutive grid cells. For the example in Figure
5.1, since the target cell T was reached in the 8 step, then there must be a grid
adjacent to T whose label is 7. Likewise, there will exist a grid whose label is 6 next
to that labeled with 7. By tracing the numbered cells in descending order from T to
S, the desired shortest path is found. The grid cells of the retraced path are shaded

in Figure 5.2.
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Lee algorithm.
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Phase III: Label Clearance

In this phase, all labeled grid cells except those used for the path just found, are
cleared for subsequent interconnections. The grid cells used for the path just found
become obstacles in the layout in addition to cells of the layout and previously found

paths.

5.1.2 Routing Layers

Routing layers is the number of conducting materials used to build the routes on the
layout. In Auto VLSIsystem, two materials are used for routing, namely: polysilicon,
and metal

The concept of layers means that a piece of one layer is electrically isolated from
a piece of another layer even if they were placed on top of each other. Thus, having
more than one layer for routing facilitates the operation to a great extent.

For AutoVLSIsystem, polysilicon material is used to build vertical routes, while
metal is used for horizontal ones. This means that horizontal and vertical routes
are electrically isolated even if they cross each other. If the same route has one
horizontal and one vertical segments that must be connected together, a polycontact

is created at their corner of intersection. Figure 5.3 illustrates the concept of layers.

5.1.3 Not Found Paths

As mentioned above in the first phase of Lee algorithm, there are two cases where a
path could not be found on the layout. The first is a result of blocking the path and
can be solved, while the second is because of an upper bound on the layout height

and width and this has no solution but to increase this upper bound [23].
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Horizontal and vertical segments
isolated from each other.

Polysilicon material <« T

/

Metal material

SN i

Polycontact
Horizontal and vertical segments

connected together.

Figure 5.3: Illustration of the two layers used for routing.
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(b)

Figure 5.4: Path blocking example solved by switching the order of nets when routed.

A path is said blocked when, at step ¢ of the filling phase, T is not reached and
there are no more adjacent grid cells to grids labeled by : — 1. There are two reasons
for path blocking. The first reason is when a previous path blocks the port of a cell
which is the start (S) or termination (T) point for another net. This is graphically
illustrated in Figure 5.4 (a). This kind of blocking is usually solved by switching
the order of the nets when routing, such that the blocked one is routed first. It can
be seen in Figure 5.4 (b), that when path B is routed ahead to path A, blocking is
solved.

The second reason for blocking a path, is a result of inadequate space. In Figure
5.5 (a), path B was blocked because path A used all the space between the two
blocks. Switching the order of routing the two paths will result in the blocking of
path A instead. The solution in such case is to increase the spacing between the

two blocks as seen in Figure 5.5 (b).
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a file named POC.DAT

(a)
Figure 5.5: Path blocking example as a result of inadequate space.

As mentioned previously, after the Logic Assignment stage, the design is presented
had to be created. This file has the coordinates in grid units of each port on every

Extracting nets of a design is done in two steps. The first step is to map these
interconnections in the JOP2.DAT file to the cells ports in POC.DAT and define the
set of points which must be connected together. And the second step, is to find the
shortest path between every set of these points. A path consists of several segments

in the form of two files: GP2.DAT which has the gate types used in the design, and
IOP2.DAT which has the interconnections between different ports of these gates.

5.2 Extracting Nets in AutoVLSI
Also, when the system library of VLSI cells was prepared,
where each segment connects between two points.

VLSI cell relative to the cell origin (0,0).
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5.2.1 Mapping Between Design Interconnections and Ports

on VLSI cells

A software named P4 receives the three files mentioned above as input and assigns
a sequential net number (a negative integer) to every port on the cells according to
the interconnections found in JOP2.DAT file. If one port exists more than once on
the boundary of a cell, then every coordinate for it is given the same net number.
Also, if two ports or more on different cells are interconnected which each other,
then all coordinates for these ports are given the same net number to indicate their
belonging to the same net. P4 saves resulted data about the nets in an output file
named N9.DAT. This last file has the coordinates of every point in every net.
Three softwares named FIR, SEC, and THI process N9.DAT file as input plus
the two resulting files from the global routing stage (PROCXY.ADJand PROCHW.DAT)
and produce an output file named SEPATHS.DAT. Every line in this file is a record
for one point belonging to a net. The record has four pieces of data: net number,
its X-coordinate of a point, its Y-coordinate, and its cell number. The point coordi-
nates are relative to the cell place in the layout. All points are sorted according to
the net number such that points related to the same net are grouped together, and

a line that has four “ — 17 numbers separates between points of two different nets.

5.2.2 Finding Shortest Paths

Minimal spanning tree technique is used to find the shortest path between a set of
points which are to be connected together.
FOU software receives SEPATHS.DAT file as input and calculates the absolute

Manhattan distance (AMD) between every point of a net and all other points which
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belong to the same net [23]. AMD is calculated between two points P; and P,

according to the following equation:

AMD = |(RX = B,X)| +|(PY - P,.Y))

This Manhattan distance is considered as an estimate for wire length between
these two points. This data is saved in a file named ABSMAN.DAT where every line
is a record of six fields: AMD value, first point order number in the list of points
of a net in SEPATHS.DAT file, second point order number, net number, first point
cell number, and second point cell number. A line with six occurrences of a negative
number (g) separates between every group of points related to the same net. The
negative number g is equal to —[the number of points for the net] — 1.

A software named KRUSK AL uses both last output files, namely SEPATHS.DAT
and ABSMAN.DAT, and finds the minimal spanning trees between the points of ev-
ery net such that one point only from every cell is connected. The algorithm used
is Kruskal algorithm which uses the computed AMD values as the weights for the
branches of a tree. The output file MST.DAT will have the final set of segments
for every path, where each segment is determined by the starting and ending points
coordinates on the layout floor. Every line in that file is a record representing a seg-
ment and consists of seven pieces of data: net number, starting point X-coordinate,
starting point Y-coordinate, ending point X-coordinate, ending point Y-coordinate,
starting point cell number, and ending point cell number. A set of segments having
the same net number constitute a route which must be represented on the layout by
conducting materials. For further details about FOU and KRUSKAL algorithms,
refer to [23].
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For simplicity, the operation of extracting nets was integrated in one batch file
called GMSTADJ, which stands for: generating minimal spanning tree for the
cells in Proczy.Adj file. When the batch file GMSTADJ is called, the five soft-
wares mentioned above (FIR, SEC, THI, FOU, and KRUSKAL) are executed
in sequence. Note that P4 software is not included and has to be executed ahead.
After completion, all temporarily files are deleted. The flow-chart of the batch file
GMSTADI is given in Figure 5.6.

5.3 Detailed Routing in AutoVLSI

5.3.1 Running the Router Software

In the previous section, it has been shown how points of a net which constitute
a path have been determined. The process of detailed routing is to find the exact
coordinates on the layout floor for the routes that connect between every pair of
points of every path. Thus for every record in MST.DAT file, a set of one or more
routes have to be created where a route can be either horizontal or vertical, and is
determined by its start and end points coordinates.

An available detailed router software which follows Lee algorithm and uses
two layers was integrated with AutoVLSI system [23]. The software was named
ROUTER. It receives three files as inputs, namely: PROCXY.ADJ, PROCHW.DAT,
and MST.DAT. Two output files are generated. COFGRID.DAT file will have the
coordinates of the routes, that is a set of points coordinates which must be connected
by horizontal and vertical conducting materials. Every set of routes is preceded by a

line of three integers. The first is a negative sequence number which shows the order




NI9.DAT

PROCXY.ADJ
PROCHW.DAT

MST.ADJ

Figure 5.6: The algorithm for GMSTADJ batch program.
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of the path segment when routed. The second integer is the net number the path
belongs to, and finally the third integer which is the number of routes representing
that path segment.

The second output file NFOUND.DAT generated by ROUTER software will
be empty unless at least one of the path segments could not be routed. For every
non-routed segment, a record will be found in that file showing the net number that
the segment belongs to, the X- and Y-coordinates of the start and end points of
that segment, and finally the cell numbers of the start and the end points of the
segment are written. Also the same data will be echoed to the computer monitor

while running the software ROUTER.

5.3.2 Non-Routed Segments

If after detailed routing some of the segments were not routed and the output file
NFOUND.DAT was not empty, then some segments were blocked,

As mentioned earlier, there are two reasons for blocking. These can be solved
either by reordering the segments and re-routing, or by pushing some cells to resolve
a congested area. In AutoVLSI system, these problems are automatically solved as

follows.

Reordering Segments for Routing

If the non-routed segment was not the first record in MST.DAT file, then presenting
it at first to the detailed router will most probably make it routable while not
affecting other segments. This is achieved by the REROUTE software. It reads
the segments in NFOUND.DAT file and creates a new MST.DAT file such that they
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are placed at the beginning of the list of segments.

ROUTER software has to be executed again after REROUTE to get the new
coordinates of the routes. Also NFOUND.DAT file is checked again to see if different
segments could not be routed at this iteration.

REROUTE software can be used several times to solve different segments block-
ing each other. However, if one of the following two conditions is true, then reorder-
ing will not be effective any more. The first condition is when the first segment in
MST.DAT file is not routed. And the second condition is when the same pattern of
one or more segments is appearing in NFOUND.DAT file during several iterations
of the process.

In case any of the above two conditions exists, then blocking is a result of con-
gested area in the layout and is solved by pushing cells as explained in the next

sub-section.

Pushing Cells

Global routing stage function was to predict the place and amount of space needed
for the detailed router to route segments of all paths. However, in many cases, the
detailed router will not pick the same paths predicted and the layout will have some
congested area.

This congestion can be solved by increasing the space around one or more of the
cells which the non-routed segment is starting from or terminating at. This is done
by pushing a cell upward and rightward by some grid units.

To help the user determine graphically where the congestion is on the layout, a

software tool named SRPLOTNF will show a symbolic plot of the cells and the
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routed segments. It will color the cells participating in a non-routed segment by
red. Looking at the layout can tell where the congestion is and the user can pick
one or more cells for the pushing operation.

PUSHCELL software receives two parameters. The first is the number of the
pushed cell, and the second is the number of grid units that the cell must be pushed in
both directions: upward and rightward. Pushing a cell is done exactly as expanding
a channel vertically and horizontally. This is explained in Section 5.4.

Cell pushing operation will change the X- and Y-coordinates of the pushed cell
and every cell in its horizontal or vertical fields. This means that routes coordinates
are not valid any more, so the system must branch back to the step of generating
the minimal spanning tree, that is calling the batch file GMSTADJ.

To explain the detailed routing stage more, the flow-chart is given in Figure 5.7.

5.4 Building the Layout

After detailed routing stage is completed, the VLSI layout created is described in
four ASCII files. The first file is GP2.DAT which has the cells types. The second
and third files are PROCXY.ADJ and PROCHW.DAT which have the X- and Y-
coordinates, and the dimensions (i.e., width and height) for every cell in the layout
floor. The fourth file COFGRID.DAT has the coordinates for the start and end
points of every route in the layout floor.

AutoVLSI system extracts the data in these four files and creates three files in
MAGIC format. The first file has the cells only placed according to their X- and
Y-coordinates, while the second file has the routes. Vertical routes are built from

polysilicon material while horizontal ones are built from metal material. When there
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Figure 5.7: The Flow-Chart of the Detailed Routing stage in AutoVLSI system.
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is a change from a horizontal to vertical route or vice versa in the same path segment,
a polycontact is built to produce the electrical connectivity between the two routes.

Finally, the two files previously created are combined together such that the two
layouts are overlaid on top of each other origin to origin. The resulting layout is

saved in a third file.

5.4.1 Creating MAGIC Cells File

A software module called MAGADJ receives the three files: GP2.DAT, PROCXY.ADJ,
and PROCHW.DAT as inputs and checks for every type found in GP2. DAT file that
there exists a corresponding file with the same name and MAG extension available

in a sub-directory called MAG. This is to insure that all MAGIC VLSI cells cor-
responding to gates of the design are available. Then according to the data in
both PROCXY.DAT and PROCHW.DAT files, a MAGIC file called CELLS.MAG

is created and saved in MAG sub-directory.

Cells X- and Y-coordinates created in the MAGICfile are given to A units rather
than grid units. If a cell C has z and y coordinates in PROCXY.DAT, then its new
coordinates in CELLS.MAG file are going to be (z x 8) + 2 and (y x 8) + 2.

CELLS.MAQG file refers to the MAGIC VLSI cells files available in the same
directory by names. Thus, these files must not be deleted or named differently even

after the MAGADJ software is executed.

5.4.2 Creating MAGIC Routes File

The data available in COFGRID.DAT file are the coordinates of the grids where a

route starts and ends. These coordinates form either a horizontal or vertical line.
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However, according to VLSI design rules, a route on the layout floor must be a
rectangle whose width is 4.

The RB (routes builder) software reads in the coordinates in COFGRID.DAT
file, transfers the grid coordinates to A coordinates as done with the cells coordinates,
and generates for every route a rectangle of width 4). If the route is vertical, then
it is saved in the MAGIC output file as polysilicon material. On the other hand, if
the route is horizontal, then it is saved as metal material.

The complete set of routes for one path segment is processed in one iteration.
In case there is more than one route for a path, then after the second route is
built, a polycontact at the shared grid between the two routes is built. Without this
polycontact, the two routes would not be electrically connected since they are made
of different layers. A new polycontact is built for every consecutive route in the set.

The data of vertical (polysilicon) and horizontal (metal) routes, and polycontacts
aresaved in a MAGICoutput file named ROUTES.MAG in the MAG sub-directory.
Also another output file named ROUTES.PLOis created in the main directory. This
file is used by a supported tool called RPLOT to plot the cells and the routes of

the layout on the monitor.

5.4.3 Combining the Cells and the Routes Files

Running the last software COMBINE, generates the final output file CHIP.MAG
in the MAG sub-directory. Its function is to graphically overlay CELLS.MAG and
ROUTES.MAG files on top of each other (origin to origin) to form the VLSI layout
of the digital design described by GP2.DAT and IOP2.DAT.

The COMBINE software refers to both CELLS.MAG and ROUTES.MAG files
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by names. Thus, they must be kept in MAG directory with these specific names.

5.5 Correctness & Simulation of the Layout

Through all stages of AutoVLSI system, VLSI design rules have been taken care
of very carefully. Thus, generated layouts are correct by construction. However,
functionality of the layout is related to the design initially given and to some time-
constraints. It can not be guaranteed until the VLSI layout is simulated.

MAGIC is a sophisticated layout editor program which has a built-in simulator
called IRSIM. MAGIC can be used to view the layout, to extract it into different

formats (such as CIF format), to simulate the layout, and to plot it [1], [3], [4].



Chapter 6

Conclusion & Future Work

In this work, an extensive survey of different algorithms related to the tasks of the
physical design problem of VLSI layouts was conducted. A set of selected algorithms
was implemented to develop a system which automatically generates a VLSI general-
cell layout for any digital system described in UAHPL. The developed system was
named AutoVLSI and consists of four stages: logic assignment stage, placement
stage, global routing stage, and detailed routing stage.

The system primary objective was to reduce turn-around time, which is the
total execution time starting from a UAHPL code, until a VLSI layout is generated.
Other objectives were to minimize total area of the layout and total wire length.
The results for some digital circuits along with other statistical data are shown in
Figure 6.1.

Turn-around time is given in minuets, while layout area is in A2. However, to
evaluate the layout area according to placement and routing stages, space utilization

(SU) ratio is computed as follows:
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SPACE TURN-

{cmeurr #of | #of # of #of POLY- | CELLS | ROUTES | LAYOUT uTiuza- | ARoUND
CELLS | NETS | ROUTES | CONTACTS | AREA AREA AREA

TION TIME
EX30 32 | 42 | 151 109 3,171 1,556 | 8,526 | 55% | 0:00:55
EX33-1 | 35 | 52 ( 193 141 3,345| 2,040 | 8,268 | 65% | 0:03:36
EX33 51 | 68 | 272 204 3,633 2,823 | 14,883 | 43% | 0:08:17
EX34 119 | 176 | 717 541  [11,712] 10,978 | 52,559 | 43% | 0:30:40

Figure 6.1: Statisical data as a result of running Auto VLSI system on four different
examples.

SU

_ Cells Area + Routes Area

Layout Area

x 100

The larger space utilization ratio is, the more compact is the layout. In other

words, large SU ratio means that less space of the layout is wasted.

6.1 Layout Compaction

Compaction is best defined by moving cells close to each other as most as possible

in order to reduce laycut area and thus increase space utilization. It is a common

practice to try compacting a VLSI layout after it is completed. Layouts generated

by AutoVLSI system can be sometimes compacted if an extra space was proposed

in the global routing stage.

Global routing stage is not a hundred percent accurate procedure. It might

Push cells up-ward or right-ward —to offer wiring space~ more than required by
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the detailed router since actual wire paths are not yet determined. After a general-
cell VLSI layout has been created by AutoVLSI system and has been simulated,
automatic compaction availablein Magic system can be applied using the command
“PLOW" [2], [3]. Another method, is to manually edit the cells locations X and Y
coordinates in the file PROCXY.ADJ and modify any cell coordinates in order to
compact the layout. However, if manual compaction is applied, then all steps of the
detailed routing stage have to be repeated again to automatically fix routes paths

according to the changes made to the layout.

6.2 Future Work

The following points raise some issues where future problems and solutions can be

investigated:

o The system can be expanded to accept UAHPL modules having some combi-

national logic units (CLUs ).

® A user graphical interface module can be integrated with AutoVLSI system to

facilitate running its components and organizing circuit file structure.

o Channels merging sub-task should follow a more precise algorithm according
to the design netlist. netlists. Current algorithm does merging broadly to
channels neighboring each other and sometimes this creates a horizontal wide
channel or a vertical long channel. When global routing predicts that a wire
is to pass through one of these channels, it will assume that the wire will
consume a complete (horizontal/vertical) track of the channel even though

the wire might pass only in a small section of a track leaving other sections for
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other wires. This means that in many cases, because every wire is assumed to
consume a complete track, routing region adjustment task is over-expanding

channels and thus increasing layout area and reducing space utilization ratio.

Timing constraints can be added to other constraints of the system placement

stage. This will insure generating VLSI layouts with no timing violation.




Appendix A

Summary of AutoVLSI System

Components.

In this appendix, a brief description of every software used in AutoVLSI system is
given. The name of every software is mentioned and followed by a list of parameters
if it requires any. A parameter is proceeded by a slash (/) in the text, but when
running the software, this slash should be removed. If a parameter is inclosed
between brackets ([]), then it means that it is an optional parameter. Then an
explanation for the name of the software is given when applicable.

After the software name, Input(s) record shows what files should be available
when running the software, while Output(s) record shows what files will be created

by the software. Then the software function is described.
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A.1 Main Software Modules

e p4

Input(s): GP2.DAT - IOP2.DAT - POC.DAT

Output(s): N9.DAT

The output is a file that has each cell followed by the points on each cell were
each one of these points has an 1/0 link in JOP2.DAT file. Each point is given a
net number. If two points belong to the same I/O link, then both will be given the
same number. The coordinates of these points are with reference to zero,zero (i.e.,

as if assuming that each cell will be placed at the origin of the layout).
o GNETS (Generate Nets)

Input(s): N9.DAT

Output(s): NETS.DAT

The output file has each net number preceding points, followed by cell numbers
that has this net number as one of its entries. In another words, each net and its
relating cells. This is needed for the next stage (Linear Ordering of Cells) where
it is required to know what cells are related to each net rather than what nets are

included in each cell.
e LOC (Linear Order Cells)

Input(s): GP2.DAT - NETS.DAT
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Output(s): CELLS.LOC

The program does linear ordering for these nets in the input file according to
number of cells related to each net. First, it linearly orders input cells (type 4018)
alone because they are required to come in the beginning of the ordered list. At the
same time, the program removes output cells (type 4013) because we would like to
make sure they come at the end of the ordered list. After other cells than inputs or

outputs are ordered, output cells are ordered and attached to the ordered list.
® CG /n (Cluster Growth)

Input(s): GP2.DAT - AGHW.DAT - CELLS.LOC

Output(s): PROCXY.LAY - PROCHW.DAT

This program is to give each cell an z and y coordinates to form the layout.
It receives one parameter that determines the maximum width of the layout to be
generated. Proczy.Lay file will have one cell at each row in the following format:
cell#, cell X coordinate, and cell Y coordinate. Prochw.Dat file will have one cell at

each row in the following format: cell#, cell height, and cell width.
¢ GMSTLAY (Generate Minimai Spanning Tree)

Input(s): N9.DAT - PROCXY.LAY - PROCHW.DAT

Output(s): MST.DAT

The minimal spanning tree is needed to know the shortest path for each net in
the layout. Nets generated at this sage will be used later by the global router to
determine the minimum spacing (horizontal and vertical) needed between each cell

to allow the presence of connection material paths representing these nets.

e CCHANS (Catch Channels “Identify Channels)
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Input(s): PROCXY.LAY - PROCHW.DAT

Output(s): CHANS.CCH

Catching channels (Channels Identification) is the first step toward global routing
of nets. The output of this software is a file containing one channel in each row in
the following format: ch.#, ch.ll.X, ch.l.Y, ch.ur.X, ch.ur.Y, ch.hw, and ch.vw. (ch
= channel, Il = lower left point, ur = upper right point, hw = horizontal weight, vw
= vertical weight).

A weight of a channel is the number of tracks the channel contains. A track is

the minimum space area needed for a connection material path.
¢ UNIFYCHS (Unify Channels "Merge Channels)

Input(s): CHANN.CCH

Output(s): CHANN.UNI

Channels identified in the previous stage could be neighbors horizontally or ver-
tically. These neighbored channels are unified (merged) together to reduce total

number of channels used in the global routing stage.
o GR (Global Router)

Input(s): PROCXY.LAY - PROCHW.DAT - MST.DAT - CHANN.UNI

Output(s): CHANN.GR

The program starts by reading the unified channels file and creates a non di-
rected graph whose nodes represent records of a channel and whose arcs represent
adjacency between two nodes. Each arc has a label ‘V’ or ‘H’ telling that its relative
nodes (channels) are either vertically or horizontally adjacent. The global router

picks each net in mst.dat file which consists of two points (starting point and end
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point) and assigns a graph node (channel) to each one of these points then finds the
shortest path between the two assigned nodes. Starting from the first node in the
shortest path, the horizontal/vertical weight of the channel represented by that node

is reduced accordingly to reserve a track in this channel for the net being considered.

e ADJL (Adjust Layout)

Input(s): PROCXY.LAY - PROCHW.DAT - CHANN.GR

Output(s): PROCXY.ADJ |

In this stage, channels are read from chann.gr file and processed according to
their vertical and/or horizontal weights. If a horizontal weight of a channel is neg-
ative then it means that this channel height has to increase, so each cell falling in
the vertical field of the channel is pushed up by n units, where n = —(the horizontal
weight of the channel). The same thing goes for the vertical weight. Any cell falling
in the horizontal field of a channel with a negative vertical weight has to be pushed
right in order to increase the channel width. The pushing operation is achieved
recursively. By recursively we mean that if C1 is pushed then every cell falling in

the VF of C1 is also pushed.
e GMSTADJ (Generate Minimal Spanning Tree)

Input(s): N9.DAT - PROCHW.DAT - PROCXY.ADJ
Output(s): MST.DAT

In this stage, nets are generated for the router after cells have taken their final

locations.

¢ ROUTER (Detailed Router)
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Input(s): PROCXY.ADJ - PROCHW.DAT - MST.ORD

Output(s): NFOUND.DAT - COFGRID1.DAT

The detailed router job is to pick each net segment in the input file MST.DAT
and tries to route it in the layout between cells connecting the two end points of this
segment. The routing is done such that the total length of the segment is minimal.
When it stops, NFOUND.DAT file will have these nets which the router was not able
to route. COFGRIDI.DAT file will have sequence of points in each line representing
the corners of a routed net path. The first and second points will form the first
segment of a net, then the second and third points form the second segment, and so

on until that last point in the sequence which forms the net end point.

e RB (Routes Builder)

Input(s): COFGRIDI1.DAT

Output(s): ROUTES.MAG - ROUTES.PLO

This program builds routes from the specified connection material. It reads in the
sequence of points in one line of the input file and generates a rectangle from every
two consecutive points which form a segment. In this system, polysilicon is used for
vertical segments of a net, and metall is used for horizontal segments. The rectangle
width for segments is a value saved previously in RB software. Whenever there is
a switch of material for the same net, a polycontact is inserted. ROUTES.MAG
output file is a Magic format file that holds routes of the layout. ROUTES.PLO
output file is used by a utility named RPLOT to plot the layout and the routed

segments.

e MAGLAYOUT (Magic Layout)
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Input(s): GP2.DAT - PROCXY.ADJ - PROCHW.DAT - CELLS.ORD

Output(s): CELLS.MAG

Magic layout software will generate a Magic format file containing all cells in
their corresponding coordinates according to PROCXY.ADJ file. Each cell is re-

placed by its VLSI mask available in the system library in Magic format.
e COMBINE (Combine)

Input(s): CELLS.MAG - ROUTES.MAG
Output(s): CHIP.MAG
This software graphically overlaps the two input files to generate the complete

VLSI layout in Magic format.

A.2 Utility Software Modules

e AREA (Layout area)

Input(s): PROCXY.LAY - PROCHW.DAT
This software displays statistical data about layout height, width, and area; cells
area; and space area, and space utilization ratio. The layout is read from the two

input files.
e PAREA /fn (Layout Area)

Input(s): PROCXY. fn - PROCHW.DAT

fn: is a valid extension for a PROCXY file holding cells X,Y coordinates.

Same utility as AREA but the layout is read from a file PROCXY of the passed
parameter extension and PROCHW.DAT.
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e CHAREA (Layout & Channels Area)

Input(s): PROCXY.LAY - PROCHW.DAT - CHANN.CCH
Same utility as AREA plus displaying channels area. When channels area and
space area are equal, it means that catching channels software (CCHANS) is cov-

ering all space area in the layout. The layout is read from the first two input files,

while the channels structure is read from CCHANN.CCH file.
* PCHAREA /fn (Layout & Channels Area)

Input(s): PROCXY.LAY - PROCHW.DAT - CHANN.fn

fn: is a valid extension for a CHANN file holding channels structure of
the layout.

Same as CHAREA software but this time the channels structure is read from

a file CCHANN of the passed parameter extension.
e PCPV /fn (Check Placement Violation)

Input(s): PROCXY.fn - PROCHW.DAT

Output(s): CXYXY.fn

fn: is a valid extension for a PROCXY file holding cells X,Y coordinates.

This utility is to check if any two cells overlay each other as a result of running
CG or ADJL programs. The layout is read from a file PROCXY of the passed
parameter extension and PROCHW.DAT file. If any cell overlays any other cell, then
both cells numbers are given in a2 message. The output file has the same extension
of the passed parameter. It holds extended cells information in the following format:
C#, CILX, CILY, C.ur.X, and C.ur.Y. (C = cell, Il = lower left point, ur = upper

right point).
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e PLOT (Plot Layout & Optionally Channels)

Input(s): PROCXY.LAY - PROCHW.DAT - [CHANN.CCH]

This is a graphics utility that shows a symbolic plot of the layout read from the
first two input files. If a question for plotting the channels structure is answered by
yes, and the input file CHANN.CCH is available then the utility will plot channels

in different color than cells in the layout.
e PPLOT /fnl [/fn2] (Plot Layout & Optionally Channels)

Input(s): PROCXY. fnl - PROCHW.DAT - [CHANN. fn2]
fn1: is a valid extension for a PROCXY file holding cells X— and Y-

coordinates.

fn2: is a valid extension for a CHANN file holding channels of the

layout.
Same as PLOT utility but the layout is read from a file PROCXY of the first
passed parameter extension and PROCHW.DAT. Also channel structure (if to be

plotted) will be read from a file CHANN of the second passed parameter extension.
¢ RPLOT (Plot Layout and Routes)

Inputs: PROCXY.ADJ - PROCHW.DAT - ROUTES.PLO
Same as PLOT utility but layout is read from the input filess PROCXY.ADJ
and PROCHW.DAT plus that routes are read from the input file ROUTES.PLO

and plotted.




Appendix B

Flow-chart of AutoVLSI System.
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