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Chapter 1

Introduction

1.1 Overview

Very large scale integration (V'LSI) is a design technology that allows the implemen-
tation of large circuits comprising millions of transistors on a single silicon chip. The
design of complex integrated circuits (ICs) would not have been possible without the
help of computers. Computer-aided-design (CAD) helps in automating the process
of VLSI design. The automation achieved in IC design is attributed to extensive
rescarch work aimed at development of sophisticated and efficient algorithms. De-
signing an IC chip involves specifving the logical and physical characteristics of a
large number of functional sub-systems. Each sub-system performs a specific func-
tion. For each sub-system. the designer must develop the associated circuitry which

takes into consideration the characteristics of the particular technology and the
2 O
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physical realization of the circuitry for a specific manufacturing process. This de-
sign process must ensure that the chip performs the desired function while satisfving
all constraints on performance. power, area and testability etc.

The process of IC design has been divided into various phases so as to reduce
its complexity (Figure 4.8). The IC design process is composed of three closely
related phases. The first phase involves the functional design. where the behavioral
and performance requirements of the syvstem are specified. In the second phase. the
relation between various logical units is defined to .ealize the behavior described
during the functional design phase. During the lat phase called physical design.
the design is mapped ouco rhe semiconductor sidrface ny determining the precise
geometry and position of each constituent unit and the interconnection wires. The
various physical design steps are partitioning. floorplanning. placement and routing.
After physical design. the design data is converted into a format such as Caltech
Intermediate Form (CIF) [1]. and submitted to a foundry for the fabrication of the
corresponding IC chip.

The physical layout of a circuit greatly influences area. speed. and reliability of
the IC chip. For complex VLSI circuits. a structured design technique is used which
allows hierarchical decomposition of a circuit. Floorplanning is an essential design
step when a hierarchical/building block design method is used. In a hierarchical
design. chip area is partitioned into several large blocks. and each block is recursively

partitioned into smaller sub-blocks. until each block contains a single circuit module.
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Figure 1.1: Flowchart illustrating phases of IC design process.
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Digital System

Data Pan I: Coatrol Pant
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N p

Registers ALU ROM i Adder Multiplier

Figure 1.2: Hierarchical representation of a digital system.

The hierarchical reuresentation of a digital system is shown in Figure 1.2 and its

floorplan in Figuiv 1.3.
When a hicrerchical building-block design methodvlogy is used for physica! de-

sign. the sequence of tasks that need to be performed from design specification to

layout consists of the following steps:
o defining the layout hierarchy,
¢ estimating the overall required area.

e determining the aspect ratios for each module.

assignment of pin and pad locations and finally.

placement and routing.

Floorplanning is closely related to placement and can be seen as @ feasibility study

of the lavout. Sometimes. it is referred to as topologica! layout [2]. During the pro-



ROM Multiplier | Adder

Registers ALU

Figure 1.3: A possible fioorplan of the circuit in Figure 1.2

cess f placement. shape and pin positions on the periphery of circuit components
are iixed. whereas in floorplanning these have some specified flexibility. The flexi-
ity in the shape of the component represents the designer’s frecdom to select one
among several possible implementations of the circuit components. The designer has
additional freedom in terms of chip and component geometries (block orientations.
shapes, and may be sizes).

This added flexibility must be captured by the floorpian model. The aspects that
need to be modeled should inciude the components. the interconnection. the flexible
interfaces (blocks and chip). the chip carrier (lavout surface). any designer stated
constraints. and the objectives to be optimized. In this thesis. we are concerned

with the problem of floorplanning for general cell lavout. In the next section. a

formal definition of floorplanning is given.



1.2 Problem Definition

A formal description of the floorplanning problem adopted from the work reported
in [3. 4] is as follows.

Given:
(1) a set S of n rectangular modules S = {1.2.---.i.---.n}:

(2) S; and S,. a partition of S. where S; and S, are the set of the modules with

fixed and free orientation respectively:

(3) an interconnection matrix Cpxn = [ci]. 1 < i.j £ n. where ¢;; indicates the

connectivity between modules 7 and j:

(4) alist of n triplets (Aj. 7y s1). -+ {(Ayo i 8i). - {Ap. 7a. Sn). where A, is the area
of block i (i.e.. A; = w; x h;. with width w; and height /; of block /). r; and s;
are lower and upper bound constraints on the shape of block ¢ (r; # s, if the

*

block is flexible. and r; = s; if the block is rigid}: and.

(5) two additional positive numbers p and ¢ (p < ¢;. which are lower and upper

bound constraints on the shape of the rectangle enveloping the n blocks.

The required output is a feasible floorplan solution. i.e.. an enveloping rectangle R
subdivided by horizontal and vertical line segments into n nonoverlapping rectangles

labeled 1.2.---.i.--- . n. such that the following constraints are satisfied.



(1) u; x hy =4;.1<i<n:

2) r; < ;—'} < s; for all modules i with fixed orientation (7 is an element of Sy ):

(3) s <

Bl
IN

sior + <

Bl

<

ol B

for all modules { with free orientation (7 1s an

n

element of S5);

(4) x; > wy and y; > h;, 1 < i < n, where x; and y. are the dimensions of basic

rectangle i, (every rectangle 7 is large enough to accommodate module 7):

(3) p £ ‘i"- < ¢, where H and V" are the height and wid:h of the enveloping

rectangle R.

In addition to the above constraints, the objectiveis} "¢ be achieved is(are) ex-
pressed in the form of a cost function. The cost function usually. consists of one or

several of the following objectives {2]:

area of the bounding rectangle,

overall wirelength.

timing performance. and

routability.

As the yield of IC production is directly related to the area of the IC chip [1]. it
is highly desirable to mirimize the z.1ca of the floorpian bounding rectangle. The

overall wirelength is a measure of the routing area whici: stould be minimized. The
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speed performance of a circuit. however. is determined from the delay along its
longest path. By minimizing the delay along the longest path. speed performance
of the circuit can be improved. A solution is acceptable only when it is completely
routable. Thus. routability should be maximized. Generally. a weight is assigned to
each of the objectives and a weighted sum of two or several of these is considered
as a cost function.

A feasible floorplan optimizing the desired cost functior is an optimum fioorplan.
For example. if the cost function is the area of Ii. then: an optimum feasible solution

is a floorplan with the minimum area [2].

1.3 General Cell Floorpianner

In this thesis. a floorplanner has been implemented for general-cell V'LSI layouts.
The floorplanning problem is solved in two main steps. In the first step. we adopt
a simpler floorplan model which has the following two restrictions: {a} Solutions
are restricted to slicing floorplans, and (b) all blocks are rigid but can have free
orientations. The cost function used is a weighted sum of overall area (functional +
routing) and timing performance. The floorplan problem of the first step is solved
using the genetic algorithm [5. 6]. The second step is a fioorplan refinement phase
where blocks are allowed to have flexible shapes, and the fioorplan solutions are no

longer restricted to ! _ing structures. The main aim of the second phase dezcribed
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Figure 1.4: Obtaining a slicing floorplan through repeated dissection: In ta! to

(e), each cut shown in bold line dissects the previous rectangle into two rectangles:
(f) binary tree representation.
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in [7]. is to minimize the dead space by modifving the aspect ratios of the individual
modules and compaction of the bounding box. thus. reducing the overall area of the
bounding rectangle. In this step. the relative positions of the modules are kept intact
and the non-overlapping feature of floorplan solution produced by the first step is
maintained. The novelty of this work lies in the use of a simpler representation
during the first step to solve a difficult problem. and using a simpler technique
during the second step to refine the solution while easing the restrictions of the first
step.

Genetic ] sorithm [5] has been emploved as an optimization and search mecha-
nism due o everal reasons. Firstiv. it is robust in thart it consistently st -ceeds in
locating .. desirable solution from any random initial set of solutions. Secondly. it
works on a set of solutions allowing a parallel search of the solution space. Finally.
it is verv convenient for problems with conflicting objectives such as floorplanning.
However genetic algorithm is CPU time intensive and has a large memory require-
ment. This problem is alleviated by choosing a suitable solution encoding. and
adopting a simple model of the floorplanning problem.

A floorplan with a slicing structure is called a slicing floorplan. Otherwise. it
is called a non-slicing floorplan. For example, the floorplan in Figure 1.4(e) is a
slicing floorplan. whereas those in Figure 1.5 are non-slicing floorplans. They are
called wheels. A wheel is the smallest non-slicing floorplan. A slicing structure

can be modeled by a binary tree called a slicing tree. The slicing tree consists of n
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(a) (b)

Figure 1.5: Nonslicing floorplans (wheels): (a) clock-wise: (b} anticlock-wise.

leaves and n — 1 nodes. Each node of the tree represents a vertical or horizontal cut

_ line (operator) and each leaf denotes a basic rectangle (operand). The restrictio-.

imzosed during the process of bisection is that each cut fhorizontal or verti...:
must completely bisect one of the rectangles obtained from the previous cut ..to
two rectangles. The steps of cutting the rectangle are depicted in Figure 1.4 (a)
to (e) where the bold cut lines represent the most recent cut. A floorplan having
such a characteristic is said to have slicing structure. When a slicing tree contains
no operator such that the operator and its right son are the same. the slicing tree
is called skewed else it is called non-skewed. The string obtained by a post-order
traversal of the slicing tree is a Polish ezpression. where the operators (nodes of
tree) are the horizontal or vertical cut lines and the operands (leaves of tree} are the
basic rectangles (modules). For a floorplan of n modules. the length of the Polish
expression is 2-n—1 (with n operands and n—1 operators). Two possible slicing trees

for the floorplan of Figure 1.4(e) are shown in Figures 1.6ia) and (b). This solution
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representation was proposed by Wong and Liu [4]. It is important to note that
there exists a one-to-one correspondence between the set of slicing trees and the set
of Polish expressions. A Polish expression corresponding to a skewed slicing tree is
called normalized and the one for a non-skewed slicing tree is called non-normalized
( see Figure 1.6). The horizontal and vertical cuts denoted by letters “H™ and "\
respectively. act on rectangular sub-floorplans. The left (right) operand of “H" is the
sub-floorplan placed below (above) the horizontal cut line. The left {right: operand
of “\™ is the sub-floorplan placed to the left (right) of the vertical cur line.

The slicing tree is used to determine the area of the floorplan lay »1t. location of
each moduie. and the estimated wirelength etc. A subsequent mupring is required

to transform the abstract tree representation into the physical layout.
\Y
/\ /\ /\ \\

1

/\ /\
/\ /\ /\ /\

{4 6 74 5
21H67V45VH3HYV 21H67V45V3IHHYV
(a) (b)

Figure 1.6: For floorplan in Figure 1.4(e): (a) skewed slicing tree and normalized
Polish expression: (b) non-skewed slicing tree and non-normalized Polish expression.
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1.4 Motivation for Timing Influenced Design

Until recently, the size of the bounding box (comprising functiona! area and routing
area) was a widely used measure of the floorplan quality. However. due to recent
advances in VLSI technology. the transistor size has been decreasing and its switch-
ing speed increasing. In the last two decades, the scaling has been so drastic that
there has been a tremendous increase in the importance of interconnect deiays with
respect to the overall speed performance of the circuit. Hence physical design stages
such as placement, routing etc.. are made sensitive to timing.

Optimized for timing, a layout system can permit as much as 20% increase in its
speed performance without any changes to the logic or cell design. In this work. we
present the design of a timing influenced floorplanner. There are two main reasons
that motivate the design of a timing influenced floorplanner. Firstly. it is impor-
tant to note that in the last ten vears, all stages of physical design subsequent to
floorplanning such as placement and rcuting have been made sensitive to timing
(8, 9. 10. 11]. One obvious conclusion is that if floorplanning stage is not made
sensitive to timing. the previous estimates of arca. shapes. positions of pins on mod-
ules etc.. will be of no use in the later stages. Therefore to maintain the vertical
consistency. it is mandatory to incorporate timing information during the floorplan-
ning stage. Secondly, a timing influenced floorplanner gives an estimation of the

maximum speed performance of the circuit. This information can be used to tune
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the circuit early enough in the design process.

1.5 Thesis Organization

Although, a number of strategies have been proposed and successfully applied to
solve the floorplanning problem. very little attention has been paid to make floor-
planning timing-driven. This thesis is the first attempt to use genetic algorithm for
timing-influenced floorplanning of VLSI layouts. It accomplishes implementation
of a program called. “Genetically implemented Floorplanner for Timing (GIFT)".
Experiments have been carried out on practical \'LSI circuits to validate the per-
formance of GIFT.

In Chapter 2, a survey of the reported work is presented. The general floorplan-
ning techniques are described briefly and the widely used methods are discussed and
compared. The previous related work on timing driven design is reviewed.

In Chapter 3. genetic algorithm is described. Various terms that are used in
biological sciences are defined in the floorplanning context. The adaptation of ge-
netic algorithm for floorplanning problem is discussed. The effectiveness of genetic
operators described is illustrated. Various aspects of this technique are discussed in
detail.

In Chapter 4. the core of this thesis is presented. Each of the objectives consid-

ered in thLis work is described and its computation is illustrated with examples. The
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implementation details of GIFT are given. The experimental results arc presented

and discussed.

Chapter 5 presents a summary of the thesis and describes some future extensions

to this work.

1.6 Conclusion

In this chapter. a brief introduction of the V'LSI design process and motivation be-
hind this work iz given. A formal definition of the floorplanning problem is presented.
An overview of the general-cell floorplanner is described. The reason for including

timing obj::~tuve during floorplanning stage is discussed. Finally, an outline of the

thesis is presented.



Chapter 2

Literature Survey

2.i Introduction

Floorplanning is an A”P — hard problem [12]. This implies that no algorithm exists
which can optimally solve floorplanning problem in polynomial time. Due to the
combinatorial nature of the problem, enumeration of all possible solutions is impos-
sible for a floorplan. éspecially when the number of modules is large. To overcome
this difficulty, several heuristics and polynomial time approximation algorithms have

been reported in the literature. In the next section. the reported approaches are dis-

cussed.
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2.2 Classification of Techniques

The main techniques to solve floorplanning problem car. be classified under three

broad categories namely:
® constructive,
e iterative, and
¢ knowledge-based.

A constructive algorithm builds a feasible floorplan starting from a seed meile.

The other modules are selected one by onc or in a groun and added to the portial
floorplan. This process is repeated until all the modules have been considere::. This
method is generally very fast but results in poor quality solutions. The various
methods belonging to this category are cluster growth. partitioning and slicing. con-
nectivity clustering, mathematical programming and rectangular dualization. Some
of these techniques have been discussed in detail in {2].

An iterative algorithm starts with a feasible floorplan. An initial solution is
normally generated randomly or obtained by a constructive algorithm. A number
of perturbation operations are performed on the initia! solution(s). This process
is repeated until an optimal floorplan is obtained or no further improvements are

possible. The iterative techniques include simulated annealing. force-directed inter-

change/relaxation and genetic algorithm.
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In a knowledge-based approach. a knowledge expert system is implemented that
comprise the three basic elements namely: (a) a knowledge base that contains data
describing the floorplan problem and its current state, (b) set of rules describing
manipulation of data in the knowledge base in order to progress towards a solution
and (c) an inference engine that controls the application of the rules to the knowledge
base.

Another approach has been proposed in [13]. that combines knowledge-based
system (IKBS) with algorithmic techniques. Such an approach permits the defini-
tion of a strategy where a KBS is used to embed IC design specialized I r >wledge.
and algorithmic information processing techniques permit the use of {»sr quantita-
tive evaluations, increased efficiency and increased knowledge modularity. It also
enables a factorisation of the solution space and offers an environment that is open
to integrate a large amount of information which directs the search process towards
practical solutions.

Floorplanning algorithms may also be classified as deterministic or probabilistic.
An algorithm that uses fixed connectivity rules, formulas or equations to arrive at
a feasible floorplan is called deterministic. Such an algorithm will always generate
the same fioorplan for a certain problem. A probabilistic algorithm. on the contrary.
may generate a different solution each time it is run. It generates. manipulates. and
selects or rejects a solution on a random basis. Usnally. constructive algorithms are

deterministic. whereas iterative algorithms are probabilistic.
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Figure 2.1: Cluster growth floorpianning.

Some of the widely used methods that have been successfully applied to solve

floorplanning problem are cluster growth, min-cut. simulated anne-‘ing and genetic

algorithm.

Cluster Growth

In this approach [2]. the floorplan is constructed one module at a time in a greedy
fashion until all the circuit modules have been assigned to all the blocks of a floor-
plan. A seed module is selected and placed into a (lower left) corner of a floorplan.
The remaining modules are selected one at a time and added to the partial floorplan.
A linear ordering algorithm is used to find the order in which the modules will be
placed. For each selected module. a location is chosen so as to grow the fioorplan
evenly and at the same time, satisfving other criteria. This is followed by routability

analysis. The growth of a floorplan is shown in Figure 2.1.
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A cut

Figure 2.2: Partitioning of the circuit moduies into two sets.

Min-cut

The min-cut algorithm clusters the blocks to be plac~i as per their connectivity
[14, 15, 16]. The blocks in a floorplan are divided into two sets in such a way
that the number of connections among these sets is minimized as shown in Figure
2.2. The algorithm is repeatedly applied to each set until the resulting sets contain
only one block. This algorithm combined with some heuristics. generates locally
optimal solutions in an acceptable time. Since only one cut is minimized at a
time, the solution obtained is a local optimum. As the number of cuts increase. the
connections between the two blocks of different sets may create problems for routing
at a later stage. Several improvements to this basic algorithm have been proposed.

These improvements. however. are inherently limited by the optimization strategy.
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Figure 2.3: Hill-climbing phenomenon in simulated annealing.

Simulated Annealing

Simulated annealing (S.\) is an adaptive heuristic that belongs 1o non-deterministic
algorithms [17]. Tt has analogy with the statistical mechanics of annealing in solids.
It allows exploration of global optimum since it has hill climbing properties (see
Figure 2.3). It requires an initial solution representing some state of the search space.
operations to generate local neighborhood of the initial state for better solutions. a
cost function(s), and an annealing schedule. The search space is explored until the
termination criterion is satisfied.

SA is one of the most widely used heuristics among researchers. Its application to
floorplanning has béen reported in [4. 18, 19, 20. 21]. There are two main variations
of SA based floorplanning. namely direct and indirect. In direct SA. manipulations
are done directly on the phyvsical layvout of the floorplan. In an indirect SA. an

abstract representation {such as a graph) of a floorplan is used for manipulations.
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The abstract solution is later mapped to obtain the physical representation of the

floorplan. The work reported in {19] is an example of a direct approach whereas

[4. 20] discuss an indirect approach.

Genetic Algorithm

Genetic Algorithm (GA) is a robust, stochastic combinatorial optimization search
technique [3]. It has analogy with principles of natural selection and genetics. It
combines the notion of survival of the fittest with random vet directed search and
parallel evaluation of the pointsin tii search space. An excellent reference on genetic
algorithms is [6]. Tt has been successfully applied to a wide variety of problems both
from academia and industry. The foundations of this strategy were laid down by
Holland back in 1975 but its application to the area of V'LSI design has been explored

only recently. These include cell placement [22, 23]. circuit partitioning [24]. and

floorplanning [23].

l Algorithm | Speed | Solution |
Cluster growth Good Medium-good
Genetic algorithm | Very slow | Near optimal
Min-cut Medium | Local optimal
Simulated annealing | Very slow | Near optimal

Table 2.1: Table showing comparison of different algorithms.

An oversiew of GA is given in the next chapter. A comparison of some of the

widely used methods is given in Table 2.1.
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2.3 Review of Timing Driven Design Approaches

The problem of performance driver floorplanning consists of finding suitable loca-
tions of cells so as to minimize the total wirelength while satisfving user specified
timing constraints. The problem may also be defined as that of finding a floorplan
that minimizes Th,.«. the delay of the longest path in the circuit (which inciudes the
interconnect delays).

During the design process. the propagation delays on the interconnects are not
known prior to layout. Loug path timing problems registered after layout are very
difficult to correct because they may require. not only new iterations of the physical
design step. but possib:y, many iterations of the logic design step.

Three general approaches have been suggested to correct long path timing prob-
lems. The first approach proceeds by making changes to the logic. For example.
the delay of a path can be substantially decreased by reducing the loading on some
of its circuits elements. Also collapsing some of the logic on the long paths can
reduce some of the paths’ delavs. Representative implementations of this approach
are reported in [26. 27, 28. 29. 30].

The second approach relies on transistor re-sizing to speed up some of the circuit
elements on the slow paths. By increasing the sizes of some of the driving transistors.
the switching delays of the driving elements as well as the propagation delays along

the nets driven by the re-sized transistors can be substantially lowered. Examples



of implementations using this approach have been described in [29. 2¢. 31. 32. 33L.

The third approach to make a circuit faster without making any changes in its
logic design is to reduce the propagation delay due to interconnects to a minimum
or well within tolerable limits. This goal can be achieved by imposing timing con-
straints on the interconnects and paths of the design. That is. wiring delays must
be kept in check so that the path delays are kept below a maximum value. Since
physical design step (partitioning. floorplanning. placement. and routing: affects the
wiring requirements of a layout. the objective of the physical design step is altered
to lower the pztl: delays below the latest required arrival time. This approach has
been adopted in our work.

Optimizea for timing, a layout system can permit as much as 20% increase in
the clock rate without any changes in the logic or cell design. Numerous attempts
have been reported which tried to make the physical design sensitive to the timing
requirements. Work in this direction was initiated as early as the 1970’s {33} where
ideas from physics were employed to optimize the power and timing of LSI chips.
In [34]. a system was reported in which a circuit which is completely laid out is
simulated on the computer to determine long paths that violated constraints. The
layout is then adjusted and simulated again. In [33]. performance driven circuit
partitioning heuristics that resulted in performance improvements with little loss in
wirability were reported.

Methods for generating constraints on sizes of nets to guarantee performauce are
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reported in [36. 37. 38]. These methods consist of distributing slacks on ine nets.
The final lavout that satisfied these net bounds was guaranteed to satisfy patn timing
constraints for desired performance. In [39]. factors which are highly correlated with
path timing such as number of nets on the path. path slacks. driving strengths of
cell output pins, etc., are combined into a score function. Path criticality is decided
on the basis of path scores. The predicted critical paths are used by the piacement
procedure.

In 40]. a linear-programming approach has been attempted to reduce an es-
tim .t2 of cycle time. Timing driven placement that uses the idea of rectilinear
Ciseance {acility location and partitioning to minimize wire delays o satisfy timing
constraints were proposed in [41]. A constructive placement method to sequentially
place cells using a cost function that captures the timing behavior was presented
in [42]. In {43], the problem of performance driven physical design is formulated as
a constrained programming problem. Constraints are placed on total path delays
including cell and interconnect delays and the behavior of the paths is captured.
Mathematical techniques and heuristics based on Lagrangian relaxation are used to
find an approximate solution to the constrained problem. In [44]. a description of a
placement system based on the fuzzy logic approach is presented. A solution that
satisfies multiple objectives. which are, area. routability. and timing. is produced
using fuzzy logic rules. In [8], the application of constructive successive augmen-

tation methodology to VLSI placement under constraints on routability. area and
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timing is presented. The placement algorithm uses adapr'i\'e look-ahead procedures
to improve the effectiveness of constructive decision making. The methodology was
successfully implemented for macro-cell-library based sea-of-gates design style with
over the cell routing.

Iterative and non-deterministic techniques have also been employed. In [9]. the
authors employ simulated annealing [45] to improve both the wirelength and per-
formance. Timing issues were not considered.

Other iterative non-deterministic techniques that have been applied to the place-
ment are genetic algorithm (GA) (22, 46] and simulated evolution [47]. In both thesc

worxs, however, minimization of wirelength was the sole objective.

2.4 Conclusion

This chapter surveyved various approaches to floorplanning as reported in the liter-
ature. A classification of solution approaches was given. Some of the widely used

methods were discussed. Several timing-driven design approaches were reviewed.



Chapter 3

Genetic Algorithm and VLSI

Floorplanning

3.1 Introduction

This chapter presents an overview of genetic algorithm (GA). The motivation for
applving GA to floorplanning problem is discussed. Several technical terms are
introduced. Various genetic operators are explained in the context of floorplanning

and illustrated with examples.
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3.2 An Overview of Genetic Algorithm

Genetic algorithm has emerged as a robust optimization and search technique (3. 6].
It has analogy with the mechanisms of evolution and natural genetics. It succeeds in
locating the global solution optimally in a large search space with a high probability.
In nature. best fit individuals win the race for meagre resources such as food. space.
mates etc. Only the fittest individuals survive and reproduce. a natural phenomenon
called survival of the fittest. Adaptability to a rapidly changing environment is
necessary for the survival of individuals belonging to various svecies. While the
features that distinctly characterize an individual determine its ability to survive.
the features in turn are determined by the individual's genet’ material.

As against calculus-based optimization methods such as gradient descent. GA
does not use derivatives. Another feature of GA is that it performs a parallel search
of the solution space, contrary to the normal point-by-point search found in other
optimization algorithms. It can explore many regions of the search space simultane-
ously. These features make genetic algorithm highly immune to getting trapped in
the local minima (maxima). This is very significant considering the fact that the real
life data is verv noisy and the search space may have many local maxima-minima

which may be sub-optimal. This is illustrated in Figure 3.1.
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Figure 3.1: A plot of function with many local maxima-minima.

3.2.1 GA Terminology

In the theory of natural evolution, an entity that encodes specification of an organism
is called a chromosome. One ~r more chromosomes "nay be required to represent
the organism completely. The complete set of chiomosomes is called a genotype
and the resulting organism is called a phenotype. Each chromosome comprises a
number of individual structures called genes. A gene encodes a particular feature of
the organism and the location of the gene determines the characteristic that a gene
represents. The different values of a gene are called alleles.

In GA. chromosomes are represented by a string of some tvpe. In problems where
there is only one chromosome per organism. the chromosome and the genotype are

the same. Each position in the chromosome string is a gene which may have diferent

values. The phenotype is the solution decoded by genotype.
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3.2.2 Steps of GA

There are several steps involved in genetic formulation of an optimization problem
namely representation. evaluation. selection and genetic operations. We explain

each of these steps in the following paragraphs.

1. Representation
The primary task is to find a suitable encoding or representation of feasible
solutions which can be handled by the computer. In the simplest case. a string
of binary digits may be used. In a bituary string. each bir is a gene. A solution
in general. may have many chromosomes, each one comprising several genes.

A population of the solution is a set of some finite number of chiromosomes

that represent the solution completely.

2. Evaluation
Each chromosome in the population is decoded and evaluated in order to
determine how well it solves the problem (referred to as the fitness}. The fitness
is used to determine the number of offsprings. a particular chromosome will

contribute in the next generation of the population. It represents a measure

of how close an individual is to the desired solution.

3. Selection

The individoals are selected from a population based on their ftness values.

Selection imitates nature’s survival of the fittest mechanism. The Ztter so-
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lutions survive while the weaker ones gets destroved. In a simple genetic
algorithm. a fitter solution inherits higher number of offsprings and thus has
a higher rate of survival in the subsequent generations. The selected solutions

undergo genetic operations. These operations are described next.

Genetic Operations

Crossover and mutation are the two most commonly used genctic operators.
These operators are applied probabilistically. Crossover works on a pair of
solutions whereas a singie solution is subjected to mutation operator. The

operation of crossover and mutation depends greatly upon the nature of the

problem. These are :!zscribed below:

. Crossover

Crossover is a powerful mechanism for probabilistic exchange of useful infor-
mation. The main idea is that the genetic information of a good solution is
spread over the entire population. Thus. the best solution can be obtained by

thoroughly combining the individuals in the population.

. Mutation

Murtation is a means of introducing new informarion into the population. It
is motivated by the possibilitv that the initial population might not have

contained the information necessary to solve the problem.



32

The design of a genetic algorithm for any problem essentially consists of string
representation of the solution. choice of genetic operators. determination of fitness
function and determination of the probabilities controlling the genetic operators.

Each of these greatly influences the solution obtained and the performance of the

genetic algorithm.

3.3 Basic Genetic Algorithm

The structure of a hasic genetic algorithm is illustratecd in Figure 3.2. Generally.
the initial population of individuals is generated randomly. However. some of the
individuals in thc population may be obtained by constructive approaches. Each
individual in the population is assigned a numeric value indicating its merit by a
fitness function. The fitness function assigns higher numbers to better fit individu-
als. Once all the members of the population have been evaluated. their fitnesses are
used as the basis for selection. Selection is implemented by eliminating low-fitness
individuals from the population. and inheritance is implemented by making mul-
tiple copies of high-fitness individuals. Usually. roulette wheel selection scheme is
used to implement proportionate selection. The genetic operators are then applied
probabilistically to produce the offsprings. By transforming the previous set of good
individuals to new ones. the operators generate a new set of individuals that have

a better than average chance of being good. The cycle of evaluation. selection. aud



genetic operations (also called Mating Cycle) is iterated until the size of new pop-
ulation equals the size of initial population. The individuals in the new population
represent improved solutions. In many implementations. the set of offsprings so
generated. completely replaces the old population. In some other implementations.

however, a replacement policy is employed that may be one of the following:

advance the best individuals from the set of old population and offsprings.

advance randomly selected individuals from the set of old population and

offs,."ings,

vivance p% best individuals and select remaining individuals rar.domly. and

advance p% best. q% worst and select remaining individuals randomly.

The new population becomes the current solution set for the later generations. The
outer loop called Generation Cycle. is repeated until no further improvement in the

objective function is achieved or some termination condition is satisfied.

3.4 Genetic Floorplanning

The application of genetic algorithm to floorplanning has been reported recently in
the literature {23]. In this work. Cohoon et. al. have used slicing floorplans. It is
motivated by the concept of punctuated equilibria in evolution theory described in

[48], and aims at effectively using large distributed memory. message passing and
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Figure 3.2: A flowchart of basic genetic algorithm.
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parallel processing systems. A weighted sum of area and wirelength estimation is
used as an objective function. The authors have reported that genetic algorithm
approach has generated results better as compared to simulated annealing both in
terms of the average cost and the best solution found. The timing issue. however.
was not taken into consideration. We follow the guidelines of this work and incorpo-
rate timing performance of the circuit besides area and wirelength as a measure to
evaluate the floorplan solution. We also aim to explore some more genetic operators
suitable for the new cost function. A very good survey on various crossovers for
placement problem is found in [23]. These need to be modified for fioorplanning ap-
plication. Seme good crossovers vave also been reported in [23]. The chromosomal
encoding can be done for floorpian configuration. orientation of each module and
timing constraints on the circuit floorplan. Regarding the murtation operator. the
perturbation moves used in simulated annealing by [4]. may be used. We consider

various genetic operators for floorplanning problem in the next section.

3.4.1 Initial Population Generators

In this work. an initial population is generated randomly which consists of valid
Polish strings. A sample of randomly generated initial solutions for a population of

size 10. having 12 modules is shown in Figure 3.3.
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{2011, V.3. VUL VU6 H 7 H. 3.V, 4. H.10. H. 8 H. 9. H. 12. V)
{7.5.H.3.H.1.\. 9. V.12, H. 2. K. 6. \". 10. H. 4. H. 8. H. 11. H}
{5.12.V.1. V. 4. H.6.H. 8. H.10. H. 9. H. 2. H. 7. H. 3. H. 11. H}
{10.3.H.2.H.6,H. 5. V. 4. H. 12. V. 8. H. 1. V. 9. H. 11, V. 7. H}
{3.10. H. 2, V. 7. H. 4. V. 11. V.53, V. 1. H. 12. V', 9. H. 8. H. 6. H}
{12.11. V. 1, H. 7.V, 10. V. 5. H. 9. H. 2. H. 4. H. 3. H. 8. \". 6. H}
{1.12.V. 4.V, 3, H. 7. H. 11. H. 8, V. 10. H. 5. V. 6. V. 9. H. 2. \'}
{8.7.H.1.H.10. H.12. H. 3. H. 2, V. 6. H. 5. H. 11. V. 4. H. 9. H}
{6.5.V.11. V. 7. H. 4. H. 1. V. 12.V, 9. V. 2. H. 10, H. 3. H. 8. H}
{3.11.V. 4. H. 7, V.2, V.12, H. 1. H. 3. H. 6. H. 10. H. 9. \". 8. H}

Figure 3.3: A sample of random population for a floorplan with 12 modules.

3.4.2 Selection

There are two selectioi: methods. one for genetic operations and the other for ad-
ancing individuals *¢ aext generation. The selection function for genetic opera-
tions is based on the proportionate selection scheme implemented by roulette wheel
method. The algorithm selects two strings. performs crossover and generates the
offspring which undergoes mutation depending upon the probability of murtation.
This cycle is iterated until the new population size is equal to the initial population
size. The selection method for advancing individuals to next generation is described

in the next chapter.

3.4.3 Crossover

The basic crossover operator is implemented by choosing a cross-point randomly in
.he parent strings and copying the sub-strings before the cross-point as thev are and

exchanging the sub-strings after the cross-point between the two parents as shown
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in Figure 3.4. This crossover is simple to implement but does not generate valid
offsprings in all the chromosomal representations. This is true specially for prob-
lems such as placement and floorplanning. where a solution chromosome comprises
several genes. Hence. a new set of crossover operators is required for floorplanning.
In the following section. some of the possible crossovers that result in valid solu-
tions are discussed and illustrated with examples. For all the examples. the parent

chromosomes considered are shown in Figure 3.3.

Cross-Point

Pd

Parent; {0]0{0] 0lOlOEO[0]O 0O

Parenty [ 1] 1]1]2f1f1]1l1j1]1

Offspring; [0 0T O] 01O 0| T T 1] 1§

Offspring>[T[1]1 [1]1]1 (0]010 10 ]

Figure 3.4: Basic crossover operation.

Block Inheritance Crossover (\:)

A simple crossover that generates a valid offspring is implemented as foliows [48].
Copy the operands from a parent (say P;) insitu and copy the operators from the
other parent (say P») at the remaining positions. This crossover inherits the building

blocks from one of the parents to the offspring. This is shown in Figure 3.6.
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Figure 3.5: Two parent chromosomes and the corresponding floorplans.
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Slicing Inheritance Crossover (\2)

This crossover inherits the slicing structure from one of the parents. It is imple-
mented by copving the operators from a parent (say Py) insitu and completing the
offspring by copying the operands from the other parent (say P») at the remaining
positions as shown in Figure 3.7. It may be observed that the floorplan correspond-

ing to the offspring has the same slicing structure as that of one of the parents.

53V 24VHILIV
12V3V4HSH
! (I !
Lol /it
Y Y v \/
12V3iI4VHSYV

(5]

\/\/\\ - |

12V34VHSY

Figure 3.7: Crossover \» tha: propagates slicing structure to the offspring.



PMX Crossover (13 and \.)

PMX stands for Partially Mapped Crossover [23]. In PMX. a cross-point is chosen
as stated earlier. The sub-string to the right of the cross-point is copied from one
parent to the offspring insitu. Next. we start from the first gene of the other parent.
Before copyving. we check if that gene is already present in the offspring. If so.
another gene from the parent Laving the same position is considered else the gene
is copied insitu. This process continues until the complete offspring is obtained.

In fioorplanning. a PMX is applied on the string of operands only. The operand
sub-string to the right of cross-point (4 and 5 as shown in Figure 3.8) are copied
from one paren: insitu in the offspiing. Next. the first gene (3 in Figure 3.8) in
the other parent is considered. Since 3 is present in the offspring. operand 1 that is
present in the first parent at the position of 5 is considered. As 1 is not present in the
offspring. 1 is copied. Next. operand 3 in the first parent is considered. Since it is
not present in the offspring. it is copied insitu. Similarly. operand 2 is copied. This
way. an intermediate offspring is obtained. There are two ways in which operators

can be inserted in the string of modules to get the offspring. These are:
e copy operators from the first parent insitu (\3)
e copy operators from the other parent insitu (\4)

This process is illustrated inn Figure 3.8.
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Sub-tree Crossover (\;)

In a sub-tree crossover [48]. the idea is to allow inheritance of a slicing sub-tree from
one of the parents to the offspring. This is achieved as follows:

First, scan the parent chromosome from left to right and identify a sub-tree. Next.
copy the sub-string corresponding to the sub-tree insitu in the offspring. Copy all
the operators from the same parent and the remaining operands from the other

parent to complete the offspring. This is shown in Figure 3.¢.

Cycle Crossover (\s)

In cycle c1 -3 ver [23]. elements are copied from either parents in a cycle. Tue cycle
is initiated by copying an element (usually first) of one parent { P;) to the offspring
insitu. If the element being copied is similar to that in the other parent (F). this
cycle will continue by copying more elements from P; to offspring. However. if the
copied element is different from the one in P, it can not be copied from P,. Hence.
that element is also copied to the offspring from P;. The cycle from P, will end
when no more elements need to be copied from P,. Next. a cycle begins from P by
copying elements to the offspring. These cycles alternate between Py and Ps.
Similar to PMX crossover described above. the cvcie crossover is implemented
on operands only and operators are inserted in two ways i the string of modules to

get the offspring. This is shown in Figure 3.10.
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Figure 3.9: A sub-tree crossover operator \s.
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Figure 3.10: Illustration of cyclic crossover operator ys.
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3.4.4 Mutation

The mutation operators chosen are based on the solution perturbation operators
proposed in [49]. In addition to these, two more mutation operators have been
implemented. Next, we briefly recall the mutation operators given in [49] (u2. us,
14) and explain the working of two newly introduced operators (u; and us).

Invert single operator (u;): In this case, any operator from a given Polish
string is chosen randomly and inverted from “\™ to “H™ and vice-versa.

Invert a chain of operators (uj): This operator inverts a series of adjacent
operators.

Swap adjacent operands (u3): In this operator, two adjac~nt operands are
swapped.

Swap adjacent operand/operator (u): This move swaps two adjacent op-
erator and operand.

It may be observed that the first three operators result in a valid Polish expres-
sion. The last operator, however, may generate an invalid Polish expression. Hence,
a condition known as “Balloting Property™ needs to be checked before performing
such an operation. A Polish expression P is said to have balloting property if and
only if for every sub—expression P.=py...p;, for 1 <1 < 2n — 1, the number of
operands is greater than the number of operators [49]. A simple method explained

below is used to check the violation of balloting property.
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Let Ny be the number of operators in the Polish expression P = py p» ... ps,
for 1 < k < 2n—1, where n is the length of expression P. Assume that uy swaps
the operand p; with the operator p;.;, for 1 <7 < k — 1. Then, the swap will not
violate the balloting property if and only if 2\;;; < i. The mutation operators p,;
to uy are illustrated in Figure 3.11 for the Polish expression 53V 24V H1V"

Timing biased module exchange (us): This mutation operator is aimed at
improving the interconnection delav. It works as follows: first. a net violating the
net delay bound on a critical path is identified. Then. modules on this net are

selected and brought closer by swapping them with oth:* modules not on critical

patls.
3.5 Efficacy of Genetic Operators in Guiding the

Search

The genetic operators described in the previous sections result in a valid floorplan
solution. Since the operators manipulate the abstract floorplan representation, their
role in guiding the search is not obvious. In the following sections we provide some

insight in the use of these operators.
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3.5.1 Effect of Crossover

The crossover operators discussed above fall into two general categories with regard

to the characteristics inherited by the offsprings from the parents. These are as

follows:
¢ slicing structure information
e genotype sub-tree besides slicing structure information

The crossovers X2, A3, \14 and y; belong to the first category whereas y; and x;
belong to the second category. Zne crossovers may also be classified with respect to
the amc ot of disturbance o: modification they cause to the resulting offspring with
respect to the parents. Operators such as block inheritance, PMX, and cyclic are
highly disruptive. On the other hand, sub-tree crossover causes lesser disruption.
Empirical and theoretical studies have analyzed the merits and demerits of var-
ious crossover operators [50]. Empirical evidence suggests that the population size
is related to the type of crossover. It has been observed that the lesser disruptive
crossovers preserve genetic material, but they become lesser exploratory when the
population becomes dominated by multiple copies of certain individuals. Hence,
when the population size is large (50-200), the inherent diversity in the popula-
tion precludes the need to have a highly explorative crossover. On the other hand,
highly Jisruptive crossovers are capable of performing extensive exploration when

the population size is small (10-30). Thus, the choice of a crossover is decided by



30
the complexity of the problem. the string representation. and the size of the popula-
tion. We have chosen both lesser and highly disruptive crossovers so that for small
floorplans, a large population can be maintained and lesser disruptive crossovers
can be used effectively. Whereas. for large floorplans consisting of 50 modules and

above, a small population is mandatory (taking into account the time and memory

constraints), and highly disruptive crossovers can be used.

3.5.2 Effect of Mutation

The mutation opcrators discussed take a single individual, and modify it in a local-
ized manner. iutation operators help in the exploration in the beginning wher the
average fitness 1s low. As the average fitness increases, the exploratory effect of mu-
tation operators decreases. Contrary to the simulated annealing moves, the random
change caused by the mutation operators seems to be always accepted. However,

since the selection is performed on a population of solutions. the useless solutions

are automatically thrown out.

3.6 Conclusion

The success of genetic algorithms is attributed to the following:

e it manipulates a representation of the potential solutions rather than the so-

lutions themselves.
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¢ it performs a search from a population of feasible solutions rather than a single

solution,
e it is probabilistic in nature,
e it has hill climbing property, and

e it accepts the mutated solutions without any criterion unlike in simulated

annealing.

In this chapter, we reviewed important aspects of genetic algorithm. The genetic
vocabulary was introduced. A basic genetic algorithm was explained. A number of

genetic operators were discussed. Finally, the effect of these operators was described.



Chapter 4

GIFT Floorplanner

4.1 Introduction

This chapter describes the implementation details of a performance driven floor-
planning program that uses genetic paradigm. The program is named GZF7. an
abbreviation for “Genetically Impelemented Floorplanner for Timing”. Due to
non-availability of standard ﬁoorplahning benchmarks. a number of other available
circuits were used for the validation of GIFT.

As mentioned earlier. GIFT combines three objectives namely area of the floor-
plan bounding rectangle. overall wirelength. and the speed performance of the cir-
cuit. In the following sections, the computation method for each of the objectives

is described and illustrated with examples. The details of implementation are given

and experimental results discussed.

Ot
[}V



4.2 Area

With area as the sole objective, the concern of the designer is to find a feasible
floorplan with the smallest overall area. The process of area evaluation for slicing

floorplans is illustrated by an example in the next section.

Definition 1 A continuous curve on a plane denoted by I' is called a bounding curve

if it satisfies the following conditions [{9]:

(1) it is decreasing, i.e.. for any two points (r,.y) and (z2.y2) on I', if 11 < 29

then y» < y1:
(2) T lies completely in the first quadrant, i.e., ¥(zr,y) € ', 2 > 0 and y > ) and

(3) it partitions the first quadrant into two connected regions. The connected

region containing all the points (x,r) for very large r is called the bounded

area with respect to the bounding curve I' (see Figure 4.1).

Let Ty and Iy be two bounding curves. Two arithmetic operations on bounding

curves are defined as follows:

(1) the bounding curve corresponding to I'y HT's is obtained by summing the two

curves along the y-axis, i.e., [1HTy = {(u.v+w)|(u.v) € Ty and (u. w) € Ta}:

(2) the bounding curve corresponding to I';V'T'5 is obtained by summing the two

curves along the z-axis. i.e., [} VT = {(u+v.w)j(u. w) € T; and (v.w) € T'»}.
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Comer points

Bounding curve

Y

Figure 4.1: A piece-wise linear bounding curve [2].

A piecewise linear bounding curve is completely characterized 3y an ordered

o

list of its corner points. Moreover, to add two piecewise linear curves along either

direction, it is sufficient to sum up the two curves at their corner points.

[Module | Width | Height |
2

~) | Ot H-] O DO
=N N =N
SHINIEMI IR R R

Table 4.1: Dimensions of floorplan modules.

Assume that the dimensions of floorplan modules are as shown in Table 4.1. It

is further assumed that all modules are rigid and can be rotated by 90° with respect
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Figure 4.2 Floorplan for illustraticn of area computaticu: (a) original orientation
of modules: (b) new orientation of modules.

to their original orientations.

The normalized Polish expression corresponding to the floorplan shown in Figure
4.2(a) is P = 12H34V56VHVTH, and its tree is shown in Figure 4.3. The goal is
to determine a minimum area enveloping rectangle Rp corresponding to P.

In the slicing tree of Figure 4.3, the set of points enclosed between curly Braces
and appearing next to each node (leaf or internal) is the bounding curve of that
node. For example. the leaf node labeled 1" corresponds to module 1 whose width -
and height are w; = 2 and h; = 3. Since the module can be rotated then for basic

rectangle 1 to enclose module 1, its height and width must satisfy the following

inequalities (refer to Figure 4.3):



r; > 2 and y; > 3 (normal orientation of module 1) or

xr; > 3 and y; > 2 (module 1 rotated by 90°).

The bounding curves for the remaining leaf nodes are obtained in a similar fashion.
Let T'y4 be the bounding curve corresponding to the subtree “34V™. Then. I'z4 is
computed as follows: '3y = ['31' T4, where the operation V' is the summation of the
two curves along the z-axis; '3 = {(1,3):(3.1)} and 'y = {(2.3);(3.2)}. therefore
T3y = {(3.3):(4.3):(5,3):(6,2)}. Since points (4.3). and (5.3) are not corner points.
they are elimipated. Hence '3y = {(3.3):(6 2)}. The points (1,3) and (2.3) that
were used in the computation of the uniq:z corner points (3,3) and (6.2) of '3y
are marked (encircled. in the figure). Thic *;1arking is needed during the downward
traversal of the tree to identify the module sizes, orientations. and shapes that are
consistent with the computed minimum enveloping rectangle Rp.

The bounding curves of the remaining nodes are determined in a similar manner
until we reach the root. The bounding curve associated with the root gives the set
of points whose coordinates are the sizes of possible enveloping rectangles of the
rectangular slicing structure. For this example the bounding curve of the root as
shown in Figure 4.3, is Tp = {(5.10):(9.9):(5.6):(9.3)}. Since 5 x 6 = 30 is less than
5x10=230.9x9=281,and 9 x 5 = 45, then a minimum area enveloping rectangle
corresponding to the given Polish expression is a 5 X 6 rectangle. Now. traversing

the slicing tree top-down from the root to the leaves and tracing the size/orientation
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Figure 4.3: ““igure showing slicing tree for area computation.

choices that led to the minimum area, we find that the modules must have the sizes

and orientations indicated in Table 4.2. The floorplan with the new orientation is

shown in Figure 4.2(b).

[ Module | (w,h) [ Orientation |
(2.3) | Original
(2,2) Original
(1,3) Original
(2,3) Original
(1,2) Original
(2.2) Original
(5.1) Rotated

-IO)O‘J—-OO(_Q'—‘

Table 4.2: Module sizes and orientation for the floorplan solution.



Satisfying Aspect Ratio Constraints

Besides minimization of area, any user specified constraints on the aspect ratio
(denoted by p) of the enveloping rectangle needs to be satisfied. As mentioned
earlier, two positive numbers p and ¢ denoting the lower and the upper bounds are
given. At the root of the slicing tree, different (w.h) pairs of the enveloping rectangle
may violate either of the bounds on p. If the lower bound is violated (p < p) then
h needs to be incremented by some amount say a. so as to make p greater than or

equal to p. This is shown below:

h+a
p =
w
a = pxuw-—h

If the upper bound is violated (p > ¢) then w needs to be incremented by some

amount say b, in order to make p less than or equal to ¢. This is achieved as follows:

_ h
= w+b
!
b = = _u
g

This process is repeated for all the (w,h) pairs and the pair giving the minimum

area is selected.



4.3 Wirelength

The overall wirelength is an estimate of the routing area. The estimated wirelength is
also used in the delay analysis for computation of interconnect capacitance. Hence.
accuracy of estimation method is very important. One of the most popular and
simple methods is semi-perimeter estimation. In this method. the smallest bounding
rectangle that encloses all the pins connected to a net is computed. The wirelength
is obtained by taking half the perimeter of this rectangle. This technique works for
2-3 pins nets but underestimates the wirelength for nets consisting of more than 3
pins. Hence, a correction factor is introduced to ixﬁprove the accuracy of estimation.
Another possible estimate is to determine for each net thL’ .length of the minimum
spanning tree which covers all the pins of a net. Then. a measure of wirelength will
be the sum of the length of all these minimum spanning trees.

In this thesis, the estimation technique used is an approximation of Steiner tree
method. The idea is to compute a bounding rectangle that encloses all the pins
connected to a net. The height and width of this rectangle is calculated. An
equilibrium point with respect to the centers of the modules connected by the net is
calculated. If width ¥¥” of the rectangle is greater than its height H, a horizontal line
passing through the equilibrium point is drawn. Otherwise, a vertical line passing
through the equilibrium point is drawn. Finally, all the pins are joined with this line.

For an n-pins net, the equilibrium poiut E(z.y) shown in Figure 4.4, is calculated
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Figure 4.4: Variation of Steiner tree estimation.

Pin
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from the following equations.

n+ro4+r3+...+In
Teguilibrium = : 2 ;: (4’1)

_ntyptyst...tyn
Yequilibrium = n

(4.2)

This method results in a fairly realistic estimation of the wirelength. A comparison

of different estimation methods is shown in Figure 4.5.

I/0 Pins Assignment

The 1I/O pins of the circtit that will be connected to the I/O pads on the chip
are assigned to the per’glery of the chip. The chip is divided into four quadrants.
Depending upon the location of the cell to which the I/O pin is connected, the I/O

pin is placed at the corner of that quadrant. The following equations are used, one

for each corner of the chip.

First Quadrant : 0 < r < % and 0<y<

1o >

= C,y =(0,0)

w
Second Quadrant : S Srsw and 0<y<

to]

= Cry = (w,0)

Third Quadrant :

| R

h
<r<Luw and 2 Syfu =C;y=(wh)

*

Fourth Quadrant : 0 < r < 7 and g <y<h =C,y,=(0.h)

where, w and h are the width and height of the chip, r and y are coordinates of the
centre for each cell. and C , denotes the corner point of the quadrant to which the

I/O pins will be assigned.
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SEQ,

A ‘ 5

S1Q,

Path 2! I Gy = G3 G4 >0y
Path 3: SEQy—>Gg —»0,

Path 4 SEQ]"GZ —->G3 —» G4 = SEQ,

Figure 1.6: Illustration of various paths in a sequential circuit.
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4.4 Timing Issues

In VLSI floorplanning, the designer is concerned with long path timing problems.
A signal starting from a source reaches a destination (sink) after traversing one or
more circuit modules. A path is defined as a sequence of such circuit modules. The
start point is an input pad or storage element output pin. The end point is an
output pad or storage element input pin. Thus, there can be four different paths
in a VLSI circuit. These paths are shown in Figure 4.7. All storage elements are
flip-flops.

In the following section. we recall some of the most important terms used fre-

-

quently in the context of timing-driven designs.

Long Path Problem

A signal traveling on a path is required to reach the path sink not later than what is
known as its latest required arrival time (LRAT). LRAT is a function of the circuit
clock period. When all the paths in a design are shorter than LRAT, the design is
said to be free from long path timing problems. For the path # in Figure 4.7. there

can be no long path problems when the following condition is satisfied.

T, < LRAT; (4.3)



Path Slack

The slack of a path « is defined as follows:

Slack, = (Tx,cells + Tz,ncts) — LRAT; (44)

For a circuit to be free from long path timing problems the condition S; > 0 must
be satisfied. If. for a path #, S; < 0, then it is said to be critical. A path having

most negative slack among the critical paths is referred to as the most critical.

4.4.1 Delay Model

The delay model 1sed in this thesis is *t.¢ Linear Model. As per this model. it is
assumed that a signal traveling from the source arrives at all the sinks at the same

time. The overall delay for any path =, is given by the following equation:

T(x) =3 S+ 3. I (4.5)

cET nes
where S, is the switching delay of cell ¢ and I, is the interconnect delay of net n.

Based on the lumped RC-model, these quantities are defined as follows:
S.=BD.+ LD, (4.6)

where BD, and LD, are the base delay and load delay of cell c. The base delay is

obtained as shown below:

BD.=LF.x LC,
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where the terms LF. and LC, denote the load factor of cell ¢ and the total load

capacitance at the input pins of cells driven by cell c.

The interconnect delay of net n is computed by the following equation:

I.=LF.xCp,+C, xXxR,+ R, X LC,

(4.7)

where, the terms C,, and R, represent the capacitance and the resistance respectively

of net n. The interconnect capacitance and resistance for net n is computed as given

below:
Cnp = Area_capacitance + Fringe_capacitance
where,
Area_capacitance = [Cami X Liny + Cam2 X Lima| X w
and

Fringe_capacitance = 2 x [(w + Lym1) X C fm1 + (@ + Lm2) X C fmo]

_ le X Lml +Rm2 X Lm‘Z
w

R,

Cam1 = Plate Capacitance/Area of metal my,
Cimy = Fringe Capacitance/ Length of perimeter of metal m,,
Cam2 = Plate Capacitance/Area of metal mo,
Cimo = Fringe Capacitance/Length of perimeter of metal ms,

R = Sheet Resistance of metal m;.

(4.10)

(4.11)



SEQq T “"T- ----- :1 --------- SEQ,
net Gy
LF(Gy) ..1G¢
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| Pa[hTCISEQl —-)Gl—> GS—> SEQ2 I

Figure 4.7: Delay model used in this work.
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Rma = Sheet Resistance of metal mao,

Ln1 = Length of metal m;,

L2 = Length of metal ms,

w = Width of interconnects

Next, we illustrate the delay computation for the path # shown in Figure 4.7 through

an example. Using Equations 4.6 and 4.7, the switching delay and interconnect delay

of the path = can be obtained as follows:

> Sc=Sseq, +Sc. +Scs + Sseq. (4.12)
cellex
and
Z In = Inctsgql + Iﬂetc;1 + Inetcs + InctSEQ.., . (413)
cellex

The interconnect delay of some net, say netg; in Figure 4.7, is computed by the

following equation.
Inetc;l = LFG; X C'net(_;1 + C’netc;l X Rnetcl + LCG] X Rnetcl (414)
where, the load capacitance of cell G, is obtained as follows:

LCq = LCq, + LCqg, + LCq, + LCg, (4.13)

Different values for capacitance and sheet resistance are given in Tables 4.3 and

4.4 respectively. The width of interconnects for the circuit technology used is w = 3u.
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Metal _Type Area_Capacitance Fringe_Capacitance
(10~*pF/u?) (10*pF/n)
Range Min Typ Max | Min Typ Max
Metall 0.21 0.23 0.26 | 0.75 0.79 0.82
Metal?2 0.13 0.14 0.15 1} 0.78 0.81 0.85

Table 4.3: Area and fringe capacitance values.

Sheet_Resistance
(ohms/[square)
Range Min Tyvp Max
Metall | 0.050 0.055 0.060
Metal2 | 0.022 0.028 0.033

Table 1.4- Sheet resistance values.

After combining the constant terms in Equations 4.9, 4.10 and 4.11, these equations

may be re-written as follows:

Area_capacitance = 0.000078 x L,,; 4+ 0.000043 X L2 (4.16)

Fringe_capacitance = 0.000164 X L,; + 0.000170 x L,,2 + 0.001002 (4.17)
Rn=0.020x Ly +0.011 X Lo (4.18)

After combining all the constant terms, the new equations can be written as follows:

Chn=CONST} X Ly, + CONSTy, X Ly, + CONST; (4.19)
and,

R, =CONSTy X L, + CONST; X Ly, (1.20)



where L,,, and L,,, are the lengths of metals m; and mo respectively. The new

constant terms are,
CONST, = 0.000242pF/u
CONST, = 0.000215pF /i
CONSTj3 = 0.001002pF
CONST, = 0.020Q/u
CONST; = 0.011Q/u
From Figure 4.7. L,, =16y and L,,,=15u. Let the values of load capacitance for
the cells G». G3, G4 ard Gj be as given below:
LCg, = 0.068pF,
LCg, = 0.085pF,
LCg, = 0.091pF,
LCg, = 0.087pF,
and the load factor be,
LFg, = 4.92ns/pF,
Then the load capacitance of the driving cell G; will be LCg, = 0.331pF. The
interconnect capaéitance and resistance are found to be C,,mcl = 0.008099pF. and
Rpetg, = 0.485() respectively. By substituting these values in Equation 4.14. the

interconnect delay through netg, is obtained as follows.

Tnetg, = 4.92 x 0.008099 + 0.008099 x 0.485 + 0.485 x 0.331



which is equal to 0.20431 ns.

Based on the above calculations and experimental results obtained from actual
VLSI circuits. it was observed that the load delay component con:ributes the most to
the interconnect delay. The contribution due to interconnect resistance was found
to be ten times smaller than that due to load factor. Before proceeding further,

we show that it is safe to ignore the effect of interconnect resistance in the delay

computation by the following example.
Let us assume a chip of size 4000 x 4000 pm? and the interconnect length for a 2-

pin net to te L,,; = 2000 and L,,» = 2000u for horizontal and vertical connections

respectivaty Then. the interconnect resistance will be:

R, =0.02 x 2000 + 0.011 x 2000 = 62Q

Now, let us compute the various components of interconnect delay assuming

LC. =0.0531pF, LF, = 492KQ and C, = 0.012pF.

LF. x C, =4.92 x 0.012 = 0.05904ns
R, x LC. =62 x 0.051 = 0.003162ns

R, xC, =062 x0.012 = 0.000744ns

It is evident from the above computation that the delay due to interconnect resis-

tance is very negligible and can be ignored.



4.4.2 Critical Paths

As the number of paths in a VLSI circuit can be in the millions, it is not feasible
to enumerate all the paths [51]. The idea is to distinguish a very small subset out
of all the paths in such a way that the subset of paths identified, consists of all or
a major portion of the paths that will suffer from long path timing problems after
layout. In the following paragraphs, we briefly discuss the procedure used to predict
the timing critical paths. A detailed description of the timing analyzer/predictor is
given in [7].

From past layouts of circuits with similar complexity. the average and standard
a:~:ation of net lengths are estimated for each type of net (2 pin-, 3 pin-..... k

pin-nets). These are converted to capacitances for the particular technology of the

design at hand. The delay variance on a path # is given by:
k
D2 =3 LF?.D? (4.21)
i=1

where D;? denotes delay variance on the capacitance of a net i as obtained from the

layouts of previous designs.

Let T,.q- be the estimated delay of the longest path in a circuit i.e.,
Ter = Max(T;) (4.22)
A path 7 is said to be a — critical iff:

T,_-+O'D,,— 2 Tma.r (423)
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The parameter a ! above is referred to as the confidence factor. The larger the value
of a, the more will be the number of paths notified as critical and the higher will be
the possibility of identifving most of the prospective critical paths. The a — critical
paths will be referred to as the most critical paths.

After layout, the interconnect capacitances are calculated for all the nets and
the interconnect delays are computed. Next, actual delavs and slack values for
each of the most critical paths are computed. The performance of timing-influenced

floorplanning depends largely on the accuracy of timing analysis.

4.4.3 Performance Metric

There can be many ways to incorporate timing criterion in the cost function. In this
work, the difference between Tocr (clock value used for the enumeration of critical
paths) and the worst slack among the most critical paths (II) is used as an objective.
We denote this difference by the term Tperioe- For a floorplan solution, the speed of
operation can be obtained by subtracting the worst slack among the paths predicted
as critical from T,x. This is shown below:

The objective is to minimize Tperiog(maz). Its minimum value will determine the

speed at which the circuit can run.

1Desirable values of a are < 3 or 4.



Begin
Tperioa(maz) =0
For each path @ € 11
Do

Tperiod — Tock — S=
Tperiod(maz) — Mar(Tperioa(maz), Tperiod)
EndDo
EndFor
End

Figure 4.8: Computation of speed performance for a floorplan solution.

4.4.4 Fabrication Technology

The VLSI circuits used in our experiments are implemented in a 2u CMOS tech-
nology. The timing characteristics and other parameters such as dimersions etc.,
are given in [52]. It is assumed that metal m, is used for routing horizontal tracks,
whereas metal my is used for vertical tracks. The values of capacitance and re-
sistance for these metals are adopted from the corresponding fabrication foundry

manual [53] and shown in Tables 1.3 and 4.4 respectively.

4.5 Implementation Details of GIFT

Floorplan design involves a number of conflicting objectives which are not easy
to combine in a single cost function. The first objective is to allocate optimal
rectangular regions to cells so as to minimize the area of the bounding rectangle and

dead space. The second objective is reduction of the total wirelength denoting the
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wiring space requirement. Since the wiring consumes a high percentage of the total
area. it is very important to have an early estimate of the wiring space. The third
objective is concerned with the speed performance of the circuit.

A flowchart of various steps involved in the implementation of GIFT is shown in
Figure 4.9. A translator program reads the VLSI circuit in VPNR format and builds
the circuit graph and the connectivity. Some intermediate files are also generated
that enable the determination of the number of I/O pins. the number of circuit
modules, and the area of each module etc. The timing analyzer program (TA) uses
intermediate files and generates the most critical paths for the user specified value
of clock and confidence factor a. For each of the predicted cri'*cz! paths, the timing
information consists of the total cell delay, delay bounds onleach net comprising
that path, and the latest required arrival time (LRAT). This information is used to
compute the value of interconnect delay of paths. The actual propagation delay is
determined after placement of the circuit and compared to the estimated value to
check if the circuit is violating any timing constraints.

The information provided by the translator program is used to generate Polish
strings representing feasible floorplan solutions for the circuit under consideration.
The Polish strings are used to determine area, center, and corners of the floorplan
enveloping rectangle, besides computation of centers for each module. After esti-
mation of the overall wirelength. propagation delays of the nets are computed using

the delay model described earlier. This gives the actual value of the clock. For
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each slicing floorplan solution in the population. the three objectives namely area,
wirelength and the clock value are output by the floorplanner. The output of GIFT

consists of the following information.
e a Polish expression corresponding to the “optimal™ floorplan,
¢ the orientation of each floorplan module.
e the location of each circuit module, and

o the area of the bounding rectangle. the total estimated wirelength, and the

speed of the chip.

4.6 Genetic Modeling of Floorplanning

This section discusses various aspects involved in the genetic algorithm based floor-
planning approach. These aspects include parameters such as crossover and mu-
tation probabilities, fitness function, and important decisions namely size of the
population, the selection scheme fér crossover, selection of offsprings for next gener-
ation etc. These aspects greatly control the performance of GIFT. These issues are

discussed in the following section.



4.6.1 Initial Population (T)

Two types of initial population generators were investigated that attempt to produce
valid Polish strings. They are:
(1) Generator T, constructs a Polish string by inserting n —1 operators in a random

permutation of n; (2) Generator Y,, generates a Polish string in such a way that a

number of modules are placed in rows.

4.6.2 Fitness Function (&)

The cost function consists of three terms that aim at improving the area of floorplan
boundiag rectangle, the tir.ing performance and the overall interconnection length.

The cost function is transformed to obtain the ﬁtnéss function such that higher
values of fitness means low cost. as is the case with any minimization problem. The
fitness may be obtained from the reciprocal of the cost. However, this might cause
the range of the fitnesses to be too small requiring a further step of fitness scaling.
Another way is to calculate the fitness by subtracting the cost from a constant,
which must be large enough to produce positive fitness values. But if it is too large.
this may again cause the range of fitnesses to be very small. For these reasons,
we have used a normalized fitness value (that varies with time). The ﬁtness of an

individual is obtained as explained in the following paragraphs.



For a population of size n and a floorplan solution ¢ for 1 < < n:

Area(i) = area of floorplan bounding rectangle
Clock(i) = required clock period that satisfies timing constraints
Wirelength(i) = overall estimated wirelength

The cost of a floorplan solution 7 is obtained by the following equation:

Cost(i) = Area(?) X Wy + Clock(7) X W+ W zrelerz,gth(z) X T (1.24)
A o W
where,

A = max Area(s)
i€(l...n)

C = max Clock(?)
i€(l...n)

W = max Wirelength(1)

i€(1...n)

Wi, W5 and W; are relative weights assigned to each term. Since the terms in
Equation 4.24 are incompatible, they are normalized to the same mean and standard

deviation to obtain a meaningful fitness as shown below:

- . < .y 0 -
-"\norrn(l) = Xnorm — (J\(l) - X )_n;_rﬂ (420)
where,
X = \Value of the term (area, clock, or wirelength) prior to normalization

X = Mean of the term prior to normalization
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AXnorm = Desired mean of the term after normalization
o = Standard deviation of the term prior to normalization
Onorm = Desired standard deviation of the term after normalization

The values of Xnorm and Oporm Were set equal to 1000 and 100 respectively. The

fitness of an individual ¢ is computed as follows:

Areanorm (i) Clockporm/(1)

Fitness(i) = ) Warea + c

X “’time

Wirelengthporm (1
+ g (7)

Waz

X Wpire (1.26)

7 he subscript norm indicates that the values are normalized and max denotes max-
imum values of the corresponding terms. The constants Amar, Cmar and Wi in

Equation 4.26 have the following values (see Table 4.5).

Amer = 1121
Cmer = 1118.44

Whaer = 1135.42

Now., the fitness value of an individual say 1. can be computed as follows:

858 W 981.40 . 959.67 < T

Fitness(1) = W E
itness(1) = 77 * Wit ygas X Ve T s <1

Assuming the weight values to be 117=0.40. 1#5=0.30, and 113=0.30, then

Fitness(1) = 0.83
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[ [ Actual_Quantities | Normalized_Quantities ]
Floorplan(i) | Area(t) Clock(i) Wirelength(i) | Area(i) Clock(i) Wirelength(i)

1 428240 21.83 20095.16 858 981.40 959.67

2 425008 22.02 20510.00 908 850.70 847.28

3 416592 21.66 19654.50 1039 1102.54 1079.06

4 414488 21.88 20025.50 1071 946.90 978.54

3 411280 21.63 19446.46 1121 1118.44 1135.42
MEAN 419121.60 21.80 19946.32 1000 1000 1000
SDEV 6436.68 0.14 369.09 100 100 100

MAX 428240 22.02 20510.00 1121 1118.44 1135.42

Table 4.5: An illustration of normalization process for population of 5 floorplans.

The quality of floorplan solution largely depends upon the values of weights. By
varving the weight values, the notion of optimality can be changed. For c¢xample, if
the weight of the clock term is increased to a value greater than that for the area

term, then the search will be biased toward floorplan solutions with better timing

characteristics than area.

4.6.3 Selection Mechanism for Crossover (7)

This step determines which parents are selected for crossover. In this work we used
the selection mechanism based on the proportionate selection scheme implemented
by the roulette wheel method [6]. In this selection scheme, each string is allocated
a sector of a roulette wheel with the angle subtended by the sector at the center of

the wheel that equals %ﬁ}; where f; is the fitness of solution /. and 3_; f; is the sum
7



of the fitness over the entire population.

4.6.4 Selection Mechanism for Next Generation (§)

A number of methods have been proposed to select individuals that can survive and

be used in the next generation [6].

replace-all (&)
e replace-all except the best (&)

e combine old population with the offsprings, save best and the rest are chosen

probabilist.cally (£3)

e combine old population with the offsprings, save the overall best and the best

with respect to important objectives, and the rest are chosen probabilistically

(&)

The selection schemes &;. &> and & are straightforward. In the last scheme. besides
preser\;ing the individual with the best fitness, other individuals that are best with
respect to the important objectives such as area, timing, and wirelength are also
preserved and advanced to the next generation. In all the schemes, the individu-
als are chosen probabilistically based on their fitnesses (higher fitness translates to
higher survival probability). After experiments, the last technique was found to be

better than the others and was adopted in the final experimentation.
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4.6.5 Good Genetic Operators

In the initial stages of this work. extensive experimentation was done on the “High-
way” test circuit with the purpose of determining the efficacy of different genetic
operators by considering these operators one by one in the genetic algorithm. All
the crossover operators except “cycle” crossover and all the mutation operators de-
scribed in the previous chapter were found useful.

The results of above experiments indicated that some genetic operators are better
than the others. This information was used in assigning probability values to these
operators. The crossover is always performed i.e., the sum of the probabilities of
individual crossover operators is 1. Whenever a c:ossover is to be performed, a
random number is genérated and depending upon the range in which the number
lies, the corresponding crossover operator is invoked. Similarly, all the mutation
operators are assigned different probabilities that sum up to 50.5%. This implies
that }he mutation may or may not be performed.

In the later stages of this work. all experiments were carried out by randomly
selecting a genetic operator from the set of crossovers and mutation operators. The
results show that the set of operators as a whole perform better than the case
when single operators were used. The percentage probabilities of the crossovers and
mutations are shown in Tables 4.6 and 4.7 respectively. In the next section, we

describe the algorithm used to refine the slicing floorplan produced by the GIFT
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Crossover | Probability
1 1 5%
X2 15%
A3 20%
X3 30%

Table 4.6: A summary of the probabilities used for various crossover operators.

| Mutation | Probability |

73 10%

Table 4.7: A summary of the probabiliiies used for various mutation operators.

floorplanner.

4.7 Floorplan Refinement Phase

In this phase, we remove the slicing restriction on the floorplan structure. Also,
modules are allowed to have flexible shapes. The floorplan refinement procedure is
due to [7]. In this section. we briefly summarize the main steps of this procedure.

The refinement phase consists of two steps:
1. construction of constraint set. and

2. shape optimization.



4.7.1 Graph Construction

Two directed acyclic graphs are used to model the topological constraints between
the blocks: a horizontal constraint graph Gy and a vertical constraint graph Gy.
The vertex set of Gy is the set of blocks plus two dummy vertices: L, R. Similarly,
the vertex set of Gy is the set of blocks plus two dummy vertices: T. B. The
dummy vertices L, R. T. B correspond to the left, right, top. and bottom boundaries
respectively of the layout. The edge set of Gy models the to-the-left /to-the-right
relationships, while that of Gy- madels the on-the-top/on-the-bottom relationships.

Gp and Gy are constructed as follows. Two blocks are constrained if the center
of one block must be to the leit/below the center of the other. Vijayan and Tsay
[54] introduced the notions of completeness and strong completeness for a topological
constraint set. A constraint set is complete if there exists a directed path between
every pair of blocks b;, b; either in Gy, in Gy, or both. In a strong complete set each
pair of blocks is adjacent either in Gy, in Gy, or both. Two blocks are adjacent if
they are connected by an edge. It is clear that a floorplan that satisfies a strongly
complete set will have no overlaps. To avoid the overlap of two blocks, only one
constraint (either in the horizontal or vertical direction) is necessary and sufficient.
Two blocks are called overconstrained if they are constrained in both the horizontal

and vertical directions. The existence of overconstrained blocks negatively affects

the arca optimality of the floorplan.
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Definition 2 A constraint set (Gy.Gy) is sufficiently constrained if there erists an

edge between every pair of blocks (b;.b;) either in Gy or in Gy-.

Clearly, a sufficiently constrained set (Gy,Gy) is a strongly complete set. The
approach in [34] starts with an overconstrained set, i.e. a set with many overcon-
strained blocks. This set is then reduced to a sufficiently constrained set by removing
redundant constraints from only the longest paths in Gy and Gy . A problem with
this approach is that the size of the overconstrained set could be very large, and
hence may require larqe computing resources.

In this work, we use the more efficient strategy suggested in [7] which builds
directly a sufficier:tly constrained set using a constructive (greedy) procedure. if
two blocks (b;, b;) are overconstrained then the edge (i.j) is deleted from the graph
Gy if the longest path traversing (7,j) is longer than the longest path traversing
(7,7) in Gy. Otherwise the edge (i, j) is deleted from Gy-. Therefore, the selection is
based on which of the constraints will lead to a smaller-area floorplan. If two blocks
are constrained in only one direction (i.e., they have the same x or y coordinate),
the algorithm in this case has only one choice. This process generates a constraint

set (i.e., Gy,Gy) according to Definition 2 and, at the same time, eliminates all
redundant constraints right from the beginning. This is in contrast to the algorithm
in [54], where only redundant edges belonging to the critical paths in Gy and Gy are
examined. Removing all redundant constraints produces a more compact floorplan.

The next step in this refinement phase consists of resizing the variable-shape
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blocks in order to optimize the floorplan area and satisfy the remaining constraints

on block/chip aspect ratios.

4.7.2 Block Reshaping

The reshaping algorithm determines dimensions and positions of the blocks so that
the floorplan area is minimized and constraints on block shapes are satisfied. This
is achieved by iteratively reshaping flexible blocks on the longest paths.

The reshaping algorithm: utilizes the constraint graphs Gy and Gy- to compute
the dimensions of the floo:plan and decide on a candidate block for resizing.

Suppose we want t.: r duce the floorplan dimension in the Y -direction without
enlarging the floorplan in the X-direction. This can be achieved as follows. let
{(7my) and £(my) be the length of the longest paths in Gy and Gy respectively. Let
block b; be such that b; € =y and b; & wy. If #% is the longest path traversing b;
in Gy, then the widfh w; of b; can be increased by an amount 67 = {(7y) — {(7y)
without increasing the overall area of the floorplan. 67 is the maximum block’s
width increment that is guaranteed not to cause an increase in the length of the

critical path 7y in Gy. But, since the block width has an upper bound w("*. then

the legal 67 is given by,

57 = min(67, w* — uy) (4.27)
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Thus, the new dimensions w} and A} for block b; are derived as follows:
wh=w; +c x &' (1.28)

k. = a;/w! (4.29)
where c is a user specified positive real number (0 < ¢ < 1) used to control how large
the z-increment should be. Resizing the blocks in small increments helps achieve a
smaller floorplan with the correct aspect ratio. In this work, we set this parameter
to 0.5. Optimization in the X-direction is similarly formulated.

The resizin; process is terminated if there are no more blocks that can be selected
for reshap. r.g

After completing the resizing process, the horizontal and vertical graphs are
traced to determine the final ry-locations of the blocks. The lower left corner of
the floorplan is at origin (0.0). The lower left corner of block b; is placed at (r;. ¥:)
where z; is the longe§t L-to-b; path in Gy and y; is the longest B-to-b; path in Gy-.

Finally, the blocks are enclosed inside the smallest bounding rectangle with the

desired aspect ratio p. The area of the bounding rectangle is the area of the floorplan.

4.8 Experimental Results

The genetic algorithm is a very elaborate and relatively hard to tune algorithm. It is

harder than other iterative heuristics such as simulated annealing [17] and simulated
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evolution [47]. The tuning of genetic algorithm parameters to a particular problem
requires extensive experimentation.

There are several key parameters that affect the performance and behavior of GA.
These are: (a) size of the population, (b) initial population constructor, (c) selection
mechanism for crossover, (d) type of crossovers and their probabilities, (e) mutation
operators and their probabilities, (f) selection of individuals for next generation,
and finally (g) the fitness function. These parameters are selected based on experi-
mentation. The size of the population depends on the size of the problem (number
o+ blocks). It is recommended to use a large population (30) for small circuits (up
_.-*0 3C blocks). For larger circuits a nopulation size between .10 and 20 was use. -
The current implementation applies all crossovers and mutation operators with the
probabilities given in Tables 4.6 and 4.7 respectively.

The experiments were performed with five test circuits of sizes varying between

15 and 125 modules both for the standard-cell and the general-cell library. For each
circuit, the floorplanner is supplied with a set of the predicted most critical paths.
As explained in Section 4.6.2, the fitness function is a weighted sum of the area
of the floorplan bounding rectangle, the wirelength of the interconnects. and the
“circuit clock period. |

The results of experiments on the test circuits are tabulated in Tables 4.8 and 1.9
for standard-cell and general-cell respectively. It may be noted that a different cell

library is used for experiments with the general-cell case. This library has the same
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timing characteristics as that of the standard-cell, however, the cell dimensions and
thus the area are different. The plots are drawn for three different cases. In the first
case, the fitness is a function of floorplan.area alone. The behavior of the other
two objectives namely overall wirelength and timing performance is plotted against
the number of generations. The best solution found is used in the initial population
for the remaining two cases. In the second case, 50% weight is assigned to area and
wirelength each whereas timing is ignored. The behavior of all three objectives is
plotted against the number of generations. The best solutions found in the previous
two cases are used in the initial population for the third case. In the third czse, all
three objectives are combined in the fitness and the weight assignment is-%0% for
area and 25% each for wirelength and timing objectives.

The experimental results of the “Highway” circuit consisting of 45 modules are
plotted against the number of generations. Figures 4.11, 4.12 and 4.13 show the
variations in area, wirelength and speed performance for two cases. The part (a)
of these plots depict the variation when the fitness function included area objective
only. The other two objectives were ignored. The part (b) of these plots show the
variation when all three objectives are given weights of (Warea = 0.5, W o = 0.25,
Wyire = 0.25.)

We tabulate the results corresponding to three different weight assignments. In
the first column, ‘Area Only’, the fitness includes only the area term (wirelength and

clock period are given zero weights). In the second column. *Area+Wire'. the fitness



Test No. of | Max Area Only Area -+ Wire Area+Wire+Time

Circuits | blocks | Delay Area | Wire | Clock Area | Wire | Clock Area | Wire | Clock
Parityl 15 33.2 34800 | 3538 38.2 | 34800 | 3422 37.9 | 34800 | 3422 37.2
Parity?2 20 36.8 42320 | 5051 45.8 | 41088 | 457 44.2 | 47580 | 4091 42.0
Parity3 30 27.1 43616 | 757 46.4 | 43616 | 6514 43.3 | 43616 | 6124 39.4
Highway 45 15.540 | 104690 | 14527 29.3 | 102200 | 13805 31.2 | 108016 | 13013 25.2
Fract 125 34.1 § 322392 | 82299 86.2 | 319680 | 76100 78.2 | 319680 | 76140 74.4

Table 4.8: Results of experiments considering different objectives for standard-cell
circuits. Column ‘Max Delay’ contains the delay due to logic elements only. Column
‘Clock’ gives the delay of the longest path which includes logic and interconnect

delays.

includes the area and wirelength term with equal weights (50% each). Note that the
lower bound on the clock period is given by the maximum path <elay due to logic
only (columu Max Delay in the tables). In the third column. ~srea+Wire+Time’,
the fitness includes all terms with weights 50%, 25% and 25% for area. wirelength,
and clock period respectively.

For the standard-cell circuits, it may be observed that for all the test cases (Table
4.8), the wirelength has consistently improved. A decrease in wirelength between
5% and 20% was achieved at the expense of a slight increase in area of the bounding
box by only 3%.

In the third case we observed a maximum decrease in the interconnect delay
by a factor of about 43%. For example, for the “Parity2™ circuit. the clock period
when area was the only objective was 45.87 nano seconds. Since the logic delay on
the path is 36.83 nano seconds, the delay due to interconnects is 9.04 nano seconds.

When timing was included in the fitness function, the delay due to interconnect
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was reduced to 5.17 nano seconds. Thus a reduction in the interconnect delay by
12.8% was achieved. The increase in the area of the bounding rectangle in this case
when all terms are weighted is up to a maximum of 12%. Note that the dead space
introduced in this stage is further reduced by the second phase of the floorplanner.

For the general-cell circuits also, the wirelength has consistently improved for
all the test cases (Table 4.9). A decrease in wirelength between 9% and 30% was
achieved without any increase in the area of the bounding box.

In the third case we observed a decrease in the interconnect delay between 20%
and 75%. For example, for the “Cktl” test circuit, tle clock period when area was
the only objective was 37.2 nz.zo seconds. Since thexogic delay on the path is 33.2
nano seconds, the delay due to interconnects is 4.0 nano seconds. When timing
was included in the fitness function, the delay due to interconnect was reduced to
1.0 nano second. Thus a reduction in the interconnect delay by 75% was achieved.
For all the test circuits considered, the reduction in the wirelength and interconnect
delay does not result in increase in the area of the bounding rectangle (except for
“Ckt4” where the area increase is less than 1%). For the circuit “Ckt3”. the area of
the bounding rectangle in the third case is reduced by a factor of 8% as compared
to the first case.

It is further observed that the overall quality of the optimal floorplans for general-
cell circuits are better than that of the standard-cell circuits. Specifically, the wasted

space (area of the bounding box and the wiring space) in the general-cell floorplans
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Test No. of | Max Area Only Area + Wire Area+Wire+Time

Circuits | blocks | Delay Area | Wire | Clock Area | Wire | Clock Area | Wire | Clock
Cktl 15 33.2 14605 | 2561 ] 37.2 | 16100 | 2295 36.5 | 14605 | 2334 | 34.2
Ckt2 20 36.8 19712 32351 42.1 | 20670 | 3014 416 | 19712 | 2668 | 40.7
Ckt3 30 27.1 30880 | 6565 | 41.9 | 29295 | 35630 40.1 | 30652 | 35216 | 39.1
Ckt4 45 15.5 40186 | 10377 | 26.0 | 39712 | 7713 23.8 | 40425 | 7215 21.9
Ckt5 125 341 | 160114 | 59788 | 70.4 | 150150 | 56806 | 68.6 | 147232 | 51231 60.6

Table 4.9: Results of experiments considering different objectives for general-cell
circuits. Column ‘Max Delay’ contains the delay due to logic elements only. Column
‘Clock’ gives the delay of the longest path which includes logic and interconnect

delays.
is smaller than that in the standard-cell floorplans.

The optimal floorplans for the test circuits “Highway™ and “Ckt4” are shown in
Figures 4.14, and 4.18 when area wes the only term in the fitness. The Figures 4.15
and 4.17 show the optimal floorplans when all the three terms were in the fitness.

As an example, the effect of the refinement phase is illustrated in Figure 4.10
for the floorplan of “Parity3” test circuit. The relative positions of the blocks are
retained but the area of the bounding box has been reduced further by about 8%.

In these e:;:periments the interconnect delays were inflated by a factor of 3 in or-
der to make the timing aspects more pronounced. Current implementation does not
take into account routability or pin location issues. The reason is that routability is
usually not a problem for the general cell design style and can be easily incorporated
into our system by integrating a global router with the floorplan sizing procedure of
the second phase. The task of the global router is to compute routing space require-

ments between blocks. The space requirements can be specified as edge weights in
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Figure 4.10: (a) floorplan for the test circuit “Parity3” obtained after phase-1
(Area=43,500); (b) floorplan obtained after phase-2 (Area=10,186).
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the constraint graphs Gy and Gy. Then, the algorithm will use the edge and node

weights to compute correct locations of all the blocks as well as the final dimensions

of the floorplan.

4.9 Conclusion

In this chapter, implementation details of a timing-driven floorplanner were de-
scribed. The floorplanner works in two phases: a simple representation is used
during the first phase to solve a difficult problem, and a constructive technique is
used during the second phase to refine further the floorplan solution in terms of
area objective while easing the restrictions of the first phase. Timing constraints
are included in the cost function.

The floorplanning procedure follows the genetic paradigm. The program uses
net and path timing data from a timing analyzer. The timing analyzer uses a new
criterion (a-criticality) to predict the critical paths prior to floorplanning. Extensive
experiments were conducted to tune the parameters of the program and evaluate

the extent of timing improvement. The experimental results were presented and

discussed.
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Figure 4.14: Floorplan of the best solution for the test circuit “Highway™: fitness
consists of only area objective (standard-cells).
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis, we addressed the problem of timing influenced floorplanning for
general-cell VLSI layouts. A general-cell floorplanner called Genetically Imple-
mented Floorplanner for Timing (GIFT) was implemented. The floorplanning prob-

lem is solved in two main steps. During the first step, we adopt a simpler floorplan

model having slicing structures with rigid blocks and free orientations. The cost

function used is a weighted sum of overall area (functional + routing) and timing
performance. The floorplan problem of the first step is solved using the genetic
algorithm, an iterative technique. The second step is a floorplan refinement phase
where blocks are allowed to have flexible shapes, and the floorplan solutions are no

longer restricted to slicing structures. The main aim of the second phase. which
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employs a constructive refinement procedure, is to minimize the dead space. In this
step. the relative positions of the modules are kept intact and the non-overlapping
feature of floorplan solution produced by the first step is maintained.

In Chapter 1, an overview of the VLSI design process is presented. The descrip-
tion of floorplanning problem is given. The outline of the general-cell floorplanner
is described. The motivation for incorporating timing during floorplanning stage is
discussed.

In Chapter 2, a survey of the literature on floorplanning problem is given. The
general floorplanning techniques are described briefly and the widely used methods
2re discussed. The raiated work on timing-driven design reported in the literature
is reviewed.

In Chapter 3, an overview of genetic algorithm is given. The main steps in
the design of a genetic algorithm are discussed. Various genetic operators namely
crossover and mutation are described and illustrated with examples. The selection
mechanism used for genetic operations and advancing individuals to the next gen-
eration are discussed. A summary of the important features of genetic algorithm is
given.

In Chapter 4, the implementation details of the floorplanner ‘are given. The
various phases of the floorplanner are explained. The objective functions considered
in this work are the area, the speed performance and the overall wirelength. All

the objective functions are illustrated with examples. The wirelength estimation
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method used is an approximation of the Steiner tree method. A comparison of
various estimation methods indicated that our method gives an estimate that is
very close to the actual wirelength requirement. The timing issues are presented.
The delay model and the notion of paths is explained. The performance metric
used in the evaluation of floorplan quality is discussed. Extensive experiments were
performed to determine the values of various genetic parameters. These include the
size of the population, and the values of probabilities for the crossover and mutation
operators. Having assigned the suitable values to these parameters, the experiments
were carried cut to arrive at an appropriate mechanism for advancing the solutions
to the ncxs.generation. Since the cost function includes three terms, three runs of
the floorpianner for the same test circuit were performed. In the first run, the best
floorplan considering only area in the fitness was determined. In the second run, the
best floorplan of the first run was used in the initial population of the second run
and two terms namely area and wirelength were considered in the fitness. The best
solution so obtained was used in the third run and all the three terms were included

in the fitness. The best solution so obtained is reported as the optimal solution in

the tabulated results.

5.2 Future Work

The following issues may be incorporated in this work in future:
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o study the effect of dynamic population size on GIFT

e make GIFT driven by routing requirements

e use fuzzy logic for optimizing the process of decision making with regards to

multiple objectives

Dynamic Population Size

Since genetic algorithm maintains a population of the feasible solutions. its CPTU
time requirement is quite high as compared to the other iterative improvement
techniques such as simulated annealing and simulated evolution. Initial experiments
with GIFT indicated that a large population size results in higher run time and vica-
versa. Based on extensive experiments, the size of the population was chosen 30 and
10 for small and large circuits respectively. In all the experiments, the population
size was kept fixed throughout the run of the algorithm giving rise to a high run
time. If the population size is reduced beyond the values mentioned above, the
quality of the final solution deteriorates considerably which may be attributed to
insufficient diversity in the population. A clever method to improve the run time
without affecting the quality of the final solution is to reduce the population size
dynamically with generations. This idea was proposed and experimented in a genetic
placer system [55]. With dynamic population size, the population is reduced based

on what is termed as a “reduction schedule” which governs when and by how much
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the population is to be reduced. For example, if timing performance of the best
solution does not improve over successive generations by r%,. then the population is
reduced by s%. The reduction process is continued as long as the population does
not decrease beyond t% of the initial population. The values of parameters r. s. and
t can be determined experimentally. The results of the genetic placer indicated an
improvement in the run time by 50% with dynamic population size as compared to
the fixed population size.

In GIFT, the idea of dynamic population size may be incorporated either by
experimenting with aforesaid population size or by doubling it i.e., a s:z2 of 60 for
the smali circuits and 20 for the large circuits. This will have a high diversity in the
population in the early generations and depending upon the reduction schedule. the

population may be decreased dynamically over successive generations.

Routability

Routabilit;»l is a very important objective to be met by a design. The issue of
routability can be investigated as an extension to this work. The more complex
the circuit is, the more dominant becomes the wiring in the final layout. Although.
part of the wiring can be realized on top of the active devices (for instance in
the sea-of-gates design methodology), a considerable portion of the chip is used
exclusively for wiring [56]. This part of the chip may be realized using wiring cells.

If these wiring cells are realized in rectangular regions. the wiring space can be
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thought of as the union of non-overlapping rectangular regions. The selection of
wiring rectangles affects the efficiency of wiring procedures. determines the type
and number of algorithms and the sequence in which wiring can be done.

It has been observed that slicing structures have considerable advantages over
the general rectangle dissections for the reasons discussed next. Firstly, they imply
a decomposition of the wiring space into the minimum number of rectangles (the
slicing lines can be considered as the wiring rectangles). To distinguish these from
the ones corresponding to the cells in the functional hierarchy. they are called junc-
tion cells. Secondly, a feasible sequence can be obtained from the slicing tree for
generating the wiring. Thirdly, all the rectangles can be wired by a channel router.

Finally, any Steiner tree heuristic can be used for routing che nets.

Multi-Objective Optimization by Fuzzy Logic

In this work, we used a mathematical formula as a scoring function to derive the
fitness of a floorplan solution that 1s optimal with respect to overall area of the
floorplan, total wirelength, and timing performance. Each objective function was
assigned a weight. But there is no obvious method of assigning the weight values.
This prompts the need to have a more realistic approach for optimizing the process
of decision making with regards to multiple objectives. Unlike the single objective
optimization problem, no concept of optimal solution is known to exist for the multi-

objective optimization. In reality, the ranking of an individual objective reflects the
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preference of decision makers. A suitable approach would be to have a compromise
between the competing objectives. Fuzzy approach has been found to be useful
exactly for such a kind of problem. Fuzzy logic has been successfully applied to

placement [57]. It would be worth investigating to apply fuzzy logic for floorplanning

optimization.
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