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Chapter 1

Introduction

In the era of VLSI, the size and complexity of digital systems have grown tremen-
dously. To effectively and efficiently design such systems many computer-aided
design tools were introduced and among them was the development of the Hard-
ware Description Languages (HDLs). Since then, HDLs have been extensively used
to describe hardware for the purpose of simulation, modeling, testing, design, and
documentation of digital systems. At first, the use of formal HDLs was confined to
academic circles. They were used in the teaching of computer architecture concepts
as well as the verification of new hardware through simulation. HDLs were not com-
mercialized until early 1980’s. Since then, they saw a wide use as interface between
tools, as documentation of new designs, as interfaces to design databases, and as in-
terfaces between IC manufacturers. The commercialization of HDLs brought with it

the standardization wave. Standardization was motivated by several reasons, most



important among them were:

¢ the need to provide a common interface between CAD tools, this is to answer

the portability issue,

o the need to have a multi-purpose language, that is, a language that is not

confined to a single level of circuit description, and

o the requirement for a language to support the hierarchical description of large
designs; this is indicated by the increasing level of density as well as complexity

of new VLSI circuits.

It is this standardization effort that led to the advent of the VHDL language.
VHDL is now the most important standard in the CAD community mainly be-
cause it satisfies the three requirements listed above [DG86]. Furthermore, VHDL
is supported by efficient hierarchical simulators from the system level to the gate
level and is becoming the language of choice for government, industry and academia
participating in electronic research, business, and education.

The advent of VHDL has provided a foundation for the communities of design
automation, design and test, and manufacturing, to reduce product cost through
improved designer productivity and maintenance capabilities [Wax86]. A stan-
dard hardware description of a design has enabled developers of design workstation,
test equipment, and design automation software to provide common data interface

among their tools. Standard human-readable description of design data facilitates



exchange of data among designers, enabling them to work effectively with design
tools [LSU89]. VHDL not only provides the feature for suitable descriptive medium
but also a design tool. It also provides a standard textual means of description
for hardware components at abstraction levels ranging from the logic gate level to
digital system level [LMS86]. It provides precise syntax and semantics documenta-
tion for the hardware components, enabling design transfer both within and among
organizations.

Another hardware description language that enjoyed and still enjoys widespread
use (mostly in academia) is the AHPL language [HDL92a, HP73]. AHPL is a hard-
ware description language based upon the notational conventions of APL. AHPL
was developed in an academic environment to teach digital system design. Its ba-
sic structural similarity to high-level programming languages makes it accessible to
wider class of users than would be the case with a more specialized hardware lan-
guage. AHPL is neither a standard nor a multipurpose language. It is a language
for the description of digital system at the Register Transfer level (RTL). AHPL is
the easiest hardware language to teach/learn among all existing HDLs. VHDL on
the other hand, can be quite intimidating for a first time user.

This thesis presents the design of a Composer which automatically generates a
VHDL model from an equivalent AHPL input model. This composition is achieved
in two stages with the help of a especially designed template and an external library

of predefined functions. The Composer accurately obtains a VHDL model from any



AHPL input model. Both ‘models are equivalent in their function and the level of

description of hardware (RTL level) [SYBS93, SYBS94].

1.1 Motivation

The principle motivation for the development of such a Composer is three-fold:
1. Rapid prototyping of VHDL models.
2. Easy migration from AHPL-like languages to VHDL.

3. An educational tool to aid in the teaching of a large HDL such as VHDL (with

a large variety of features and constructs).

The Composer will also help reverse engineer the high-level synthesis process.
The AHPL language is a purely RTL language. The composition of VHDL models
from their AHPL counterparts will provide insight into how best one can perform
high-level synthesis of digital systems from VHDL descriptions. The composition
process gives a good understanding of how one can perceive the hardware corre-
spondence from VHDL model.

VHDL is a multi-purpose HDL and is among the hardest HDLs to master. On
the other hand, AHPL is a single purpose language, is relatively small and is among
the easiest to learn. We believe that the Composer developed in this thesis will assist

AHPL modelers to easily migrate and learn VHDL. Furthermore in academia as well



as for novice VHDL users the Composer can play the beneficial role of a computer
aided teaching tool in helping users quickly learn RTL modeling in VHDL. More
experienced users can also find the Composer helpful to quickly generate a correct
RTL-level VHDL model, so that they only need to worry about generating VHDL
architectural descriptions at higher levels (behavioral, timing, performance issues).

The hardware design implemented using AHPL are usually small and concise. In
contrast VHDL code tends to be verbose and lengthy due to the strong data-typing
and data declaration features of VHDL for every element to be declared before use
[NS86]. Although this feature is beneficial for comprehensive design documentation
and readability, it discourages designers to migrate to VHDL. The Composer has
ability to lessen burden of writing the VHDL code by generating entire architecture
of the design including the initial declaration and the correct syntactic execution

statements.

1.2 Literature Survey

Early work in this area mainly concentrated on methodology for using VHDL to
model design at different levels. The facility of VHDL to describe hardware at several
abstraction levels from the logic gate to the system level [LSU89] was encouraging

factor for hardware designer to start modeling in VHDL. The increasing role of



VHDL as the preferred design language also encouraged researchers to use VHDL
for high-level synthesis. Previous attempts at synthesizing from VHDL did not fully
take the advantage of the VHDL capability to represent hardware design at varying
levels.

VHDL provides suitable design environment for specifying, simulating and syn-
thesizing digital hardware [NBD92]. The use of VHDL for synthesis has presented
some problems as VHDL was designed mainly as a documentation language. As a
result, researchers have defined various subsets for synthesis.

Although a lot of attention has recently been given to synthesis from other forms
of hardware representation, the process of synthesis is not new. A great deal of useful
work has been contributed on synthesis from behavioral specification [RKDV92|,
register transfer [NS90], and structural [LG89] level description. Interested readers
are referred to [WC91] for an extensive survey of the research and development of
synthesis systems.

In early development of behavioral synthesis, a VHDL Synthesis System (VSS)
[LG89] was implemented to describe the methodology to generate structural design.
Behavioral synthesis is defined as the translation of a behavioral description into a
structural description. In VHDL, designs can be described in several ways and at
several different levels of abstraction. The authors of the VSS introduced modeling
styles that will allow for efficient generation of high quality designs. This synthe-

sis system supports four design models: combinational logic, functional description,



register transfer description, and algorithmic designs. An interesting modeling ap-
proach was defined for describing the state machine design and to specify the op-
erations to be processed for each machine state. Each state comprises one or more
triplets that specify the actions to be performed. Each triplet is made up of a con-
dition, a next state, and a set of operations. The VHDL guarded block statements
are used to represent each machine state of a design and the block guard to specify
the clocking mechanism.

In later development the concept of templates for synthesis from VHDL [NS90]
was introduced. Two different VHDL templates for synthesis description styles were
implemented: one for dataflow level of description and the other at more behavioral
level. For both of the templates a general synthesis subset of VHDL construct was
defined. This subset was used to design and describe the clocking schemes. The
clocking mechanism used in each of the template was: explicit clocking in which a
variable is used to keep track of the present state; and implicit clocking in which
a boolean vector is used to determine the processing step. Although both of the
templates are synthesizable and a hardware correspondence exists for them, their
synthesis style does not fully provide the facility to easily define the complete state
table of a finite state machine.

In [JW89], a prototype system called VCOMP was developed with the intention
to simplify the introduction of VHDL for novice hardware designers. VHDL Com-

position System (VCOMP) is an environmental tool to provide the functions of a



tutorial and design developer for beginners in VHDL. This system allows users to
effectively create hardware description of a system and formulate test vectors for
simulation to verify correctness of the design. In general this system was confined
in helping the hardware designer to learn the syntax of VHDL and to produce code
for simulation and testing.

The VHDL language is designed to be efficiently simulated. Traditionally, design-
ers have performed simulation with high-level simulation languages or in ad-hoc fash-
ion by writing custom simulators in C or some other programming language. VHDL
enables simulation across many different levels of abstraction. Although, VHDL
presents many syntactic constructs for high-level system simulation [NS86], VHDL
offers tremendous advantage of mixing high-level simulation with low-level simula-
tion. This ability of VHDL to do simulation at multilevel allows rapid-prototyping
process for system designs [SB92].

Simulation for VHDL models has often perceived to be a performance disadvan-
tage compared to simpler and better established hardware description languages due
to magnanimity and complexity of the language. Many VHDL simulators have been
implemented to accelerate simulation performance by means of optimizing compi-
lation and parallel simulation [WS92]. New compilation techniques are available to
reduce runtime complexity and to promote concurrency in the VHDL models.

In view of VHDL’s growing use and pervasive impact on electronic technology,

literature survey has revealed that extensive work is being done in VHDL-related



research and development. Early work concentrated in demonstrating the variety
of design approaches available in VHDL. Later work concentrated in more serious
usage aspect of high-level synthesis from VHDL specification. Much useful work was
done in synthesis of hardware correspondence from VHDL model but it was confined
to subset of VHDL constructs. To lessen the burden of synthesis, the concept of
templates was introduced. Templates provide a variety of styles for modeling in

VHDL.

1.3 Conclusion

In this opening chapter, the significance of the thesis work was presented. The ba-
sic objective of the thesis was, quite simply, to design and implement a Composer
that will assist in transformation of AHPL specification to its functionally corre-
sponding equivalent VHDL model. The primary motivation for the development of
the Composer was to provide the tool to quickly and easily migrate to VHDL lan-
guage for people already familiar with AHPL-like languages. The success and the
widespread use of the VHDL has encouraged hardware designers for using VHDL for
high-level synthesis. The composition of VHDL model from its AHPL counterpart
gives the opportunity to describe as how best one can perform high-level synthesis

of digital system from VHDL description. The composition process provides a better
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understanding of how one cin perceive the hardware design of a VHDL model.

In the following chapter an overview of Hardware Description Languages (HDL)
is presented. This is followed by a series of chapters describing in detail the whole
composition process. The thesis ends with the conclusion chapter that summarizes

the work.



Chapter 2

Hardware Description Languages

This chapter present the introductory overview of Hardware Description Languages
(HDL). The chapter starts with the definition of HDL and specifies some of the cur-
rent usages of HDL. This is followed by the general overview of the two concerned
HDL namely, AHPL and VHDL. Also included in the chapter is a comparison anal-

ysis study of nine well known HDLs and a summary of their features.

2.1 Introduction to Hardware Description Lan-
guages

Hardware Description Language (HDL) is a notational medium for the precise cap-
ture of certain features of a hardware design. They are extensively used for the

purpose of simulation, modeling, testing, design, and documentation of digital de-

11
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sign. These languages provide a convenient and compact format for representing
the output of various design stages.

Hardware description languages basically comprise of a set of symbols and no-
tations for the representation of digital circuits. Some HDL also have the ability
to model the hardware at one or more levels of abstraction. HDL software includes
simulation programs for the hardware design verification, and synthesis programs
for the facility for automatic hardware generation [Nav93].

Today’s hardware description languages benefit from the efforts of designers of
hardware description languages dating back to the mid 1960s. Figure 2.1 shows the
evolution of hardware description languages over the last few decades. In following
section an interesting look is provided at two of these HDLs, namely AHPL and
VHDL. Finally in the last section a comparison summary is included of AHPL and

VHDL against some other well known HDLs.

2.2 AHPL and VHDL

In this section a brief overview of both AHPL and VHDL is presented and dis-
cussed. The section is not intended to be a tutorial on either hardware description
language. Interested readers are referred to [HP73] for details on AHPL, and to
[Arm89, VHDS88, Per93, Nav93, LSU89] for details on VHDL. The sole purpose here

is to briefly introduce both languages and highlight some of their key elements which
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are necessary for the description of the Composer.

2.2.1 AHPL Overview

AHPL is a hardware description language for describing the hardware at RTL level.
AHPL came into existence in academic environment after the need arose for an
easily manageable medium to teach digital system design. Since last two decades it
has served a useful tool for teaching computer organization. The AHPL language
is based on a subset notation of APL with many special added features to describe
hardware specific details. The language is powerful enough to describe highly com-
plex digital systems in an elegant way, yet it is the most compact and easiest to
learn of all hardware description languages.

AHPL was designed as a hardware synthesis language and, therefore, is time-
step oriented. In this language data assignment to registers are done synchronously
by an implicit clock. AHPL does not provide any support for asynchronous hard-
ware designs. In AHPL, digital designs are described using interactive concurrent
modules. Iterative combinational networks such as adders, decoders, etc., can be
described as Combinational Logic Units (CLUs). The language does not support
timing mechanism and assignments of values to buses have immediate effect, while
those to registers happen at the trailing edge of the clock. Figure 2.2 shows an
AHPL description of a 4-bit multiplier of Figure 2.3 that will be later used as the

vehicle to illustrate the composition system.
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MODULE : MULTIPLIER.

MEMORY : ACL[4]; AC2[4]; COUNT(2]; EXTRA[5); BUSY.
EXINPUTS : DATAREADY; CLOCK; RESET.

EXBUSES : INPUTBUS[S].

OUTPUTS : RESULT(8]; DONE; BUSYOUT.

CLUNITS : INC[2]<: INCR{2}.

CLUNITS : ADD[5]<: ADDER{5}.

BODY SEQUENCE: CLOCK

= O DN —

5

AC1,AC2<=INPUTBUS; EXTRA<=5%0; => (\DATAREADY)/(1).
BUSY<=181; => (*ACL[3])/(4).

EXTRA <=ADD[0:4/(EXTRA[1:4];AC2).
EXTRA,AC1<=180,EXTRA,AC1[0:2]; COUNT<=INC(COUNT);
=> ("(&/COUNT))/(2).

RESULT=EXTRA([1:4],AC1; DONE=181; BUSY <=180; =>(5).

ENDSEQUENCE

BUSYOUT=BUSY;
CONTROLRESET(RESET)/(1).

END.

Figure 2.2: AHPL Description of a Multiplier.
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As can be observed in Figure 2.2 every AHPL description consists of basically

three parts:
e a declaration part
e procedure part
e non-procedural part

The declaration part consist of description of all the registers and buses. The
procedural part describes the state machine, and this is followed by a non-procedural
part. Referring to Figure 2.2 the numbered steps between the keywords SEQUENCE
and ENDSEQUENCE form the procedural part defining the states of the sequen-
tial machine. In this part, a statement is active only when the machine is in the
corresponding step (state). A step may have zero or more transfer or connection
statements, followed by a conditional or unconditional branch statements. The desti-
nation of a transfer statement is always a memory element and that of the connection
is non-memory like a bus or a set of output lines. A connection is active throughout
the corresponding control step whereas a transfer is assumed to take place only at
trailing edge of the clock in that step. The step numbers and branch statements
define the sequencer of the control unit of the module. The non-procedural part
follows the keyword ENDSEQUENCE. Statements in this part are always active
regardless of the state of the control sequencer. Permanent connections between

elements are to be described in this segment.
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2.2.2 VHDL Overview

VHDL is a multipurpose hardware description language supporting several abstrac-
tion levels of design description, from the logic/gate level to the system/behavioral
level. In VHDL the hardware objects are expressed using design constructs as either
design entity, configuration, or package, with the internal code being declaration,
specification, expressions, and statements.

The primary abstraction element in VHDL is the design entity since it represents
the logic circuits from the very complex system to simple circuit units. The design
entity consists of the interface description and one or more architectural bodies. The
interface description specifies the entity name and defines the inputs and outputs of
the entity design for the communication with the outside world. The architectural
body gives the internal structure of the object as structural description, data flow
description, a behavioral description, or a mixture of these.

The configuration construct is used to bind a named component to a specific
architecture of a specific design entity. It is also useful to link subcomponents
used in an architecture to lower level entity/architectures. The package concept
originating from Ada provides a mechanism for encapsulating definitions and utility
functions. The package contains a collections of declarations and programs that are
frequently used. This construct (together with many others such as user defined

data-types) is unique to VHDL among other HDLs.
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The entities and component instantiations are primarily used for the structural
decomposition of the system being modeled. While processes, subprograms, package,
etc., are for the purpose of decomposing the behavior of the system.

In VHDL, sequential and concurrent circuit models are represented by ‘process’
and ‘block’ design elements respectively. Statements within a process are executed
in sequence. However, each statement within a block is considered as a process,
that is, all the statements of the block are executed whenever the block is allowed
to run. The language has three classes of objects: constants, variables, and signals.
Variables have no direct hardware correspondence whereas signals have equivalence
in hardware. When a signal has more than one source it is defined with a resolution
function to determine its correct source. VHDL supports a variety of data types
and option for user-defined types. Finally VHDL supports the facility to maintain
multiple design libraries to store user defined and system defined primitives and
descriptions. It also allows the description of synchronous as well as asynchronous

systems, and data transfers can be on the rising or falling edge of the clock.

2.2.3 AHPL versus VHDL

AHPL is simple and concise hardware description language. Beside being one of the
smallest language, it provides a powerful capability to describe complex hardware
design. AHPL has its limitation but it is good language to introduce for beginners

to hardware design.
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VHDL provides a foundation for the communities of design automation, design
and test, and manufacturing to reduce product cost through improved designer
productivity and maintenance capabilities. Being the standard hardware descrip-
tion language VHDL provides the designer and developers a common data. interface
among their tools. VHDL’s rich features make it suitable not only as a descriptive

medium but also as a design tool.

2.3 HDLs Analysis

In this section a short analysis of nine well known hardware description languages is
presented. The analysis is based on the prominent features available by these nine
hardware description languages. The nine selected hardware description languages

are:

IDL - Interactive Design Language

TI-HDL - Texas Instrument Hardware Description Language

CDL - Computer Design Language

AHPL - A Hardware Programming Language

ZEUS - Hardware Description Language

CONLAN - A Consensus Language
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e TEGAS - Test Generation and Simulation
e ISIS - Instruction Set Processor Specification

o VHDL - VHSIC Hardware Description Language

A detailed overview of AHPL and VHDL was presented in an earlier section.
For brief outline of other HDLs, readers are encouraged to review [AWS86, HDL92a,
HDL92b]. The comparison analysis for the nine HDLs was conducted on the basis

of the following seven criteria:

o Scope - the range of hardware: the language support to describe and design at

different levels.

¢ Management of design: support for different design methodologies, design ab-

straction and resuability.

o Timing description: capability to include timing mechanism in a design hier-

archy and abstraction.

o Architecture description: capability to describe at different levels of design

details. Also the control structures for statement execution.

o Description of a design interface: availability of a mechanism for defining

external interface to design description.
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o Description of a design environment: support for design tools and ability for

environment definition.

o Language extensibility: flexibility for user-defined extension and support for

future advances.

The comparison analysis of the nine HDLs is summarized in Table 2.1. In short
all evaluated languages at least support gate-level design and synchronous sequential
design. Most of the languages support hierarchy, modularity and libraries. Archi-
tectural description is possible in most of the languages. All of the languages can
support more than one technology and more than half support multiple methodolo-
gies.

All these excellent hardware description languages in industry today cover var-
ious aspects of hardware design and description, but none matches VHDL’s capa-
bilities. The analysis has shown that no current hardware language capabilities,
shortcomings and other characteristics had been overlooked in developing VHDL.
VHDL has proven to be modern language that is complete and comprehensive. Fur-
thermore, all the salient features of AHPL are available in VHDL, thus AHPL in

terms of features forms a subset of VHDL.
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Features Supported IDL TI- CDL AHPL ZEUS CON- TE- ISPS VHDL
HDL LAN GAS

—

————

Scope-range of hardware:

Digital-system design X
Gate-leve] design x
Combinational design
Synchronous design X
Asynchronous design
Mixed-mode

oM oM M oM

L T I
LI I I
LB I T T
L I o B I |
Mo M X oW m

Management of design:
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"
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Hierarchy X
Modularity X
Incremental compile

Libraries x
Data abstraction

User type conv

Alternate description

Reusable design X
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"
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"
o]
»
LR I I I I I

™
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Timing description:

Timing at all levels X
Specify timing data
User-defined data

Timing constraint

Propagation delay X

L T ]
>
"
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Lo I I A

"
]
»

Architectural description:

Lo
o]
Lol
b

Algorithmic description X
Architecture description X X X X
Parallelism X x X X
User assertions

Generic components X X
Recursive structures X X

L T B A
L]
LB I ]

L B

Interface description:

e
o]
"
»

Explicit interface X b 4 X
Strongly typed interface X X X

Design environment:

o]

Environment information X

Language extensibility:

User-defined data types X
Design tool support

Multiple technologies X X X X X
Multiple methodologies X X X

LA I
"
L I

Table 2.1: Comparison Analysis of HDLs.
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2.4 Summary

This chapter presented introductory material of hardware description languages.
The intention of the first part of the chapter was to give an overall understanding
of the concept of hardware description language and their use in design environ-
ment. The second part of the chapter presented two hardware description lan-
guages, namely AHPL and VHDL. A brief overview of these languages and their
many salient features were highlighted. In the last part nine well-known HDL lan-

guage were selected and a comparison analysis was summarized.



Chapter 3

Translation of AHPL models to

VHDL

The intent of this chapter is to provide a general knowledge to understand the com-
position process. The first part of the chapter describes the translation approach
that was adopted in order to analyze the AHPL specification and to generate its cor-
responding equivalent VHDL model. The remaining part of this chapter is devoted
to present and describe the VHDL construct that are available for the purpose of
composing VHDL model. A comprehensive study was conducted to find the most
suitable set of constructs that will best describe the AHPL specification.

In the next chapter the composition process is presented using the concept learnt

from this chapter.

25



26
3.1 Translation Approach

AHPL is based on the fact that any digital system can be partitioned into a data part
and a control part as shown in Figure 3.1. The data part consists of registers, buses,
CLUs and some basic gates. The control part consists of logic which provides signals
to control the operations in the data part. Additionally, the sequencing of control is
influenced by the branching information fed back from the data part. Generally, the
major role of the control part consists of a schedule defining each operation in the
data part and determining the ordering and timing in which these operation take
place. Similar to other HDLs, AHPL has its own set of conventions for transfers,
connections, register indexing, etc.

VHDL does not require separation between the data flow and the control flow.
If the designer/modeler desires to separate between data and control, he must ex-
plicitly incorporate control mechanism in the design model. A convenient method
is by including guard in all the statements (a guarded statement is executed when
the guard condition is true while all non-guarded statements as well as blocks whose
guards are true are executed in parallel).

Conventionally, in AHPL, all transfers into registers take place at the trailing
edge of the clock pulse. Also, transitions between states of the finite state machine
take place at the trailing edge. However, transfers to buses or input/output lines,

called connections, are active for the entire duration of the clock pulse.
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Figure 3.1: Data and Control Parts.
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In the following sections a detail survey is made on some of the constructs avail-
able in VHDL. These constructs are introduced, with the justification that the
essential features of AHPL can be mapped to its equivalent VHDL model. The
realization of some of the important basic AHPL elements and features with their

possible counter-parts is summarized at end of this chapter.

3.2 Mapping Concept

In this section several concepts are presented that are needed to be understood for
purpose of realization of VHDL model from the AHPL model. These ideas are used
in the building of the Analyzer and the Composer that are described later in the
next chapter. Also included is a description of some of VHDL constructs that are

required for the accomplishment of the task of translation.

3.2.1 Declarations

In VHDL, many features are available to facilitate the description of components
and systems. A digital device in VHDL is represented as a design entity. In its

simplest form, a design entity consist of two parts:

e an entity declaration

e an architecture body
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As shown in Figure 3.2, the entity declaration begins with the keyword entity
and defines the interface to describes the inputs/outputs (I/O) ports of the compo-
nent, that is, what the outside world sees and communicates. Ports define commu-
nication channels between design entities and the outside world. A port definition
involves description of its mode and type. The port’s mode specifies the direction
of information flow through the port. A port type specifies the set of values a port
may assume.

The declarations of INPUTS, OUTPUTS, EXINPUTS, EXOUTPUTS and
EXBUSES in AHPL module are taken care of by the interface description of the
entity. These are declared as ports along with associated input or output mode.
Registers declared as MEMORY in AHPL, and internal BUSES, are declared as
signals inside the section that models the architecture. Table 3.1 gives the summary
of how AHPL declaration elements are realized in VHDL.

Other external characteristics of a component, such as timing dependencies,
can also be included in the entity interface of the component. The name of the
component comes after the keyword entity and is followed by keyword is.

As shown in Figure 3.3, an architecture specification begins with the keyword
architecture, which describe a possible internal functionality of the entity. This
functionality depends on the input-output signals and other parameters that are
specified in the entity interface declaration. A functional description of the compo-

nent starts after the keyword begin.



entity component_name is
input and output ports.
physical and other parameters.
end component.name;

Figure 3.2: Entity Interface Declaration.
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[ AHPL Element l

VHDL Object

]

Input

Port in entity interface in mode

Output

Port in entity interface out mode

Exinput

Port in entity interface in mode

Exoutput

Port in entity interface out mode

Exbuses

Port in entity interface in mode

Memory

Signal in architecture body

Buses

Signal in architecture body

Table 3.1: AHPL Declaration Elements and their VHDL Counter-parts.
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architecture identifier of component_name is
declarations.

begin
specification of the functionality of the
component in terms of its input lines and as
influenced by physical and other parameters

end identifier;

Figure 3.3: Architectural Specification.
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In VHDL several architectural specifications with different identifiers can exist for
one component with a given entity interface declaration. An architecture description
could have three general styles of description: structural, dataflow, and behavioral
or an unrestricted combination of all three. Structural description captures the
schematic view of hardware and consist primarily of interconnected components.
Dataflow description, a little more abstract, specifies data transform being per-
formed in terms of concurrently executing RTL statements. Behavioral description,
the most abstract, specifies data transforms in terms of algorithms for composing
output responses to input changes. In this work the composed VHDL description
that is produced is at the dataflow/RTL level, which is at the same level as the
input AHPL description.

In VHDL, separation of the entity external interface from the internal architec-
ture is a convenient feature. The entity structure can be viewed as describing the
black bozx property and the architecture body as the glass boz property.

In the declaration of signals in the architecture body it is often required to
be declared as resolved signal. A signal which has more than one source is called
a resolved signal. In such cases resolved signal must have a resolution function
associated with it to resolve multiple sources into a single value for the signal. The
resolution function is invoked every time the value of the resolved signal is updated.
If two sources are driving the signal, then the resolution function is invoked with

array of length two which contains the values of the two sources. Based on the
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definition of the resolution, the returned result value is obtained by tying together
the input source values. The resolution function used for the implementation of the
Composer is a simple Wired_Or function which collects the values sent from all the

input sources and applies the OR function to generate a single value.

3.2.2 Processes

The process construct of VHDL represents the fundamental method by which con-
current activities of a digital system are modeled. All processes are executed in
parallel. A process statement has a declarative and statement parts. All the vari-
ables and constant objects are declared in the declaration part and these objects are
initialized only once at the beginning of a simulation run. The statement part of
a process is sequential and is always active. Each process statement defines a spe-
cific action, or behavior, to be performed. This behavior is defined by sequentially
ordered execution statements in the process.

Statements in a process continue to execute until they are suspended. Once
suspended, a process can be reactivated. One way a process can be reactivated is
by designating a maximum time for the process to remain suspended. A common
mechanism for suspending and subsequently conditionally activating a process is the
use of sensitivity list. Following the keyword process, a list of signals in parentheses
can be specified. This list is called sensitivity list, and the process is activated when

an event occurs on any of these signals. When the program flow reaches the last
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sequential statement, the process becomes suspended, although alive, until another
event occurs on a signal that it is sensitive to. Figure 3.4 shows the example of
a process that is controlled implicitly by the sensitivity list. This process, named
Or_Process, has a sensitivity list of two signals, inl and in2. Whenever any change of
state happens for any of these signals, the process is activated, and the assignments
in the statement part of the process are executed. In this case the output signal will
obtain the result of the ‘or’ of the values of the signal inl and in2.

Alternatively, the activation and suspension of the process can be controlled by
a single construct called the wait statement. When the wait statement is executed
inside a process, the process suspends and the conditions for its reactivation are
set. There are three different kinds of conditions: timeout, condition, and signal
sensitivity, and these kinds of conditions can be mixed together in the wait state-
ment. In the timeout form, a maximum delay for the process to be suspended is
defined and when the delay expires, the process is reactivated. In the second form, a
condition must be true before the process can be resumed. The final form provides
a list of signals which is similar to the sensitivity list. Whenever an event occurs
on a signal to which the process is sensitive, the process is resumed. Figure 3.5
shows the example of a process that is controlled explicitly by the wait statement.
In this example, the process statement contains one signal assignment statement
and is followed by the wait statement. The signal assignment statement specifies

that the signal output will obtain the result of ‘or’ of the values of the signal inl



Or_Process:
process(inl,in2)
begin
output <= inl or in2;
end process;

Figure 3.4: Process Statement with Sensitivity List.
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and in2. The wait statement suspends the process until there is an event on either
of the signals inl or in2, at which time execution resumes at the top of the process
statement.

In summary, a process is always active but the statements within a process are
executed in sequence, one after the other. Although processes have parallel with
hardware, and provide a natural way of modeling it, they are not best suitable for
purpose of defining AHPL statement actions. In AHPL, all register transfer and bus
connections are performed concurrently in a single step whereas in the process all
statement are done sequentially. A better VHDL construct is the block statement

that is described in the next section.

3.2.3 Blocks

Similar to many programming languages VHDL provides a partitioning mechanism
that allows the designer to logically group areas of the model. A block statement
starting with keyword block and ending with keyword end, are used to group part
of a design. A block can only be used within the architecture in which it has been
designed and the statements within the block are executed concurrently.

Block structures are self-contained regions and each block may have a declarative
part, which comes between the keywords block and begin. The declarative part
may declare local signals, types, constants, etc. It may also define the interface to

the block by using the port interface list.



Or_Process:
process
begin
output <= inl or in2;
wait on inl, in2;
end process;

Figure 3.5: Process Statement with Wait Statement.
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Block statements have an interesting feature known as guarded blocks. Guards
in VHDL provide a facility to control the operation of signal assignment statement
within the block. These signal assignment statements are known as guarded signal
assignment and are recognized by the keyword guarded between the <= and the
expression part of the statement.

A guarded block contains a guard expression after the keyword block. When
the guard expression is true, all of the guarded signal assignment statements are
enabled, or turned on. When the guard expression is false, all of the guarded signal
assignment are disabled, or turned off. Whenever, a block has a guard expression, the
VHDL compiler also implicitly defines a signal variable with the name guard, which
can be used inside the block to trigger other processes to occur. This signal is read
only and cannot be updated. Figure 3.6 illustrates the latch model of a D_flipflop
using the guarded block. There are two guarded signal assignment statements in this
model. One is the statement that assigns a value to ¢, and the other is the statement
that assigns a value to gb. When the clk signal has a value ‘1’, the guard expression
will be true, and the two guarded signal assignment statements are concurrently
executed after their respective delay.

In summary blocks are very useful for partitioning the design into smaller and
more manageable units. They allow the designer the flexibility to create large de-
signs from smaller building blocks and provide a convenient method of controlling

the execution of signal assignment statement. Based on this fact the VHDL block



dflipflop: block(clk=*1")
begin

q <= guarded d after delayl

gb <= guarded not(d) after delay?2
end block dflipflop;

Figure 3.6: Model of D flipflop Using Guarded Block.
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construct is best suitable for defining register transfers and bus connections in a
AHPL step statement especially as each statement is executed concurrently within
the block. Each transfer action can be translated as guarded signal assignment state-
ment and the implicit guard is used to control the operation of signai assignment
statement. The modeling of the AHPL register transfers and bus connections are

described later in this chapter.

3.2.4 State Machine

To model the finite state machine of the digital system, a mechanism that represents
the state of the system is required. The current state of the control sequencer is
represented by a binary vector of size equal to the number of steps in the AHPL
mod-ile is used. In sequential systems all but one bit of this vector are low. However,
for a parallel machine, depending on the number of concurrent activities (states),
more than one bit may be high. The index of the high bit identifies the current

state of the machine.

3.2.5 Modeling Trailing Edge Transfers

VHDL provides several options to model negative edge triggering. If the state is
modeled as a process, one possibility is to use a wait statement at the beginning of
the process. The statement wait until (clk=‘0’) when included at the beginning

of the process ensures that the process is executed only when the clock changes, and



42

that the change is from ‘1’ to ‘0’, representing the trailing edge. VHDL does not allow
simultaneous use of a sensitivity list and wait statements. The reason is because
that might create a contradiction within a process at execution time. Therefore we
cannot put the clock signal in the sensitivity list of the process and have a wait
on clock statement inside the process. Modeling a state as a process is not feasible
since a state generally has more than one data transfer, which must be executed in
parallel. The correct representation in VHDL of these concurrent transfers is via
the block construct. To make the execution of the transfers within the block happen
at the trailing edge, it is sufficient to make the block guarded on a trailing edge
condition. This is the solution adopted in this work. Figure 3.7 shows how trailing
edge condition can be implemented in VHDL.

As mentioned in the last section, the guard will control execution of all the state-
ments within the block. The guard condition clock=‘0’ and not clock’stable
assures that all the guarded assignment statements will be executed immediately
when the clock changes its state from ‘1’ to ‘0’ i.e., the trailing edge condition. The
attribute property stable is used to ensure that the clock value is stable for the guard

to become true.

3.2.6 Modeling Transfers to Buses

Since transfers to buses in a state are also executed in parallel, the model is similar

to the one above, except that the trailing edge condition is removed from the guard



trailing_-edge: block(clock=‘0’ and not clock’stable)
begin

end block trailing_edge.;

Figure 3.7: Trailing Edge Implementation.
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of the block. This method allows the bus connection to be made any time during

the clock high edge, (i.e., when that particular state is active).

3.2.7 Modeling Conditional Transfers

In AHPL, there are three possible forms of a clocked transfer and two forms of a
connection statement. In a simplest clocked transfer there is only one single source
which is merely transferred into the destination register. The remaining two form
conditional transfers, namely source control and destination control. Similarly, bus
connection is either of simple connection or source control.

The source control can be easily implemented by appending a series of when
and else clause at the end of the signal assignment statement for each of multiple
sources. For each of the possible sources, its condition could be appended at the
end of its when clause. The transfer or the connection will only be executed when
its conditional statement is true. On the other hand, the destination control is best
implemented by use of the if structure. The if statement is used to select destination
signal to be updated based on the truth of the condition. Unfortunately, the ¢fis not
appropriate as the implementation of the composition process uses block structure
to represent actions part for each state and the if is a sequential statement whilst
the block structure only allow concurrent statements. However, block structure does
allow the use of process statement which could include the if statement. The use of

process and if statement is awkward method to implement destination control. A
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better solution is to create a nested block with its guard used to condition for the

destination control condition.

3.3 Mapping Summary

In this chapter a detail study of VHDL features was conducted and proposal was
presented on how declarations, state automaton, edge triggered transfers, and other
processes in AHPL can be mapped to VHDL. Modeling styles for the trailing edge
and, the register transfer and bus connection were proposed using a subset of VHDL
constructs. Ideally the process construct seems sufficient to model AHPL features
but as revealed it is not the most suitable. The VHDL guarded blocks provide a very
convenient method to model various aspect of AHPL specification.

Table 3.2 summarizes some of the important basic AHPL elements and features

and their possible counter-parts.



[ AHPL VHDL
AHPL Module entity
CLUs components
MEMORY stgnals in the architecture body
BUSES stgnals in the architecture body
INPUT lines port in entity declaration

OUTPUT lines

port in entity declaration

Concept of state

variable bit_vector

Trailing edge transition

process with ‘wait until(clock=‘0’)’
or Guarded blocks with trailing edge
condition included in the guard

Connections to BUSES

block of statements without guard of
edge condition

Transfer to Registers

block of statements with guard of
edge condition

State Transitions

process with wait or guarded block

‘,” (catenation)

&

Reduction operator

VHDL predefined function

Source Control

Nested when or else clause

Destination Control

Nested block structure
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Table 3.2: Basic AHPL Modeling Elements/Features and their VHDL Counter-

parts.



Chapter 4

The Composition Process

In the last chapter, VHDL language was examined and a translation approach was
defined. Based on the translation approach a mapping scheme from AHPL descrip-
tion to VHDL was derived using a subset of VHDL constructs. In this chapter,
the mapping concept defined in the last chapter are utilized in the development of
the composition process that allows the translation of the AHPL specification to its
functionally equivalent VHDL model. Along with the overview of the composition
process a detail description is also given for all its components.

The chapter ends with an illustrative example demonstrating the composition
process. During the discussion of the components of the composition process, parts
of an example were used to show the intermediatory results that are generated before

the final VHDL model is produced.

47



48
4.1 Composition Overview

In this section a general overview is presented of the proposed composition process.
A brief overview is also given for the different components of the composition process
and these components are discussed in more detail in the later sections.

The composition process is a method of composing the AHPL specification and
generating its corresponding functionally equivalent VHDL model. It is performed
in two stages using several pre-defined composition tools. The block diagram of the
composition process is given in Figure 4.1.

In the first stage, the Analyzer performs the syntax check for the input AHPL
specification and produce intermediatory output for the Composer. Initially, the
design specification written in AHPL is analyzed to check for syntactic errors. The
Analyzer scans the AHPL code line by line and reports of any syntax format that is
not allowed. Although the AHPL code may pass the syntactic correctness but there
may still remain some semantic errors which are not detected by the Analyzer. It
is left up to the user to make sure that no semantic faults exist in the input AHPL
code.

If the description is syntactically correct, the Analyzer produces the required
data structures of the data and control paths of the design. The generated data
structures undergo a series of transformations to produce a concise tabular data

structure capturing both the data and control (finite state machine) paths.



Figure 4.1: The Composition Process Steps.
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In the second stage the Composer utilizes the output of the Analyzer with the
especially designed composition tools to generate the required VHDL output model
[LG89]. There are two composition tools, The VHDL Template and The Utility
Library, that were especially developed in order to simplify the composition process.
The template structure is described later in this chapter. The Utility Library being
used by the Composer contains predefined utilities that assist in the translation of
many AHPL feature and functions.

In the next few sections the components of the composition process are described
in more details. The chapter concludes with an example of generated VHDL model

for 4-bit Multiplier example of Figure 2.2.

4.2 The Analyzer

The primary role of the Analyzer is to diagnose and analyze the AHPL specification
for the control and data path and accordingly generate FSM. It is also used to check
for the syntactic correctness of AHPL code. Figure 4.2 shows the block diagram of
the Analyzer.

The Analyzer performs its task in two steps. In the first step, the AHPL code is
passed through the Syntactic Checker for the verification of the syntax. The AHPL
input specification is fed in to the Syntaz Checker and output is forwarded to Control

& Data Path Generator. For Syntaz Checker to perform for syntax correctness, the



AHPL §
Grammar

AHPL input
description

Syntax
Checker

{

| Control & Data

Path Generator

I State Table I

Y Y Y
Declaration State Register Transfer
Information Control & Bus Structure

Figure 4.2: The Analyzer Block Diagram.
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AHPL grammar is also provided.

In the second step the FSM Control & Data Path Generator produces state
tables. The Analyzer studies the declaration part, procedural part, and the non-
procedural part of the AHPL description sequentially and generates comprehensive
reports that fully describe the control actions of the AHPL specification. These

reports are in the form of three tables:

e Declaration Information.
e State Control.

o Register Transfers & Bus Structures.

For the purpose of demonstration an extended-FSM is produced to show the
information generated by the Analyzer. The FSM diagram for the AHPL description
of Figure 2.2 is shown in Figure 4.3. The actual output produced by the Analyzer

are three state tables as shown in Tables 4.1, 4.2 and 4.3.

4.2.1 The Analyzer Implementation

The Analyzer was built using classic UNIX compiler tools, namely lex and yacc
[LMB92]. These tools were chosen as they provide powerful and flexible program-
ming development environment to represent AHPL grammar. AHPL is a context-

free grammar in Backus-Naur form and can be easily be encoded using the lex and



®

AC1[3]

53

=% EXI‘RA«ADD(O:‘A]{E&I@A{i:A}-;ACz);
ACI[3] 7
BUSY<=1$1 EXTRA,AC1<=1$0,EXTRA,AC1{0:2]

COUNT<=INC(COUNT)

mm% T____wew || @&/comﬂ

' AC1,AC2<=INPUTBUS RESULT=EXTRA[1:41,AC1
EXTRA <=5$0 DONE=1§1 BUSY<=1$0

ﬂ ] [ ]

DATAREADY

Figure 4.3: FSM Diagram of AHPL Model.



| name | type |length [ source-cnt |
acl memory 4 2
ac2 memory 4 1
count memory 2 1
extra memory 5 3
busy memory 1 2
dataready | exinput 1 0
clock exinput 1 0
reset exinput 1 0
inputbus | exbus 8 0
result output 8 1
done output 1 1
busyout | output 1 1
inc clu=incr 2 0
add clu=adder 5 0

Table 4.1: Declaration Information Table.



| current.stateJ next_sta.te—l

tran-cond ]

1 1 dataready=*0’

1 2

2 4 ac(3)=0’

2 3

3 4

4 2 and.red(count)="0’
4 5

5 5

Table 4.2: State Control Table.
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| state | type | dest_vect | dest_cond |

sour.vect

| sour_cond |

1 | register | acl inputbus(0 to 3)

1 | register | ac2 inputbus(4 to 7)

1 | register | extra “00000”

2 | register | busy ‘v

3 | register | extra addl-out(0 to 4)

4 | register | extra 0 & extra(0 to 3)

4 | register | acl extra(4) & acl(0 to 2)
4 | register | count incl_out

5 | bus result extra(l to 4) & acl

5 | bus done ‘7’

5 | register | busy ‘0’ ,

Table 4.3: Register & Bus Transfers Structure Table.
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yacc tools. The yacc tool was used to generate the parser from the grammatical
description of the AHPL language, while the lex tool was used for making lexi-
cal analyzer. The yacc tool in general provides a way to associate meanings with
the components of the grammar in such a way that as the parsing takes place, the
meaning can also be ‘evaluated’.

The development of the Analyzer was performed in two steps. In the first step,
the yacc tool was used for the specification of each rule or production of the AHPL
grammar. For each rule, an action clause can be augmented —~ statement of what
to do when an instance of that grammatical form is found in the AHPL code being
parsed. This ‘what to do’ was written in C, with conventions for connecting the
grammar to the C code. This part was used to define the semantic for the Control
& Data Path Generator for purpose of extracting information for the state tables.
In the second step, a lexical analyzer was created to read the input AHPL code
being parsed and break it up into meaningful chunks for the parser. These lexical
chunks are known as tokens and are used for defining of the keywords and symbols
of the AHPL language. For each keyword and symbol of AHPL language recognized
by the lexical analyzer a matching token was returned to the parser. There are two
special types of tokens that are returned to parser: one for the string and one for
the number. For both of these types the name corresponding to the token is return
along with its value.

The complete 1lex and yacc programs for the Analyzer could be found in the
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appendices. Figures 4.4 and 4.5 show a part of 1lex code and yacc production rule
respectively. As can be seen in Figure 4.5, a yacc production rule comprises of
two part. In the first part the definition of the grammar rule is stated and this is
appended with an optional action part. The selected sample shows the production
rule for the recognition of the ‘module’ head part of an AHPL code. The rule
is looking for the keyword MODULE followed by the symbol ‘.’ and an id string
representing the name of the module. If this rule is satisfied, the action part of
the production rule is executed and in this case it is simply printing the name of
the module. For the yacc program to successfully match the different tokens, the
lexical analyzer is intermediately invoked. For this particular production rule the
three tokens are found by using the three lexical rules shown in Figure 4.4. The
lexical rules are simply represented using the regular expression and if a match
occurs its action part is executed. In all cases the name of the token is returned.
For the tokens ID and CID its string value is also returned in the global variable
id_val and for token INTEGER its integer value is returned in the global variable

int_val.

4.2.2 State Table Generation

The lex and yacc tools used for the implementation of the Analyzer are initially
used to perform the syntax check for each line of the AHPL code. The verified

statements are then analyzed to extract all the information for the generation of the
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id [a-zA-Z][a-zA-Z0-9]*

%%

module]MODULE  { return MODULE; }

“n { return COLON; }

id { strcpy(id-val,yytext);
return ID; }

Figure 4.4: Sample Lex Code.



modhead

: MODULE COLON ID
{ printf(“\nModule Name: %s\n",id.val); }

Figure 4.5: Sample Yacc Code.
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state tables. Basically, the Analyzer breaks up the AHPL statements into smaller
chunks and then recognizes the predefined structures. These structures are studied
and the information extracted is used for the generation of state tables. These state
tables are stored into specially design data structures tables.

The recognition and the extraction of the information are performed by the
production rules of the yacc program. The yacc rules first breaks up each line of
the AHPL code read and then recognizes the required pattern of tokens. Once this
is achieved the action part of the rule uses the broken up elements to extract the
required information. There are three general types of information that are needed
for the extraction. The first type is the declaration information of the AHPL code;
the second type for the state control and; the third type of information comprises
register transfers and bus connections. These information are tabulated as shown
in Tables 4.1, 4.2 and 4.3.

An AHPL module in general can be partitioned into three parts: the module
head, declaration part and the module sequential part. The module sequential
part can further be divided in two separate sections: procedural part and the non-
procedural part. The Analyzer performs the scanning of the AHPL code in sequence
for the module head, declaration part, and finally the procedural and non-procedural
parts. For the module head, the Analyzer simply checks if it exists in the correct
format and then extracts the name of the module. This name is used for the naming

of its equivalent entity in VHDL model. For the declaration part, all the declared
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elements are recorded along with its properties. As can be seen in Table 4.1, the
name of each element is stored along with its type and length. Also recorded is
the number of times an element is updated from different sources in the module
sequential part. Initially, when scanning the declaration part, only the element
name, type, and its length are recorded. The source count is updated later when
the the module sequential part analysis is complete. The source count is simply
calculated by counting the number of sources for each element in the Register &
Bus Transfer Structure Table. For declaration elements of type INPUT, EXINPUT,
EXBUSES and the CLU, the source count is by default 0, as no updates are allowed
for these elements. This source count is needed for the purpose of determining
which elements of the AHPL declaration need to be declared as resolved signals in
the VHDL model.

The information extraction for control and data paths are performed simulta-
neously as the module sequential part is scanned. The Analyzer, for each step of
the AHPL code in the procedural part, records the current state (or the current
step number) and the next possible state(s). This state transition information is
stored in State Control Table as shown in Table 4.2. The State Table contains all
permissible next states for each state scanned. Also included for each transition any
associated transition condition that is required. The Analyzer also assumes one of
the next possible state for a step is the next higher step number. This assumption

is implicit in the AHPL language and is also taken care of by the Analyzer.
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For each step scanned in the procedural part, the Analyzer searches for all the
register transfer and bus connection statements. For both of these transfers the
basic information recorded is the state number in which transfer is made, type of
the transfer (register or bus), the destination vector, and the source vector. For the
destination vector and the source vector, any associated condition are also recorded
respectively. The compiled information is stored in the Register & Bus Transfer
Structure Table as shown in Table 4.3. The source vector expression extracted from
AHPL are transformed into VHDL style expression format before storage. Although
the yacc program does not include the transformer for the AHPL expression to
VHDL expression, a simple routine could be built to do the required expression
translation.

In summary, the Analyzer plays an important role of examining the AHPL code
to extract and generate the control and the data paths of an AHPL specification. In
addition, the Analyzer is also able to do the task of syntactic check. The semantic
check is not performed by the Analuzer but this feature could be implemented. The
Analyzer could be enhanced by embedding semantic check rules in the action part

of the grammar production rules in the yacc program.
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4.3 The Composer

The objective of the Composer is to use the state tables produced by the Analyzer
to generate the final VHDL code. Basically, the Analyzer diagnoses the AHPL
code and produces its break-up summaries. The Composer uses these summarized
information to build the VHDL model. This task is accomplished by the use of
composition tools that are described later in this chapter. Figure 4.6 shows the
block diagram of the Composer. The tasks of the Composer is divided into three

modules:

o Declaration Transformer

o Controller Generator

o Data Path Builder

In general, the Composer is a simple formator which produces output in a spec-
ified format. The template style defines the format for output VHDL. The modules
of the Composer could easily be implemented using the print command of any high-
level language.

In the following sub-section a detail description is presented of the three task of
Composer. Also included for each module is the algorithm that may be built for its

implementation.



I State Table !
, + '

Declaration § Controller Data Path
Transformer | Generator Builder

VHDL Control Register & Bus
Declaration Construct Transfer Format
Template
Compiler

Composed
VHDL Model

Figure 4.6: The Composer Block Diagram.
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4.3.1 The Declaration Transformer

This is a simple module that uses the Declaration Information Table to produce
corresponding VHDL declaration constructs. The declaration transformer reads the
Declaration Information Table and based on its nature creates its translated VHDL
format in the appropriate section of the VHDL model. Figure 4.7 show the algorithm
of the declaration transformer.

The declaration transformer starts by searching for all the variable names of
types INPUT, OUTPUT, EXINPUTS, EXOUTPUTS and EXBUSES. For each of
these names, a corresponding declaration is written in the entity interface decla-
ration section. These are declared as ports with their respective input or output
mode. The modes allowable for the types OUTPUT and EXOUTPUT is out and,
for types INPUT, EXINPUT and EXBUSES is in. Also for each of these AHPL
declaration elements the length field of the Declaration Information Table is used
to select the VHDL type needed to complete its declaration in the port format.
These types are predefined in the Utility Library and are simply based on binary
bit vectors of different lengths. The field source_cnt is ignored for these five types as
the allowable source_cnt is 1 for types OUTPUT and EXOUTPUT, and, 0 for type
INPUT, EXINPUT and EXBUSES.

For the remaining two types, MEMORY and BUSES, their declaration format

is created in the declaration part of the architecture body. These two types are
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Algorithm Declaration_Transformer

BEGIN
infile=FILE(“Declaration Information Table”)
WHILE NOT(EOF(infile))
dec_rec=READ(infile)
dec_type=“mem.vec."+dec_rec.length
CASE dec.rec.type=(input,output,exinput,exouput,exbuses)
IF dec_rec.type=(output,exouput)
mode=“out”
ELSE
mode="“in"
ENDIF
/* Port Declaration */
make_port_stm(dec.rec.name,mode,dectype)
CASE dec_rec.type=(memory,bus)
IF decrec.sourcecnt > 1
res_fun="“resolution_fun_"+dec_rec.length
/* Resolved Signal Declaration */
make.ressig_stm(dec_rec.name,res fun,dec_type)
/* Disconnection Declaration */
make_dis_stm(dec_rec.name,dectype)
ELSE
/* Signal Declaration */
make sig_stm(dec_rec.name,dec type)
CASE dec_rec.type=(clu)
/* Component Declaration */
comp-dec_stm(dec_rec)
/* Component Specification */
comp.spe_stm(dec_rec)
/* Component Instantiation */
comp-ins_stm(dec_rec)
ENDCASE
ENDWHILE
END Declaration Trans former

Figure 4.7: Algorithm for Declaration Transformer.
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simply declared as signals after declaration of control signals. Similarly, for both
of these types, the length field is used to determine VHDL type needed from the
Utility Library. For AHPL declaration which has source_cnt more than 1, they are
declared as resolved signals. For each of the resolved signal an associated resolution
function is also assigned and disconnection specification for that resolved signal is
also created. The disconnection specification is described later in this chapter with
the description of the template.

The final part of the Declaration Transformer involves the mapping of the CLU
declaration into the VHDL format. The CLU mapping requires three steps and

these step are described later in Section 4.4.3.

4.3.2 The Controller Generator

The information in the State Control Table along with the template style are used
by the Controller Generator to produce the control mechanism in the VHDL model.
The role of this module is also quite simple and can be easily implemented. The
main part for the Controller Generator is the creation of the control block and
the generation of the control transfer statements for each of the data blocks. The
control block in conjunction with the embedded control transfer statement in the
data blocks fully define the control path of an AHPL specification. The details of
the control mechanism is described in Section 4.4.1. The algorithm of the Controller

Generator is presented in Figure 4.8.
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Algorithm Controller Generator
ARRAY sour_vect[max.sour],sour_cond[max_sour]

BEGIN
infile=FILE(“State Control Table”)
/* Control Signal Declaration */
state.cnt=% unique(infile.current_state)
state_type="‘“state_vec.” +state_cnt
res_fun="“state_resolution.” +state_cnt
make.sig_stm(“activestate” state_type)
make._ressig_stm(“next.state” res_fun,state_type)
/* Control Block Generation */
blk_name=*“control”
blk_head=*“(clock="0" and not clock’stable) or reset=°‘1")"
make_blk(blk_name,blk_head)
/* Guarded Assignment Statements for Control Block */
sour-vect[1]=“10; ... Ostate_cnt—1"
sour_cond[l]=“reset=‘1""
sour-vect[2]="“next state”
sour-cond[2]=*"
grd_assig-stm( “control”,“activestate”,2,sour_vect)
sour-vect[1]=%0y . .. Ostatecnt”
sour-cond[l]=*"
grd_assig-stm( “control”,“next_state”,1,sour_vect)
/* Guarded Assignment Statements for Data Blocks */
FOR i=1 to state-cnt
srclst={List of source for current _state=i}
sour.-cnt=0
FOR each src_vec € srclst) DO
sour_cnt=sour_cnt+1
sour_vect[sour_cnt]=src_vec.next state
sour_cond|[sour_cnt|=src_vec.tran_cond
ENDFOR
blk_name="“step.”+i
grd-assig_stm(blk name,“next_state” ,sour_cnt,sour_vect)
ENDFOR
END Controller_Generator

Figure 4.8: Algorithm for Controller Generator.
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For the control block, the Controller Generator requires the creation of the special
control signal: activestate and nextstate. The activestate signal is used to keep
track of all the steps (or states) that are currently running. On the other hand, the
next_state is used for recording the states that may become active in the next clock
cycle. Both of these signals are declared as binary vectors with length equal to the
total number of steps in the AHPL code. The guarded control block is created and
the guard is defined as the trailing edge condition of the clock.

For each data block, the Controller Generator scans the state control table and
accordingly writes the VHDL statement for the updation of the next.state signal.
The generator checks the tran_cond field for any transfer condition. The expression
in this field is used to build the when clause of the guarded signal assignment. In the
case when there is only one possible future active state, no when clause is required.
It is possible that a state may have several next states and in such case the guarded
signal assignment is appended with when and else clauses. In general case the value
assigned to the next_state vector will have only one of its bit high. The template
design style supports concurrent processing of more than one data blocks and in
such a case more than one bit could be high. As special case for the DEADEND
AHPL statement the next.state field in the State Control Table is value 0 and the

nextstate is assigned bit vector of all 0s.
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4.3.3 The Data Path Builder

This module uses the register transfer and bus connection information stored in the
Register & Bus Transfer Structure Table to build a series of the data blocks. The
template style also specifies the design of the data block structure and is used in
writing the data block in the specified format. The algorithm for the Data Path
Builder is shown in Figure 4.9. A detail description of how data path mapping is
achieved is presented in Section 4.4.2.

The Data Path Builder starts by creating a data block for each state. It scans
the Register & Bus Transfer Structure Table for all the records for a given state.
The task of this module is divided into two parts. In the first part, all the transfers
with the type bus are read and their corresponding guarded assignment statements
are generated. In the second part, all the register type records are read and its
information is used to write its guarded assignment statements. These guarded
statements are written inside a nested block with its own guard. The guard of the
outer block is defined using the step condition and for the inner block the trailing
edge condition.

For source control register transfer and bus connection, there exist multiple
sources. In such a case a dest_vect may be updated with one or more possible
values. When creating the guarded assignment statement the sourc_cond field is

used to generate the when and else clause statement to determine which source
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ALGORITHM Data_Path_Builder
ARRAY sour_vect{max.sour],sour-cond[maxsour]

BEGIN
infile=FILE(“Register & Bus Transfer Structure Table”)

state_cnt=% unique(“State Control Table”.current.state)

FOR i=1 to state.cnt
blk_name="“step.”+i
blk-head="“(activestate(” +i+“)="1’ and reset=0")"
make_blk(blk name,blk head) /* Data Block generation for each step */
reg-st={List of records of infile.type=‘“register” for infile.state=i}
busIst={List of records of infile.type=“bus” for infile.state=i}

IF NOT(EMPTY/(busIst))  /* Checking for any Bus Connections */
FOR each new bus_trf € bus.Ist DO
srcAst={List of sources for bus_trf.dest_vect}
sour_cnt=0
FOR each stc_vec € srclst DO
sour_cnt=sour.cnt+1
sour_vect[sour_cnt]=src.vec.sour.vect
sour_cond[sour-cnt]=src_vec.sour-cond
ENDFOR
blk_name="“step_” +i
grd.assig_stm(blk_name,reg_trf.dest_vect,sour_cnt,sour_vect)
ENDFOR
ENDIF

Figure 4.9: Algorithm for Data Path Builder.
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IF NOT(EMPTY/((reg.st)) /* Checking for any Register Transfers */
blk_name="“edge." +i
blk_head=“(guard and clock="0" and not clock’stable)”
make_ blk(blk_name,blk head)
FOR each new reg_trf € reglst DO
IF (EMPTY/((reg-trf.dest_cond)) /* Regular Register Transfer */
srcst={List of sources for reg_trf.dest_vect}
sour.cnt=0
FOR each src_vec € srclst DO
sour.cnt=sour.cnt+1
sour-vect[sour_cnt]=src_vec.sour_vect
sour_cond[sour-cnt]=src_vec.sour_cond
ENDFOR
blk_name="“edge_” +i
grd.assig-stm(blk_name,regtrf.dest_vect,sour_cnt,sour_vect)
ELSE /* Destination Control Register Transfer */
sour-cnt=1
sour-vect[sour_cnt]=reg_trf.sour_vect
sour_cond[sour_cnt]="
blk_name="“cond.” +i
blk-head=“(guard and "+ref_trf.dest_.cond+*)”
make_blk(blk_name,blk head)
grd.assig_stm(blk_name,reg-trf.dest_vect,sour_cnt,sour._vect)
ENDIF
ENDFOR
ENDIF
ENDFOR
END Data_Path_Buzlder

Figure 4.9: Algorithm for Data Path Builder (cont).
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vector is used.

For destination controlregister transfer, there will exist a condition in the dest_cond
field. This condition will determine whether the register transfer must take place
or not. This type of conditional transfer could easily be implemented by creating
a nested block of guarded assignment statements. The guard of this nested block

simply is the dest_cond ANDed with guard signal of the outer block.

4.3.4 Template Compiler

In the final stage of the Composer the Template Compiler collects all the trans-
formed information generated by the three Composer modules. It then assembles
the information together in style of the template. All the gathered information is
formatted in the correct VHDL syntax. The final output of the Template Compiler

represents the equivalent representation of the AHPL specification.

4.4 VHDL Template

In this section the design style of the VHDL is presented. The template is the
skeleton of a generic VHDL model. This skeleton is defined to achieve accurate
translation without creating complex VHDL code [NS90]. Using the input AHPL
specification, the skeleton is customized (augmented) with the necessary details

to compose a complete VHDL description functionally equivalent to the original
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AHPL description. The clocking mechanism is explicitly defined in the template.
The description style partitions the hardware of each module into data and control
sections. Each section is implemented by a VHDL guarded block which uses the
clocking scheme as the guard.

VHDL has a very rich variety of constructs for various applications. Since the
AHPL model is an RTL functional description of the design, only a subset of VADL
is sufficient to fully capture an equivalent RTL description of the AHPL model.
The template includes only those constructs that are needed for the accurate and
correct translation from AHPL to VHDL. The designed template style is shown in
Figure 4.10. The template accommodates the multi-way branching feature of AHPL.

The template starts with the inclusion of the library that contain all the nec-
essary functions and definitions. This is followed by the entity declaration and its
architectural description. The entity merely contains the name of the entity being
described and all its input and output port specification.

In the template, the architectural description begins with declarations of essential
control signals and the signals used by the architectural body. The declaration of all
the data registers and buses are made along with the declaration of all CLU output
signals. This is followed by the disconnection specification for all the resolved signals.
The disconnection specification is required for the purpose of turning off the source
drivers of the resolved signal that are not active. The' disconnection specification

only applies to drivers of guarded signal assignments. As in the template, all the



library util_lib;
use util lib.all;
use util_Pkg.all;
entity template is
port ( “input and output port specification”);
end template;
architecture template_body of template is
- - declaration of control signals.
signal active_state:state_type;
signal next._state:resolution_type state_type register;
- - declaration of all data registers and buses.
- - declaration of all CLU outputs.
- - disconnection specification for all the
resolved signals.
- - component specification for each CLU used.
- - configuration statements with binding indication
for each component.

Figure 4.10: Template Style.
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begin
-- component instantiation statements.
control:block ( “clock trailing edge & reset detection™)
begin
-- update active.state vector.
-- clear the next_state vector.
end block control;
step-i:block ( “step ¢ and reset signal detection”)
begin
-- guarded bus assignment statements.
edgei:block ( “clock trailing edge detection”)
begin
- - guarded data register assignment statements.
end block edged;
-- set-up the next_state vector.
end block step.i;

step-j:block ( “step j and reset signal detection”)
begin
-- guarded bus assignment statements.
edge_j:block ( “clock trailing edge detection”)
begin
-- guarded data register assignment statements.
end block edge.j;
-- set-up the next._state vector.
end block step.j;
end_seq: block ( “reset signal detection”)
begin
-- guarded data register and
bus assignment statements.
end block end-seq;
end template_body;

Figure 4.10: Template Style (cont).
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signal assignments are made inside a guarded block, the source drivers of non-active
blocks are turned off as their guard expression becomes FALSE. The effect is that
only the array of values with active states are passed to the resolution function.
The disconnection specification is followed by the declaration of all CLU component
specifications along with its binding configuration statements.

The body of the architecture contains a control block, a series of data blocks (one
for each step of the procedural part of the AHPL description), and a block for the
non-procedural part (statements between the keywords ENDSEQUENCE and END
AHPL). Every block construct contains a guard condition, which when true enables
the execution of all the statements in the block body concurrently.

All the operations in the non-procedural part are contained in the last block. This
block does not contain any control signals and it is always active. For asynchronous
control reset facility, a special reset signal is appended to all the guard conditions

of the control and data blocks.

4.4.1 Control Path Emulation

In the template, the architectural description contains declaration of two important
control signals ACTIVE_STATE and NEXT_STATE. These two signals are used to
store the present active states and the future active states. These two signals are
of type binary vector of size equal to the number of steps in the AHPL description.

The tth bit of the vector indicates whether control state ¢ is active (bit=1) or not
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(bit=0). More than one bit of the vector could be high. Since there may be several
INITIALSTATE:s leading to this NEXT STATE, NEXT STATE is declared as a
resolved signal. Every resolved signal requires a resolution function to enumerate its
sources and assign the appropriate value to it. Under normal sequential execution
of the states, one state will be updating the NEXT_STATE signal. In concurrent
execution of states the sources of all the active states are combined together by
an or resolution function and assigned to the NEXT_STATE. Following the control
signals, all the memory and other elements of the declaration part of the AHPL
description are declared in their respective VHDL representation.

The architectural body contains a control block whose basic role is to update the
ACTIVESTATE signal with the NEXT_STATE signal and to clear the NEXT_STATE
vector at the trailing edge of the clock. Figure 4.11 shows the style of a generic con-
trol clock and Figure 4.12 an example of sample control block. As can be seen
in Figure 4.12, the control block is guarded on the trailing edge condition. The
control block contains two guarded signal assignment statements that are executed
concurrently when the trailing edge condition becomes TRUE. The overall effect is
the updation of the ACTIVESTATE vector with the NEXT_STATE vector and the

clearance of the NEXT .STATE vector.



control:block ( “clock trailing edge & reset detection”)
begin

-- update active_state vector.

-- clear the next_state vector.
end block control;

Figure 4.11: Generic Control Block.
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control:block ((clock=‘0" and not clock’stable)
or reset=*‘1¢)
begin
activestate<=guarded “10000” when reset=*‘1’
else next_state;
next_state<=guarded “00000”;
end block control;

Figure 4.12: Sample Control Block.
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4.4.2 Data Path Mapping

The data blocks follow the control block with each block containing a set of operations
and the next state specification corresponding to each step in the AHPL description.

The guard of the data blocks determine when a particular block is active depend-
ing on the individual bits of the ACTIVESTATE.

The body of the data block contains all the bus connection assignment statements
followed by a sub-block containing all the register transfer assignment statements.
The guard of this sub-block condition is to enforce register transfer assignments
only at trailing edge of the clock. The final part of the data block contains the next
state specification corresponding to the branch statement of a step in the AHPL
description. The design of a generic data block is shown in Figure 4.13 and an
example of a sample block for an AHPL statement is shown in Figure 4.14.

The Sample Data Block of Figure 4.14 shows a step block with a nested block
for bus connection and register transfer respectively. The outer step block uses the
step condition as the guard, and is used for guarded assignments into data buses.
The inner block ANDs the events on the reference with the step condition with the
clock trailing edge condition for register transfers. The transfer into registers are
also done by use of guarded assignment statements. Finally, the outer block also
contains a guarded assignment statement for the updation of the next_state control

parameter.



step.i:block ( “step i and reset signal detection”)
begin
- - guarded bus assignment statements.
edge.i:block ( “clock trailing edge detection”)
begin

-- guarded data register assignment statements.

end block edgei;
- - set-up the next_state vector.
end block step_i;

Figure 4.13: Generic Data Block.
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RESULT=EXTRA([1:4],AC1; DONE=181;
BUSY <=180; =>(5).

step_5:block (activestate(5)=‘1’ and reset=*0’)
begin
result<=guarded extra(l to 4) & acl;
done<=guarded ‘1’;
edge 5:block (guard and clock=*‘0’
and not clock’stable)
begin
busy<=guarded ‘0’;
end block edge.5;
next_state<=guarded “00001”;
end block step_5;

Figure 4.14: Sample Data Block.
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4.4.3 CLU Mapping

The mapping of Combination Logic Units (CLU) is done using predefined generic
components. The generic components are defined in the Utility Library for each of
the six common CLUs used in AHPL: INC, DEC, ADD, SUB, DCD and BUSFN.
An instance of the generic component definition are used to declare each of the CLUs
used.

The CLU mapping is not straight forward and is split into three steps. Fig-
ure 4.15 shows the steps involved in the declaration of a CLU of AHPL in VHDL. In
the first step the component used for the CLU is declared along with the binding if all
the inputs and the outputs. In the second step the component specification is done
to specify which entity declaration in the Utility Library and which architecture of
that design entity is to be selected. As shown, the component specification binds the
instance ‘incl’ of the INC to the entity INCR and to its architecture INCR_.BODY
in the Util Lib. In the last step, the actual instantiation is performed inside the
design entity architecture body. The component instantiation statement identifies
the CLU component and specifies which ports or signals in the design entity are

connected to which ports in the CLU component.



AHPL:

CLUNIT: INC[2]<:INCR{2)
VHDL:

Step 1: Component Declaration
component INC generic (incsize: positive)
port(incr-inp : in bit_vector(0 to incr-size-1);
incr-out : out bit_vector(0 to incr_size-1));

Step 2: Component Specification

for incl: INC use entity Util.Lib.INCR(INCR-BODY)

Step 3: Component Instantiation

incl: INC generic map (incrsize=>2)
port map (count,incl-out);

Figure 4.15: CLU Mapping.
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4.5 Utility Library

In order to generate concise VHDL descriptions, a library of utilities was imple-
mented. This library is used by the Composer coding many necessary VHDL con-

structs. The library includes several predefined VHDL constructs:

o Type Declarations: Type definition of memory vector of different sizes.

e Resolution Functions: Functions to resolve output from multi-source for all

type definitions.
o Type transformation Functions: Functions to map between different data types.

o Generic Component: Generic design entities for all the commonly used AHPL

CLUs.

The availability of library facility allows the possibility of any future expansion

or enhancement of the composition process.

4.6 An Illustrative Example

Figure 4.16 shows the composed VHDL model for the AHPL model of Figure 2.2.
For explanation purpose all the statements are numbered and these line numbers
are not part of the actual VHDL code.

The composed VHDL model basically consists of three parts: the utility library

interface, entity description, and an architecture description part. Lines 1-3 define



1 library util lib;

2 use utillib.all;

3 use util_Pkg.all;

4 entity multiplier is

5 port (dataready,clock,reset : in mem.vec_1;

6 inputbus : in mem_vec 8;

7 result : out mem_vec.8;

8 done,busyout : out mem_vec_1);

9 end multiplier;

10 architecture multiplier_body of multiplier is

11 signal active.state : state_vec.5;

12 signal next_state : state_resolution_5 state_vec.5 register;
13 signal acl : resolution_fun.4 mem._vec_4 register;

14 signal ac2 : mem_vec.4;

15 signal count : mem_vec_2;

16 signal extra : resolution-fun_5 mem_vec_5 register;

17 signal busy : resolution_fun.1 mem.vec_1 register;

18 signal incl_out : mem_vec.2;

19 signal add1l-out : mem-_vec.5;
20 disconnect next.state : state_vec.5 after 0 ns;
21 disconnect extra : mem_vec.5 after 0 ns;
22 disconnect acl : mem-vec_4 after 0 ns;
23 disconnect busy : mem.-vec_1 after 0 ns;
24 component INC generic (incrsize : positive);
25 port (incrinp : in bit_vector(0 to incrsize-1);
26 incr-out : out bit_vector(0 to incr_size-1));
27 end component;
28 component ADD generic (addersize : positive);
29 port (adder.inpl : in bit_vector(0 to adder_size-1);
30 adder.inp2 : in bit_vector(0 to addersize-1);
31 adder.out : out bit_vector(0 to addersize));
32 end component;
33 for incl:INC use entity Util_Lib.INCR(INCR-BODY);
34 for add1:ADD use entity Util Lib. ADDER(ADDER-BODY);
35 begin
36 incl: INC generic map (incrsize=>2)
37 port map (count, incl_out);
38 addl: ADD generic map (addersize=>4)
39 port map (extra(l to 4),ac2,add1.out);

Figure 4.16: Composed VHDL Model of Multiplier.
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control:block ((clock=‘0’ and not clock’stable) or reset=*1')
begin
activestate <= guarded “10000” when reset=*1’
else next_state;
next_state<=guarded “000007;
end block control;
step-1:block (activestate(1)=‘1’ and reset="0’)
begin
edge_l:block (guard and clock=‘0’ and not clock’stable)
begin
acl<=guarded inputbus(0 to 3);
ac2<=guarded inputbus(4 to 7);
extra<=guarded “00000”;
end block edge_1;
next_state<=guarded “10000” when dataready="‘0’ else ‘01000”;
end block step-1;
step.2:block (activestate(2)=‘1’ and reset="0’)
begin
edge 2:block (guard and clock=‘0" and not clock’stable)
begin
busy<=guarded ‘1’;
end block edge_2;
next.state<=guarded “00100” when acl(3)=‘1’ else “00010”;
end block step.2;
step.-3:block (activestate(3)=‘1’ and reset="0")
begin
edge3:block (guard and clock=‘0" and not clock’stable)
begin
extra<=guarded addl_out(0 to 4);
end block edge_3;
next.state<=guarded “00010”;
end block step.3;

Figure 4.16: Composed VHDL Model of Multiplier (cont).
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step.4:block (active_state(4)=‘1" and reset="0")
begin
edge-4:block (guard and clock=‘0’ and not clock’stable)
begin
extra<=guarded ‘0’ & extra(0 to 3);
acl<=guarded extra(4) & acl(0 to 2);
count<=guarded incl_out;
end block edge 4;
next.state<=guarded “01000”
when (count(0)=‘0’ or count(1)=°0’) else “00001”;
end block step.4;
step.5:block (activestate(5)=‘1’ and reset="‘0’)
begin
result<=guarded extra(l to 4) & acl;
done<=guarded ‘1’;
edge_5:block (guard and clock=‘0’ and not clock’stable)
begin
busy<=guarded ‘0’
end block edge.5;
next_state<=guarded “00001”;
end block step.5;
end._seq:block (reset=‘0’)
begin
busyout<=guarded busy;
end block endseq;

end multiplier-body;

Figure 4.16: Composed VHDL Model of Multiplier (cont).
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the interface to the utility library and all the modules that are accessible. Lines
4-9 describe the entity along with its input and output ports. Lines 10-95 describe
the architecture of the entity. The architecture is made-up of two sections: the
declaration section (lines 11-34) and the body section (lines 36-94). The declaration
section contains definitions of all the data registers and buses, the disconnection
specification for the resolved signals, and component specifications for the CLU
used. The body section contains instantiation statements (lines 36-39) for each
CLU used followed by a control block (lines 40-44), a series of step blocks (lines
45-54, 55-62, 63-70, 71-80, 81-90) for AHPL steps 1 to 5 respectively, and end-seq
block for the part between ENDSEQUENCE and END in the AHPL model.

The composed VHDL model was simulated to multiply two numbers and the
simulated output waveform is shown in Figure 4.17. The two chosen numbers (3
and 4) were put on inputbus signal and the output is generated after ten clock pulses

on signal result.

4.7 Summary

This chapter discussed an overview of the composition process. The general overview
presented was followed by a comprehensive discussion of the the components of the
composition system. The component discussed are: (a) The Analyzer, (b) The

Composer, (c) The VHDL Template, and, (d) The Utility Library. The section
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on Analyzer presented the implementation details and the process of generation of
the corresponding state tables. These state tables comprise the intermediate results
in a convenient format used by the Composer. The three modules that perform
the three tasks of the Composer are: (a) The Declaration Transformer, (b) The
Controller Generator and (c) The Data Path Builder, respectively.

Sections on Control Path Emulation, Data Path Mapping, and CLU Mapping,
highlight the details of the The VHDL Template. Contents of the The Utility
Library that contains several useful hardware components, and other declarations
and function where elaborated. An illustrative example was used in the entire

chapter to demonstrate the composition process.



Chapter 5

Conclusion and Future Work

In this thesis a composition process for the generation of the VHDL models from
AHPL specifications was designed and implemented. The objective was achieved
by the development of an Analyzer to examine and capture data and control paths
of the AHPL specification and, a Composer to build the final output in the VHDL
format. To accomplish the role of the Composer a VHDL template was designed
which provided the skeleton structure of the produced VHDL model.

VHDL is a multi-purpose HDL and is among the hardest HDLs to master. On
the other hand, AHPL is a single purpose language, is relatively small and is among
the easiest to learn. The prime motivation of this work was to assist the designer
familiar with AHPL-like languages to easily migrate to VHDL language and quickly
start prototyping in VHDL. In addition, the composition process also provides useful

understanding of the large variety of VHDL features and constructs.
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The various aspects of the thesis were presented in four main chapters. The
opening chapter, Chapter 1, discussed the significance of the work. The objective
and motivation of the work were also highlighted.

Chapter 2 presented an introduction for the hardware description language (HDL).
Two Languages, AHPL and VHDL were studied and an overview of them was pre-
sented. These two languages were compared against well-known HDLs and the com-
parison analysis has shown that VHDL provides extensive features that are useful
for modern modeling techniques.

In Chapter 3 a detailed study was conducted on the important VHDL features.
VHDL is a very large language and only subset of VHDL constructs are required
for the fulfillment of mapping different AHPL elements and features into their cor-
responding counter-parts. The mapping of the AHPL elements and features such as
on declarations, state automaton, edge triggered transfers, and other processes in
AHPL were summarized in a table. The VHDL guarded blocks construct provides a
very convenient method to model various aspect of AHPL specification.

Finally, the design implementation of the composition process was discussed in
Chapter 4. In this core chapter, the mechanics of the composition process was de-
scribed and a comprehensive discussion was presented on the four components of
the composition process: (a) The Analyzer, (b) The Composer, (c) The VHDL Tem-
plate, and, (d) The Utility Library. The Analyzer was used for the process of the

generation of the corresponding state tables. These state tables comprise the in-
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termediate results in a convenient format used by the Composer. The task of the
Composer is accomplished by the three modules: (a) The Declaration Transformer,
(b) The Controller Generator and (c) The Data Path Builder, respectively. The
states tables are read by the three modules of the Composer to build the VHDL
model as per the specification of the VHDL Template. The VHDL Template con-
ceptualizes how the control path is emulated and how the data path and the CLU
are mapped. The Composer is aided with a Utility Library which contains prede-
fined generic CLU component definitions, user-defined types, resolution functions
and other declaration.

The composition process described in this work provides a convenient tool to
convert digital designs modeled in AHPL to their VHDL counter-part. The output
result produced by the composition process envisages all the necessary concept of
the AHPL specification.

Although the design implementation is well defined in this work, the composi-
tion process could be further enhanced and improved. The four components of the
composition process design provide the facility to accommodate any expansion that
may be required. The Analyzer could be enhanced to include semantic checks as
well syntactic check for the input AHPL code. This could easily be implemented by
embedding the necessary semantic rules in the action part of the production rules in
the yacc program. The implementation of the expression builder in the Analyzer

will also provide a convenient facility to convert directly the AHPL expressions into
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VHDL expressions. The Composer and the The VHDL Template may also be re-
defined to provide an alternative style for the composed VHDL model. The support
of the The Utility Library provides the flexibility to include any user-defined types
and functions.

Finally, the composition of VHDL models from AHPL specification provides
useful insights as to how best one can perform high-level synthesis of digital system
from VHDL description. The understanding of the composition process will assist
the reverse engineering of the high-level synthesis process. Good prospects of future

work in this area include the study of VHDL constructs for synthesis of its hardware.



Appendix A

cid (inc|INC|dec|DEC|add|ADD|sub|SUB|dcd|DCD |busfn| BUSFN)[0-9]+
id [a-zA-Z][a-zA-Z0-9]*

integer [0-9]+

%%

module]MODULE { return MODULE; }

buses|BUSES { return BUSES; }

exbuses| EXBUSES
exinputs|EXINPUTS
inputs|/INPUTS
memory|MEMORY
outputs|OUTPUTS
exoutputs|EXQUTPUTS
clunits| CLUNITS

body|BODY
sequence|SEQUENCE
endsequence| ENDSEQUENCE
end|END

nodelay]NODELAY
null[NULL

deadend| DEADEND
controlreset| CONTROLRESET
“<”

“>”

“[”

((] n

“+”

[{& 3]
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{ return EXBUSES; }

{ return EXINPUTS; }

{ return INPUTS; }

{ return MEMORY; }

{ return QUTPUTS; }

{ return EXOUTPUTS; }

{ return CLUNITS; }

{ return BODY; }

{ return SEQUENCE; }

{ return ENDSEQUENCE; }
{ return END; }

{ return NODELAY; }

{ return NULLSTMT; }

{ return DEADEND; }

{ return CONTROLRESET; }
{ return DOT; }

{ return COLON; }

{ return SEMICOLON; }

{ return LESS; }

{ return GREATER; }

{ return SQUARELEFT; }
{ return SQUARERIGHT; }
{ return PLUS; }

{ return STAR; }



“/77
{Lam
“(”
“)”

“=”
“<=”
«yn
“.”
“’@”
“+/”
“&/”
“&”
“$”
“\”
“=>”

{cid}
{id}
{integer}

[ \t\n]
%%

{ return SLASH; }

{ return TILDA; }

{ return CURLYLEFT; }

{ return CURLYRIGHT; }

{ return EQUAL; }

{ return LESSEQUAL; }

{ return EXCLAIM; }

{ return COMMA; }

{ return ATTHERATE; }

{ return PLUSSLASH; }

{ return AMPERSLASH,; }

{ return AMPER,; }

{ return DOLLAR,; }

{ return BACKSLASH; }

{ return EQUALGREATER,; }

{ strepy(idval,yytext);
return CID; }

{ strcpy(id-val,yytext);
return ID; }

{ int_val=atoi(yytext);
return INTEGER; }

H
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Appendix B

%{
/* #define YYSTYPE double */
%}

%token MODULE BODY SEQUENCE ENDSEQUENCE END
%token CONTROLRESET MEMORY INPUTS OUTPUTS BUSES
%token EXINPUTS EXOUTPUTS EXBUSES CLUNITS

%token NODELAY NULLSTMT DEADEND LESSEQUAL EQUAL
%token DOT COLON SEMICOLON SLASH EQUALGREATER
%token LESS GREATER SQUARELEFT SQUARERIGHT

%token CURLYLEFT CURLYRIGHT AMPER PLUS ATTHERATE
%token AMPERSLASH PLUSSLASH TILDA STAR EXCLAIM
%token COMMA DOLLAR BACKSLASH INTEGER ID CID

%%

ahplprogram : modhead DOT moddecls DOT modseq DOT
{printf(“\nAHPL code is syntactically correct\n”);}

H

modhead : MODULE COLON ID
{ printf(“\nModule Name : %s\n”,idval); }

)

moddecls : moddecls DOT mdecl
| mdecl
modseq : BODY SEQUENCE COLON slrm DOT procpart

DOT ENDSEQUENCE noproc DOT END

)

100



mdecl

typel

type2

id_dimdist

id_dim

clu_dimlist

clu_dim
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: typel COLON id-dimlist
| type2 COLON clu_dimlist

’

: BUSES

| EXBUSES

| EXINPUTS

| INPUTS

| MEMORY

| OUTPUTS

| EXOUTPUTS

1

: CLUNITS

3

{ strcpy(ident_info.type,“BUSES”); }

{ strcpy(ident_info.type, “EXBUSES”); }

{ strcpy(ident_info.type, “EXINPUTS”); }

{ strcpy(ident.info.type,“INPUTS"); }

{ strcpy(ident._info.type,“MEMORY”); }

{ strcpy(ident_info.type,“OUTPUTS"); }

{ strcpy(ident.info.type,“EXOUTPUTS"); }

{ strcpy(ident_info.type, “CLUNITS”); }

: id_dim list SEMICOLON id-dim

| iddim

: ID

| ID dimension2

{ add-ident(ident-info); }

{ add-ident(ident.info); }

{ strcpy(ident.info.name,id val);
ident_info.size=1;
ident_info.lenght=1; }

{ strcpy(ident-info.name,id val);
ident_info.size=1; }

| ID dimensionl dimension2 { strcpy(ident.info.name,id.val); }

3

: cludimlist SEMICOLON clu-dim

| cludim

: CID

[ CID dimension2

{ add.ident(ident-info); }

{ add-ident(ident.info); }

{ strcpy(ident.info.name,id val);
ident_info.size=1;
ident_info.lenght=1; }

{ strcpy(ident_info.name,id_val);
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.

ident_info.size=1; }
| CID dimensionl dimension2 { strcpy(ident_info.name,id_val); }

3

dimensionl : LESS INTEGER GREATER
{ ident_info.size=int_val; }

dimension2 : SQUARELEFT INTEGER SQUARERIGHT
{ ident_info.lenght=int_val; }
slrm : ID subs_range { slrmval=id.val; }
| ID { slrmmval=id_val; }

)

stepstring : CURLYLEFT step_stringl CURLYRIGHT

)

step-stringl : stepstringl COMMA INTEGER
{ br_info.step-num(++br_info.step_cnt]=int_val; }
| INTEGER
{ br.info.step_num[++br.info.step-cnt]=int_val; }

H

numb.string : CURLYLEFT numb._string CURLYRIGHT
| numb._string COMMA INTEGER
| INTEGER
procpart : procpart DOT stepnum steps
{ if (br_next)

{ br_nfo.step.num[++br.info.step_cnt]|=step.-num+1; }
for (i=1; i<=br-nfo.step-cnt; ++i)
printf(“ next=>%d\n” br_info.step_-numl(i]); }
| stepnum steps
{ if (br-next)
{ br.nfo.step.-num[++br_info.step.cnt]=step num+1; }
for (i=1; i<=br.nfo.step_cnt; ++i)
printf(“ next=>%d\n",br.info.step_-num]i]); }



noproc

stepnum

steps

action

relation

branch

relationl

transfer

connection

103

: startstep SEMICOLON relation

| startstep

: INTEGER { step-num=int_val;
printf(“step=>%d\n” ;step-num);
br_next=1;
br_info.step-cnt=0; }

: NODELAY action

| action

| NULLSTMT

| DEADEND { br_next=0; }

)

: relation SEMICOLON branch
| relation
| branch

)

: relation SEMICOLON relationl

| relationl

.
1

: EQUALGREATER glrm SLASH step-string
| EQUALGREATER step_string { brnext=0; }

!

: transfer
| connection

)

: dlrm LESSEQUAL glrm
| clhs LESSEQUAL girm

]

: dirm EQUAL glrm

b
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invok list : invok list SEMICOLON cglrm
| cglrm
bglrm : bglrm EXCLAIM glrm1
| glrml
cglrm : bglrm
dlrm : dirm EXCLAIM dirm1
| dirml
glrm : bglrm STAR bglrm
| bglrm
clhs : dlrm STAR bglrm
| clhsl
clhsl : CURLYLEFT clhs CURLYRIGHT
dlrml : dlrm1 COMMA dlrm2
| dlrm2
dlrm?2 : CURLYLEFT dirm CURLYRIGHT
| slrm
glrml : glrml COMMA glrm2 { printf(“SYM=,\n"); }

| glrm2

3

glrm?2 : glrm2 ATTHERATE glrm3 { printf(“SYM=\n"); }



glrm3

glrm4

glrm$

glrm6

glrm?7

element

subs._range
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| glrm3

: PLUSSLASH glrm3 { printf(“SYM=++\n"); }
| glrm4

: glrm4 PLUS glrm5 { printf(“SYM=+\n"); }

| glrm5

: AMPERSLASH glrm5 { printf(“SYM=&&\n"); }
| glrm6

: glrm6 AMPER glrm7 { printf(“SYM=£&\n"); }

| glrm7

: TILDA element { printf(“SYM= \n"); }

| element

3

: ID CURLYLEFT invoklist CURLYRIGHT

{ printf(“E=i\n"); }
| ID subs_range CURLYLEFT invok.list CURLYRIGHT

{ printf(“E=%s\n",id_val); }

| INTEGER DOLLAR INTEGER { printf(“E=$\n"); }
| BACKSLASH numb.string BACKSLASH { printf(“E=s\n"); }
| CURLYLEFT bgirm CURLYRIGHT { printf(“E=?\n"); }
| slrm { printf(“E=%s\n" ;slrmval); }

?

: LESS range GREATER
SQUARELEFT range SQUARERIGHT
| SQUARELEFT range SQUARERIGHT
LESS range GREATER
| LESS range GREATER
| SQUARELEFT range SQUARERIGHT

)
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startstep : CONTROLRESET CURLYLEFT glrm CURLYRIGHT
SLASH CURLYLEFT numb.string CURLYRIGHT
| CONTROLRESET CURLYLEFT numb_string CURLYRIGHT

b)

range : rangel COLON INTEGER { range_val2=int_val; }
| INTEGER { range_vall=int_val;
range_val2=-1; }

rangel : INTEGER { range_vall=int_val; }

)

%%

#include <stdio.h>
#include <ctype.h>
#include “utility.h”

int 1;

char iname[20];
char *itype;

int ilenght;
int step_num,;

ident_rec ident.info;
branch_rec br.nfo;

int br.next;
int int_val;
char id_val[100];

#include “lex.yy.c”

char *progname;
int  lineno = 1;

char *slrmval;
int range_vall,range_val2;
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main(argc,argv)
char *argv(];
{
progname = argv([0];
yyparse();
printf(“\nEnd of Parsing..\n");
show_ident();
}
yyerror(s)
char *s;

{

warning(s, (char *) 0);

warning(s, t)
char *s, *t;
{

fprintf(stderr, “****** ATTENTION USER ****** \n");
fprintf(stderr, “*** Syntax Error Occured *** \n”);
fprintf(stderr, “INVALID CODE NEAR : %s \n”,yytext);

fprintf(stderr €63k 2k ke o ke 3 e e 4 3 ke 2k o ook ok sk i kol ok Kk ke ok \n\n\n” ) .
7 1
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