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Title: Optimization of Mixed CMOS/BiCMOS Circuits
Using Tabu Search
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Date of Degree: 1998

This thesis studies the problem of optimizing mixed CMOS/BiCMOS circuits us-
ing Tabu Search (TS) approach. Recently, many techniques have been proposed
to improve the performance of VLSI circuits. Some of these techniques include:
transistor sizing, buffer insertion, and optimal selection of different templates of the
same technology.

For further improvement, a mixed technology design can be developed to take
advantage of each technology. One possibility is to mix CMOS and BiCMOS cells
within the same circuit in order to take advantage of the high speed and high driving
capabilities of BICMQS, and the regularity and low power consumption of CMOS.

The problem is formulated as a constrained combinatorial optimization problem.
The proposed solution technique comprises three phases. In the first phase, critical
paths of the input circuit are generated because circuit delay is determined by longest
sensitizable paths only. Second phase involves the application of the false paths
detection algorithm. Since some critical paths may be false, it is important to
eliminate them in order to get the longest sensitizable paths. In the third phase, TS
algorithm is applied on the longest sensitizable paths. This is the core phase of the
proposed approach where TS is used as a heuristic technique for optimal selection of
gates that need to be implemented in BICMOS to maximize the circuit performance
with minimum increase in power consumption and area.

As a part of the third phase, two new strategies have been proposed. First,
frequency-based diversification strategy has been developed to be used in long term
memory of TS. Second, we applied some concepts of Simulated Evolution algorithm
in generating neighbor solutions to the current solution.

The achievement of the proposed technique is of two parts. First, it has been
shown that TS is very effective and efficient in producing very good solutions to cir-
cuit optimization problem. Second, remarkable increase in speed (%10 - 30%) with
negligible increase in the power and area (less than 5%) of mixed CMOS/BiCMOS
circuits has been accomplished.

Although the technique has been applied to BICMOS and CMOS technologies,
it is generally applicable to other technologies as long as it is feasible and practical
to mix them in one circuit.
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Chapter 1

Introduction

1.1 Importance of VLSI Circuits Optimization

Nowadays, CMOS technology has qualified to be the most appropriate choice in
VLSI applications because of its low DC power dissipation and its high package
density. However, the demand for superior performance, which has motivated the
research and development of new technology, was behind the emergence of BiCMOS
technology. BiCMOS is a combination of CMOS and Bipolar technologies which
take advantage of their qualities; namely high speed and high driving capabilities
of Bipolar, and small area and low power consumption of CMOS. This kind of
optimization is achieved in the logic level resulting in an optimization of the entire
network [EBE93].

Many techniques have been proposed to improve the performance of VLSI circuits



at the physical level. One of these techniques is to optimize the logic blocks that
constitute these circuits. In the standard cells design, the optimization can be made
by an optimal selection of functional cells rrom a cell liLrary. This type of library
is composed of different versions of cells of different characteristics such as size and
delay. However all the cells use the same technology (e.g., CMOS) [LMSK90].

For further improvement of the performance of VLSI circuits, a mixed technol-
ogy design can be developed to take advantage of the individual technology. One
possibiiity is to mix CMOS and BiCMOS cells within the same circuit in order uti-
lize the high speed and high driving capabilities of BiICMOS, and the regularity and

low power consumption of CMOS.

1.2 Objectives and Scope of the Thesis

The objective of the thesis is to develop a methodology and right tools to optimize
mixed CMOS/BiCMOS circuits in terms of delay, power and area. Although the
scope of the work is directed to CMOS and BiCMOS technologies, other technologies
can be included taking into consideration the feasibility and practicality of mixing
these technologies. The input circuits are in standard cell format. The basic idea
is as follows. Given a circuit consisting of CMOS cells only, some of those cells
are selected and replaced by their equivalent BICMOS cells in such a way that the

entire delay of the circuit is decreased with a minimum increase in power and area.



Several questions can be raised while achieving this objective: What are the cells
that have to be selected? Do we have to consider all the cells in this process? Is
the selection problem N P-hard? What is the most efficient method for selection to
produce the objective optimized circuit? How are the delay and power of a given
circuit calculated? These questions and others are answered in this thesis. For ease
of reference, we will refer to the problem of cells selection for optimizing a given
circuit as Circuit Optimization Problem (COP).

Although the idea of our work is based on the work done in [BAB94], the
approach and methodology are different. The proposed approach is more efficient
and faster because the search space is restricted to a portion of the circuit rather
than the entire circuit. The results are better and more accurate than those found
in [BAB94].

We focused on delay and power for optimization. Area of layout is not considered
because it is not affected much in the process as the difference in area between CMOS
and BiCMOS cells is slight compared to other technologies. When other technologies
of large area scale are meant for this type of optimization, our method has to be

slightly modified to incorporate the area factor.



1.3 Difficulties and Limitations

Given below is a summary of difficulties and limitations encountered as normal in a

research work.

1. Lack of resources related to this field of research, particularly in the BiCMOS

technology.

2. Development and usage of the tools have been done on different platforms,

hence the tools have to be modified slightly each time the platform is changed.
3. Non-availability of BICMOS cell library.

4. Non-availability of power model for BICMOS technology in the literature. In
order to overcome this problem, capacitance is used as proportional to the

power. This point will be explained later.

5. Limitation of the tools that have been used for generating critical paths of a
given circuit. The tools work only for small circuits and do not consider the

elimination of false paths.

6. Difficulties in obtaining benchmark circuits in VPNR format which is the input
to critical paths tools. For this issue, different tools have been used to convert

the available ISCAS'85 benchmark circuits into VPNR format.



1.4 OQOutline of the Thesis

This thesis describes in detail the work that has been done to address COP. It
covers all the research, processes, algorithms, tools, methodologies, implementation,
results, analysis and discussions. Throughout the thesis, each chapter begins with
an introduction that serves as a link to the preceding one and gives an overview
of that chapter. Also, each chapter concludes with a summary of the main ideas
and outcomes. Whenever essential, the ideas and points in reference are followed
by a figure or an illustration. The thesis is organized as follows. Chapter 2 presents
material background and literature review on most of related research previously
made. In Chapter 3, the idea of our work is explained and formal definition of
COP is presented. Also the proposed solution process and technique that have been
adopted are provided in this chapter. The proposed solution consists of three phases.
The details of phase I and phase II are presented in Chapter 4 while details of phase
III are presented in Chapter 5. Chapter 4 highlights the timing analysis and eritical
path problem and gives a detailed description of the algorithm used in our work.
In addition, this chapter discusses the problem of false paths as well as the adopted
false path detection algorithm supported with an illustrative example. Chapter 5
deals with Tabu Search technique which is the main part of the proposed solution
approach to COP. Explanation of tabu search and all its memory components is

presented. In addition, in this chapter, we explained the process of modeling COP



to fit with tabu search technique. Methods of implementing and applying TS on
COP, experiments, results, and discussions are provided in Chapter 6. Finally, our
conclusions and future work are discussed in Chapter 7.

Appendix A provides a detailed information on the adopted tools such as exe-
cution procedure, format of input circuits, and limitations of the tools. In addition,

it provides the CMOS and BiCMOS libraries and other tables used in this work.



Chapter 2

Background Material and

Literature Review

2.1 Introduction

This chapter provides background about some materials, ideas, methodologies, and
processes related to the work. It is an important introduction to the subsequent
chapters which discuss COP and the proposed approach for its solution. In Section
2 of this chapter, an overview regarding optimization of VLSI circuits is presented
with emphasis on the earlier works in this field. Section 3 addresses critical path
and false path problems and reviews some well known algorithms proposed to solve
such problems. The last section deals with some of the recent techniques developed

for solving common optimization problems such as quadratic assignment and graph

it |



coloring.

2.2 VLSI Optimization

A combinational circuit is required to operate as fast as possible and in no case slower
than a given speed limit. That is, the delay of a circuit should not be longer than
the system clock period. If a circuit is verified to be slower than the clock period,
its performance needs to be improved. However, most of the time the improvement
in performance is achieved at the expense of extra area and extra power. Therefore,
many techniques have been proposed to optimize circuits in terms of those three
parameters, especially in VLSI circuits where area and power are important issues.

According to the design level, optimization techniques can be divided into three

categories:

1. At the structural level, the internal structure of gates and their interconnec-
tions are modified to improve circuit performance. For example, the technique
of converting a ripple-carry adder into carry-lookahead adder by the use of

Shannon factorization belongs to this category [CDL93].

o

At the physical level, performance-driven placement of gates and performance-

driven routing of wires are aimed at minimizing the delay of the longest paths

[CDL93].



3. At the gate/circuit level, techniques for transistor sizing, buffering and pow-
ering are used to improve gate speed while the topology of the whole circuit

is retained [CDL93].

Due to their ability of retaining circuit topology, gate/circuit level optimization
techniques are usually the first to be employed in optimization process. Physical or
structural level techniques are applied when gate/circuit techniques cannot achieve
the goal [CDL93].

One of the main techniques applied at the gate/circuit level, is the optimization
of logic blocks constituting the VLSI circuits in terms of speed and area. When using
standard cells approach, the optimization can be performed by an optimal selection
of different templates (gates or cells) in the same technology. These templates differ
in area, driving capabilities, intrinsic delay, and capacitive loading [LMSK90].

For further improvement of performance of VLSI circuits with minimum area
and power penalty, a mixed design of different technologies can be adopted. One
possible choice is to mix CMOS and BiCMOS technologies in order to take advantage
of their qualities, namely high speed and high driving capability of BiCMOS, and
regularity and low power consumption of CMOS. In terms of manufacturing process,
this mixture is feasible in the sense that the CMOS process is part of the BiICMOS
process. The CMOS-based BiCMOS process is a CMOS baseline process to which
a bipolar transistor is added [EBE93]. Therefore, for developing mixed .design

circuits, initially all cells are exposed to CMOS process. Then bipolar transistors

9



will be added only to those cells that are selected to be BiCMOS.

In [BAB94], the above approach for optimizing standard cells circuits has been
used. The technique aims at improving circuit performan-~e by making for each gate,
a choice between CMOS or BiCMOS cells depending on their load capacitance. The
comparison between CMOS and BiCMOS gate delay driving a capacitive load CL
shows that the two curves intersect at the crosspoint C X as shown in Figure 2.1.

Based on this feature, the selection technique is applied as follows:
1. Initially, all gates are considered as CMOS in order to increase circuit density.

2. Output gates are replaced by BiCMOS gates because the inter-block wiring

capacitance is assumed to be large.

3. The remaining gates are selected by comparing the value of their respective
output load capacitance to the corresponding crossover capacitance C.X. This
load is equal to the sum of all input capacitance of the driven gates and the

interconnection load.

4. Since all gates driven by the gate under check must have already been selected,
a Breadth First Search (BFS) is adopted. The BFS algorithm reported in
[BAB94] successively selects gates according to their decreasing logical level,
from the primary outputs to the primary inputs. The BFS algorithm associates
with each gate a counter representing the number of driven gates. Each time
a gate is selected, the counters of all gates driving it are decremented.

10



The algorithm has been tested on ISCAS’85 benchmark circuits and achieved
speed improvement by about 11% to 41% as compared to their pure CMOS version.
The overhead in terms of area and power is shown to be small [BAB94|.

Although the reported approach achieved a good improvement in performance,

it suffers from several problems as follows:
1. Traversing all the nodes is not a necessary step because it is time consuming.

2. Replacing all output nodes produces overhead in area and power because some

of them are not on time critical paths.

3. This approach is local; that is, it performs the optimization on a single node.
It does not have a global view of the circuit, hence it is expected to give a

local optimum solution.

4. It is net oriented not path oriented; hence it does not show the actual delay

of the circuit.

2.3 Critical Path Problem

The actual delay of a circuit is determined by the delay of its longest sensitizable
path. A sensitizable path is the path which can be activated by at least one input
vector. The paths which cannot be activated by any input vector are called false
paths. A path is critical if its total delay is greater than the clock period. Thus, the

11
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Figure 2.1: Delay vs. load for CMOS and BiCMOS Nand gate.

12



problem of finding and estimating the delay of critical paths is called the critical
path problem [CDL93]. Only the sensitizable paths are called “critical paths” by
some authors. In this work, the term “critical l;aths" refers to both sensitizable and
false paths.

Timing simulation and timing analysis are two popular approaches to verify the
delay characteristics of combinational circuits. A timing simulation algorithm sim-
ulates each input vector on the circuit so as to identify all the sensitizable paths.
After finding all the sensitizable paths, the simulation algorithm returns the delay
of the longest paths as the actual delay of the circuit. Due to the very large compu-
tation time required to simulate all the vectors which grows exponentially with the
complexity of the circuit, researchers focus more on the timing analysis approach.

Timing analysis ignores the logic properties of the circuit elements and checks
only the timing behavior of the circuit. This fact makes timing analysis very time ef-
ficient as compared to simulation. Ignoring the functionality of the circuit elements,
however, is responsible for the difficulty of the false path problem.

In most of timing analysis techniques, the circuit is modeled as acyclic directed
graph in which three famous algorithms are used to trace the paths. These al-
gorithm include Depth First Search (DFS) with/without pruning, Breadth First

Search (BFS) and PERT-like trace [AF93].
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2.3.1 Critical Path Algorithms

One approach to critical path prediction is to report the most critical path in the
circuit. This approach is also referred to as the Block Oriented Approach [YDG89).
However, reporting only the most critical path often fails to give sufficient informa-
tion to the designer to correct the timing violations because there might be more
than one longest path having the same delay or the subsequent longest paths may
violate the timing constraints as well.

To get more information, another approach called Path Enumeration is taken up
in which all the paths are enumerated and then critical paths violating some timing
constraints are reported. Although this approach gives more information than the
previous one, it suffers from the large computation due to the fact that the total
number of paths grows exponentially with the size of the design [YDG89].

A third approach is to find the K most critical paths. In this approach, all
the paths which are greater or smaller than a given threshold are reported. The
threshold is usually the clock period but it can be of any timing limit. A variation
of this approach is reported in [YDG89]. In this algorithm, if the given threshold
is too small, the number of paths being reported will increase rapidly. Therefore, it
is preferable to choose a proper threshold and limit the number of paths to the K
most paths [YDG89).

The algorithm reported in [You90] also provides the K most critical paths in
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descending order. In this algorithm, a score is computed for each enumerated path.
The score is a function of parameters that are correlated with the total path delay.
Examples of these parameters include: load factors, number of nets on the path,
etc. The K paths with worst scores are the K most critical paths. Linear regression
model is used to predict the delay of interconnections at the net level as well as at
the path level. However, the regression approach does not produce desirable results
due to the large prediction errors of the model.

A variation of the above approach has been proposed in [AF95|. This approach
is called a-critical and described in detail in Chapter 4. The time complexity of

these algorithms is proportional to the reported number of critical paths [AF93].

2.4 False Path Problem

The timing analysis based techniques ignores the functionality of the circuit. These
techniques aim at finding the longest paths either sensitizable (true) or unsensitizable

(false). The presence of false paths has many undesirable effects:

o The loss of accuracy. There is no theoretical limit between the longest true
path and the longest false path. Therefore the loss of accuracy can be large

and results in loss of confidence in the timing analysis tool.

o Waste of optimization effort. Since the longest propagation path determines
the length of the clock period, a large difference between the longest false path
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and the longest true path will result in unnecessary conservative designs, or
alternatively wasted power and silicon area. Thus, eventually optimization

efforts will be spent on false paths rather than on the true paths.

2.4.1 Sources of False Paths

1. Incompatible transitions: In this very simple case, a false path results from the
combination of incompatible transition. For example, in subsequent inverters,
the addition of the delays associated with the 1 — O transitions instead of

alternating the 1 — 0 and 0 — 1 transitions [BMCM90] is a source of false

paths.

2. Incorrect signal flow: Timing verifiers that operate at switch level encounter
this problem. Due to the bi-directional nature of MOS transistors, the intended

signal flow in structures such as barrel shifter is not always obvious [BMCM90].

3. Synchronization: Whether the synchronization is simply performed within the
clocking scheme or in a more complex way, it implies that signals are latched
and have to wait for next synchronization point. When transparent latches
are used, depending on their arrival time, signals might be allowed to continue
to propagate. Therefore, the propagation conditions of these latches may or
may not be compatible with those of the path that lead to them. In the latter

case, ignoring these conditions will lead some timing verifiers to incorrectly
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view these latches and subsequent combinational logic as part of the path

[BMCMO90].

4. Logic dependency: The most explicit source of false paths comes from some
logic that depends on the output of other logic. For example, in the circuit
shown in Figure 2.2, the path a d i f y can not be activated because both

multiplexers can not select 1-input at the same time [PCMS89].

2.4.2 False Paths Detection Algorithms

Recently a number of techniques have been proposed to detect the false paths. Some
of them aim at finding the sensitizable paths directly, hence avoiding false paths re-
porting. Other techniques detect the false paths and remove them from reporting to
the designer. Each of these techniques uses a path sensitization criterion. All of the
reported criteria can be classified into three main conditions: Static, Dynamic and
Viable. This section gives an overview regarding most of the false paths detection
techniques according to these three conditions.

Static Sensitization:

The first techniques to detect false paths are based on D-Algorithm which is used
extensively in testing. One important assumption of the D-Algorithm is that, except
the signal to be propagated, all other signals in the circuit are assumed to be always

stable. A signal s becomes stable when it has the logical value determined by the
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Figure 2.2: Logic dependency is a source of false paths [PCM89].
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Boolean expression of s and the logical values of primary inputs. This assumption,
however, is not applicable when the D-Algorithm is used for the detection of false
paths because it will give incorrect results. First it will report some paths as false
paths while in reality they are not. Second, it can underestimate the sensitizable
path length. In Chapter 4, we will show one example that demonstrates these ef-
fects. Some of the algorithms that use static conditions are reported in [Rot66],
[BI86], and [BMCMI0].

Dynamic Sensitization:

Since the algorithms based on static sensitization generate inaccurate results as men-
tioned above, some researchers propose other techniques that release the assumption
of the D-algorithm.

In [DYG89], the authors propose an algorithm to detect whether a given path
is false or not by using an input independent approach which takes the stable time
of signals into account. They show that the time required for a signal to be stable
depends highly on both the stable times and logical values of its input signals. The
detail of this algorithm will be presented in Chapter 4.

Another approach that computes the longest dynamically sensitizable paths has
been proposed in [PCM89). In this approach, propagation conditions for the signals
that take the dynamic behavior of the circuit into account are used. The propagation
condition for a certain signal explicitly depends upon arrival time of its predecessors.

Two approaches proposed in [HPS93] use what is called Timed Boolean Cal-
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culus. The dynamic behavior of a given logic circuit is modeled as timed Boolean
expressions. Then for each term in the expressions, its corresponding sensitizability
function is computed. The terms whose sensitizability functions are not satisfiable
are removed and the maximal delay for each node are determined from the remaining
terms. For a given path, if the maximal delay of one of its internal node is greater
than the maximal delay of any of the successor nodes, then that path is claimed to
be false.

Chen and Du [CD93] have proposed three sensitization criteria; namely ezact,
loose, and dynamic. In exact criterion, all input vectors that can activate a given
path are found. So, if no vectors are found, then the path is claimed to be false.
This criterion is called exact because it can yield exactly the same critical path delay
as the gate level timing simulation approach. Loose criterion is used to make the
comparison between different criteria easier in the sense that some proposed criteria
are meant for sensitization of long paths only, not for general path sensitization
problem. Under dynamic criterion, a lead (signal on the path under test) is consid-
ered to dominate its succeeding gate if it is either a lowest earliest controlling input
or a noncontrolling input with all its side inputs being noncontrolling inputs too.
Using this criterion, at least one critical path is identified.

Viability:
The flaw in the dynamic sensitization condition is the absence of perfect knowledge

of the delay of gates. In such case, both the exact value of any node at any time
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before the node has settled to a final value and the time at which a node settles to
a final value is problematic. That means the above mentioned methods use criteria
which are non-robust.

MaGeer and Brayton [MB89] developed a technique that computes the longest
viable path in combinatorial circuits. Their technique is based on two conditions:
correctness and robustness. These two requirements are derived from the idea of
Boolean Dafference. A path is defined to be sensitizable if there exists at least one
input vector to allow a transition to propagate through the path. The path sensiti-
zation criterion associates the path with a Boolean expression, which represents the
set of input vectors that activate the path. If the associated Boolean expression of

the path is computed to equal logic 0, the path is claimed to be a false path.

2.5 Optimization Techniques

The problem of optimizing mixed technology design is considered as one of combina-
torial problems. For a mixed CMOS/BiCMOS design, there exist 2" solutions for a
circuit with n gates. Therefore, it can not be solved by polynomial-time algorithms.
Heuristic techniques can be applied which generate optimal and near optimal solu-
tions to a wide variety of N P-complete problems. Colin Reeves defines a heuristic
as “a technique which seeks good (i.e., near-optimal) solutions at a reasonable com-

putational cost without being able to generate either feasibility or optimality, or
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even in many cases to state how close to optimality a particular feasible solution is”
[Ree93).

Heuristic techniques can be classified into deterministic and nondeterministic.
A deterministic algorithm progresses toward the solution by making deterministic
decisions. On the other hand a non-deterministic algorithm makes random decision
to find the solution. Therefore, deterministic algorithms always produce the same
solution for a given input instance, while non-deterministic algorithms may produce
different solutions. Another classification of heuristic algorithms is based on the
initial input: Constructive and Iterative. A Constructive heuristic algorithm receives
the problem description as input and then constructs a solution to the problem. An
iterative heuristic algorithm receives the problem description and an initial solution
as input. Then it attempts to modify the initial solution so as to improve a cost
function. The iterative procedure is applied repeatedly until no cost improvement is
possible. Usually, a constructive technique is first applied to find a certain solution
and then an iterative technique is applied to produce a better solution.

Recently, several heuristic techniques have been proposed to find optimal and
near optimal solutions to a wide variety of classical and practical optimization prob-
lems. Some of these well known techniques include Simulated Annealing, Genetic
Algorithm and Tabu Search [SY95]. They have been applied in areas ranging from
scheduling to telecommunications, and from character recognition to neural net-

works.
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Simulated Annealingis an adaptive heuristic technique which was first introduced
by Kirkpatrick, Gelatt and Vecchi in 1993. It was first used for trying to obtain a
good crystal structure of a metal through a process of heating it to high temperature
to break the chemical bond and then slowly cooling it to get a certain structure. By
varying the cooling rate, time of the annealing process, and other parameters, we
get different results.

Comparing the annealing process to optimization process, the aim of getting
global optimum solution is analogous to the aim of getting a good crystal structure.

Genetic Algorithm derives its name from the natural process of evolution to get
the optimum characteristics of an individual from a large population of different
characteristics. The idea of this algorithm is as follows. Given a set of strings of
symbols, during each iteration, the strings in the current solution are evaluated using
some measures of fitness. Based on the fitness, two strings at a time are selected and
a number of genetic operations are applied on the selected strings to generate a new
string. These operations include crossover, mutation and inversion. The process is
repeated until an optimum string is obtained [SY93|.

Tabu Search is a metaheuristic which can be used as an independent search
technique or as a higher level heuristic procedure for solving problems. It is basically
designed to guide other methods to escape the trap of local optimality. TS operates
by incorporating flexible memory functions to forbid transitions (moves) between

solutions that reinstate certain attributes of past solutions. Attributes that are not
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permitted to be reinstated are called tabu, and are maintained in short term memory
on a list called tabu list. After a specified duration they are removed from the list
and become free for re-insertion.

In a variety of problems, TS has found solutions superior to the best previously
obtained by alternative methods. In other cases, it has demonstrated advantages in
ease of implementation or in the ability to handle additional considerations such as
constraints not encompassed by an original problem formulation [Glo90].

Some of the main applications of TS include: bandwidth packing [LG93a],
quadratic assignment problem [BT94], graph coloring [Hd87], graph partition-
ing [LC91], VLSI placement [SV92], and scheduling and allocation in high-level

synthesis [Ali94].

2.6 Summary

In this chapter, some background on VLSI optimization, critical and false paths
problems, and some of the optimization techniques have been addressed. In addi-
tion, we have presented some proposed techniques very popular in each area. Qur
proposed approach to the COP, as will be shown later, is strongly based on these

concepts and algorithms.
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Chapter 3

Problem Definition and Proposed

Solution Technique

3.1 Introduction

The COP is an NP-Complete problem. However, this claim needs to be proved
based on the theories of N P-hard and N P-complete problems. In this chapter, a
formal definition of the COP is given. Then we prove that this problem is NP-
complete and therefore requires a heuristic technique for its solution. F inally, the
proposed technique of generating an optimized mixed CMOS/BiCMOS circuit is

presented.



3.2 Problem Definition

The objective of this work is to find an optimal or near-optimal solution to the
problem of mixing CMOS/BiCMOS gates in one circuit such that the overall delay
is minimized with minimum increase in the power and area. Only the longest sen-
sitizable paths, that the delay of a circuit depends on, are considered in the search.
Moreover, the BICMOS gate has less delay than the corresponding CMOS only if
its fanout load capacitance C'L is greater than a certain threshold CX as mentioned
in [BAB94|. Therefore only those nodes with CL > C X will be considered.

Given a circuit with m nodes and K sensitizable paths, we should first extract
all nodes that are included in the sensitizable paths and satisfy the inequality CL >
CX. Let A be the set of such nodes and let n be the size of this set.

The input for the COP is:

o Set A= (glvg27' .. 7gn)
e Vector D =(AD;,AD,,..., AD,)
AD; = D;i - Dgi

where:

AD; is the circuit delay gain due to changing gate i implementation from

CMOS to BiCMOS. Obviously, for all g; € A, AD; > 0. The value “0” is
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because g; may be swapped without any improvement in the delay when it is

not a part of longest path.

D;, and Dg_. is the circuit delay when gat. g¢; is implemented in CMOS and

BiCMOS respectively.

e Vector C = (ACy, ACs,...,AC,)

AC; = Cg-' - Cyc.'

where:

AC; is the total capacitance increase of the circuit due to changing gate ¢

implementation from CMOS to BiCMOS.

C,. and Cg.. is total capacitance of the circuit when g; is CMOS and BiCMOS

respectively.

Due to non-availability of power dissipation model for BICMOS, we expressed
the changes in power in terms of changes in capacitance. The power of CMOS and
BiCMOS gates is proportional to their capacitive load [EBE93].

The problem is to find a subset S of A such that when the nodes in S are
implemented by BiCMOS lead to maximum reduction in T, While satisfying a

threshold constraint on capacitance, that is,
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maximize 3 ..¢AD;
(3.1)

subject to 3 ;s AC; < Cr

The term Y ;c5 AD; reflects the total circuit delay gain due to changing a set S
of gates from CMOS to BiCMOS. Cr is a user specified threshold which represents
the maximum allowable total capacitance increase.

The output is:

e S where S C A.
e AD =3 ,sAD;
o AC =3 ies AC
If Trar is the initial delay of the circuit, then the final delay:
Dp = Ther — AD (3.2)

Let C; be the initial total capacitance. Then the final capacitance is,

Cr=C;—AC (3.3)

Next, we shall show that the decision version of COP is N P-Complete.
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3.2.1 Is COP in NP?

In order to prove that COP is in NP, we need to find a nondeterministic algorithm
that could be used to solve the problem in polynomial time [HS90]. Before doing
this, let us present some definitions and concepts. ChoicefA) is a function that
arbitrarily chooses one of the elements of a set A. Success and Failure are two signals
to indicate a successful and unsuccessful completion of the algorithm respectively.
The assignment statement X « Choice(1 : n) could result in X being assigned any
value of the integers in the range [1,n0]. There is no rule to specify how this choice is to
be made. Whenever there is a set of choices leading to a successful completion then
one such set of choices is always made and the algorithm terminates successfully. A
nondeterministic algorithm terminates unsuccessfully if and only if there exists no
set of choices leading to a success signal [HS90].

For COP, let “0” and “1” represent the choice between CMOS and BiCMOS,
and & represents a set of these choices. Let M be a maximum objective reduction in
the delay. Then we can formulate a nondeterministic algorithm for COP as shown
in Figure 3.1. As you can see from the figure that there is no rule of how to guess a
solution that leads to a successful termination of the algorithm. The time complexity

of this algorithm is O(n).
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algorithm COP(n,M,Cr,X,D,C)
fori —1tondo
X < choice(0,1)
repeat
if 31<icn(AD;i X X;) < M or T1¢i<ca(ACi x X;) > Cr then failure
else success T
endif
end COP

Figure 3.1: Nondeterministic COP algorithm.
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3.2.2 Is COP NP-Complete?

The COP is an :NP-Complete problem if it is NP-Hard and belongs to the NP
class of problems. In the previous section, we proved that COP is NP. Now let us
try to prove that it is VP-Hard. To do so, the following steps need to be carried

out: [Baa9l]

1. Select an .N P-Complete problem II.

2. Show that II is reducible to COP by finding a polynomial function T'(z) that

transforms (reduces) II to COP

Let II denotes the Knapsack problem which is known to be N P-Complete prob-
lem [HS90]. The definition of Knapsack problem is as follows: A set of n items is
available to be packed into a knapsack with capacity C units. Item i has a profit p;
and uses up s; units of capacity. The problem is to determine the subset I of items

which should be packed in order to maximize:

> pi (3.4)
i€l
such that
Z S S C
il
Here the solution is represented by the subset I C {1,...,n}. Now let us show
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that IT is reducible to COP. As we can see there is a correspondence between the

input/output of COP and the input/output of II. That is:
e Both of the problems have an input of n items.

o Item i in COP has AD; gain in the delay (profit) which corresponds to the

profit p; of item 7 in II.

o Item : in COP uses AC; units of capacity which corresponds to the capacity

s; of item i in II.

e The objective of both problems is to find out a subset of items that maximize

the total gain (profit).

e Both problems COP and II are subjected to some constraints of a given ca-

pacity threshold, Cr and C respectively.

Let T(x) be a polynomial reducible function from I to COP. Then from the

previous correspondence we can deduce the following:

T(C) = Cr (3.5)
T(Sl,SQ,....Sn) =AC1,AC2,...,AC',, (36)
T(plvpz""pn) = ADlvAD‘Zv"'ADn (3‘7)
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It is clear that T'(z) is one_to_one function of O(n) time complexity. This means
that IT is reducible to COP. Hence COP is N P-Hard problem. Since COP is NP-

Hard and at the same time it belongs to NP class of problems, then it is NP-

Complete.

The above result justifies searching for a heuristic solution to this problem. The

heuristic solution adopted is described next.

3.3 The Proposed Solution Technique
The proposed solution technique consists of three phases:

1. Generate critical paths of the input circuit.
2. Eliminate false paths from the generated critical paths.

3. Apply TS algorithm to select a subset S of BICMOS gates among those covered
by the sensitizable critical paths so as to minimize delay while satisfying a

threshold constraint on circuit capacitance.

The general structure of the process is shown in Figure 3.2. In the following

sections each phase will be described in more details.
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Phase | :
Generation of critical
paths

Phase ll :
Detection and
extraction of false
paths

Phase lll :
Application of tabu
search

Figure 3.2: General structure of the proposed solution technique.
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3.3.1 Phasel

As we have seen in Section 2.3.1, it is not feasible and even not necessary to con-
sider all the paths in the optimization process. wustead, opti .izing only the longest
sensitizable paths eases the problem and decreases the computation time consider-
ably. Many techniques have been proposed to find the longest sensitizable paths as
described earlier. Since our main goal emphasizes on the output of the optimization
process, we can choose any sensitization method which generates reasonable results.
Nevertheless, a-critical algorithm [AF95],which generates critical paths including

false paths, has been selected because of the following reasons:

e It can easily be interfaced with the adopted false path checking algorithm.

e The algorithm considers the delay of interconnections resulting in more accu-

rate timing prediction.

It is flexible in generating as many critical paths as required by the user.

The tools implementing this algorithm are available to us.

The detailed description of a-critical algorithm and its application on some

benchmark circuits are presented in the following chapter.



3.3.2 Phase II

After generating all critical paths for a given circuit, these paths are checked via
false path checking algorithm to eliminate the false paths. This step is necessary
to speed up the optimization process by minimizing the input population as well
as providing accurate timing. As mentioned earlier, many techniques have been
proposed for this purpose. We have chosen the algorithm reported in [YDG89] for

the following reasons:

It is easy to interface with the a-critical algorithm.

It is based on dynamic criterion by which more accurate results are generated.

It is easy to implement.

The algorithm focuses on the general false path problem, which detects whether

a given path (not necessarily the longest one) is false or not. In this case, any
number of paths having the same delay can be detected. This capability is

not available in most of the other techniques.

The detailed description of this algorithm and its application on some benchmark

circuits are presented in Chapter 4.
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3.3.3 Phase III

The main contribution of our work is included in this phase which covers the process
of optimal selection of gates required to be implemented in BiCMOS technology.
The input of this process is the output of the second phase in which the longest
sensitizable paths are generated. The goal is to replace some of the CMOS gates by
BiCMOS gates in order to optimize the circuit for delay and capacitance. The output
is a mixed CMOS/BiCMOS circuit with optimum cost. Since this process involves
a lot of processing and data manipulation, the required optimization algorithm has
to be correct, effective, and efficient. TS algorithm has proven to be efficient and
powerful in dealing with very complex problems. In addition, we have chosen TS

for the following reasons:

e It is modular and easy to implement.

e Its ability to handle additional considerations such as constraints not encom-

passed by the original problem formulation.

e It is able to escape the trap of local optimality.

The details of this algorithm and how it has been applied on COP are presented

in Chapter 5.
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3.4 Summary

In this chapter, the formal definition of COP has been presented. We have proven
that the decision version of this problem belongs to the class of NV P-Complete prob-
lems which require heuristic techniques to find sub-optimal solutions. Our proposed
solution technique to this problem consists of three phases. The first and second
phase aim at finding the K longest sensitizable paths for a given circuit because
circuit delay is determined by the longest sensitizable paths. The third phase is the

core phase which includes the application of TS algorithm.
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Chapter 4

Timing Analysis and False Path

Problem

4.1 Introduction

This chapter covers the timing analysis and false path problem. In Section 2 of
this chapter, some timing analysis concepts and a detailed description of a-critical
path algorithm, which represents the first phase in the proposed solution technique
to COP, are presented and illustrated with an example. The second phase of our
proposed solution technique is the elimination of false paths from the generated
critical paths. This phase is covered in Section 3 where some aspects of false path
problem and drawbacks of D-algorithm to detect false paths are explained with an

illustrative example. In addition, this section describes in detail the adopted false

39



path detection algorithm and the method of implementation. The experimental
results of applying both a-critical path and false path detection algorithms are
presented and discussed in Section 4. Then we conclude in Section 5. We begin with
the discussion on some timing analysis concepts that have been taken from [AF95]

and summarized for completeness.

4.2 Timing Analysis and o-Critical Approach

The delay of the circuit is determined by its longest sensitizable paths. Therefore, to
verify and optimize the circuit timing, the focus should be on predicting the timing
critical paths only. A path 7 is classified as critical if its total delay, T%, is very close
to its latest required arrival time LRAT,. If T, exceeds LRAT,, path = becomes
a long path. The path delay consists of two components: the logic delay which
is known prior to layout, and the interconnect delay which is unknown. In VLSI
designs, the interconnect delay is a major part of the overall path delay. Therefore
it is very important for pre-layout timing analysis to predict the interconnect delay
requirements. The interconnect capacitance is a key element in the total interconnect
delay [AF95]. The a — critical algorithm aims at predicating the interconnect delay
requirements of a given circuit by estimating the delay of the longest paths in the
circuit. Before we describe this algorithm, we recall from [AF93] some definitions

and equations proposed to compute the path delay.
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Let 7 = {v1, vy, -, vp} be a path in the circuit graph, where v; and v, are the

source and sink cells. The total delay on = is given by,

p—1
T, = S (CD,, + ID,,) (4.1)

i=1
where, CD,, is the switching delay of cell v; and ID,, is the interconnect delay of

the net driven by cell v;.

The switching delay may be expressed as follows,
CD,, =BD, + LF, x AcL,, (4.2)

where, BD,, is the base (intrinsic) delay of cell v; in nanoseconds, LF,, is the load
factor of the output pin of the driving cell v;, expressed in units of time per unit
capacitance, and AcL,, is the summation of input capacitance of fan-out gates of
cell v;.

The interconnection delay may be expressed as follows,

ID, = LF, x C, (4.3)

where, C,, is the total interconnect capacitance (area + fringe) of the net driven by
cell v;.

The interconnect capacitance C,, is estimated using data from past designs as
follows. The average and standard deviation of net length for different types of

nets (2-pin, 3-pin, ...,m-pin) are collected from past designs of similar complexity!.

!this classification helps reduce the sample variance around the mean
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These are transformed into interconnect capacitances. Let C,, and s,, be the esti-
mated expected interconnect capacitance and standard deviation of the net driven
by cell v;. Then, the expected interconnect delay T D,, of net v; and its corresponding

variance S?, are estimated as follows:

ID,, =LF, xC,, : 53_. = LF,?_. X sf__ (4.4)

Under the assumption of statistical independence between the nets, the expected

delay and variance on any path 7 can be expressed as follows,

p-1 p—1
T. =) (CD,+1D,) ; S:=3 s2 (4.5)
=1

=1

Let Trax be the expected delay of the longest path in the circuit, that is,
Thax = I’Irleaﬁ((Tx) (4.6)

where II is the set of all paths in the circuit graph G.

4.2.1 Description of a-Critical Algorithm

The a-critical approach is based on the following definition:

Definition: A given path II, with overall delay Ty, is a-critical iff:
Th+a x 5[21 > Thaz (4.7)

For a user specified a, the a-critical approach enumerates all paths which satisfy

Equation 4.7. The parameter « is interpreted as a confidence level. Tj; + o X v/ S3
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means that we are a x \/En ns confident that path II is critical. The higher « is,
the larger the number of reported paths will be, and the higher is the probability of
capturing all the critical paths [AF93].

The input circuit to the algorithm is modeled as an acyclic directed graph G
= (V,E), where V is the set of vertices representing the signal nets and F is the
set of edges representing the nodes. To trace all vertices and enumerate the paths,
Depth First Search with pruning is applied. The algorithm starts with backward
trace from primary outputs to primary inputs. During this step, for each vertex
v the maximum delay MAX D, and the maximum variance M AXV, between the
vertex and the primary outputs are computed. Then forward trace is performed to
enumerate the critical paths. During this step, when the search reaches a vertex
v along the partial path IT with partial delay Ty and variance SZ, the following

criticality test is made:

T + MAXD, + a x \/S% + MAXV, > T (4.8)

If the test is positive, meaning that the partial path IT is a-critical, the search
continues. If not, this means that the partial path II is not a-critical. Hence all
paths starting with this partial path are not a-critical too. Therefore, it is not
necessary to continue the search. In this case, the algorithm stops and backtrace to
the predecessor vertex (pruning the search). Once all the a-crtical paths are found,

they are sorted in descending order and then reported as an output [AF93].
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4.2.2 Example

Let us give a simple example that demonstrates how the algorithm works. Figure
4.1 shows a simple combinational circuit. Assume that for 2-pin and 3-pin nets, the
average interconnect capacitance, ¢, is 0.04966 pF and 0.06428 pF respectively, and
the standard deviation, s, is 0.03819 pF and 0.02698 pF respectively. The values of
base delay, load factor and input capacitance of the gates are taken from Table 7.2.3
in Appendix A. Using the equations stated earlier with the confidence level set to

25, we obtain the following critical paths:
e A=C-1-E-2-F—-3-H-5-1-6-Y. T, =14.056 s, S;‘fl =0.128
¢ b=D-2-F-3-H-5-1-6-Y.T, =10.958ns,.‘5'§2 =0.112

e Bb=B-3-H-5-1-6-Y.T, =7853us, S = 0.090

4.3 False Path Problem

The timing analysis based techniques ignores the functionality of the circuit. These
techniques aim at finding the longest paths either sensitizable (true) or unsensitizable
(false). The presence of false paths has many undesirable effects including loss of
accuracy and waste of optimization effort. Therefore, it is essential to eliminate
false paths from the critical ones. Many techniques have been proposed to serve this
purpose. However, most of them are based on the D-algorithm approach which is
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Figure 4.1: A simple combinational circuit.



applied mainly in testing a circuit for stuck_at_fault. During a signal propagation, all
other signals are assumed to be stable. When this algorithm is used for false path
detection, stableness assumption remains. For most cf the time this assumption
may be true, especially in detecting the single longest false path. When general
path is considered or several longest paths with same delay exist in the circuit, this
assumption may not work. The following example demonstrates the idea. Figure 4.2
shows a simple combinational circuit in which the delay of all gates is assumed
equal 1 ns, the delay of all signals is assumed equal 0 ns, and all the primary
inputs are stabilized at Ons. Let P, =Bl -1 - F-3-G—-4—H -5—Y and
P,=Cl-1-F-3-G-4-H—-5-Y. Both P, and P are the longest paths
with the same delay 4 ns. Using D-algorithm to detect whether path P, is false
or not, we set signals C1 = 1,4 = 0,D = 0 & E = 1 respectively to allow the
signals propagate along path P,. Then new values of signals are induced from those
signals. Since C1 =1 =C = C2, C2 is set to 1. Since gate 2 is NOR and one of its
inputs is 1, then E becomes 0. However the initial value of E is 1 which makes E
inconsistent. Therefore we claim P, to be false. Using a similar argument, we can
conclude that P, is false too. Based on that the worst delay of the circuit is 3 ns
instead of 4 ns.

Now let us apply the input (A =1,B=0,C=0,D = 0),weget F=0& F=1
at 1 ns, G =1at 2ns, and H =1 at 3 ns. Since E = 1 is a non-control value to

gate 5, the output Y of gate 5 can not be decided until H is stabilized. Signal H is
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Figure 4.2: Another simple combinational circuit.
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stabilized at 3 ns, hence signal Y is stabilized at 4 ns. This condition shows that the

worst delay of the circuit is 3 ns which conflicts with the result of the D-algorithm.

4.3.1 False Path Detection Algorithm

From the above example, it is clear that D-algorithm approach does not take the
stableness of the signals into consideration, hence it gives inaccurate results. The
approach reported in [DYGB89] handles this issue in a very efficient way. The ap-
proach is based on the idea that the stableness of a signal is highly dependent on
the stable time and the logic values of its input signals. The stable time of a signal
s is the minimal time for the signal to reach its logic value.

In this work we have implemented this algorithm but with minor modifications.
The first modification is the use of a variable signal delay; i.e., for each signal there
is a certain delay which is calculated using the model used in [AF95], whereas the
original algorithm considers an average signal delay. Other modifications have been
made in the way of handling generation of new events in the events propagation
phase as will be shown later. Before we discuss this algorithm, it is important to
present some definitions from [DY'G89] with examples that help one in understanding

how the algorithm works.
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Definitions

In order to take the stableness of signals into consideration during detection of false
paths, the following definitions have been proposed in [DYG89|:

Definition 1: For any signal s; along path P, P = sg, 0, 51,91, -.-, §k—1, Sk, tWO
special sets of signals for the signal s;, 0 < i < k, with respect to all input vectors

can be defined as follows:

Early_arrive_signals(s;, *) = {s; | s; is an input signal to the gate g;
and the maximal time for s; to be stabilized < the minimum

signal delay of s; along path P}  (4.9)

Late_arrive_signals(s;, *) = {s; | s; is an input signal to the gate g;
and the minimal time for s; to be stabilized > the maximum

signal delay of s; along path P}  (4.10)

The symbol (*) in the above definition is to show that the set of Early_arrive_signals
and the set of Late_arrive_signals are vector independent, hence the algorithm is
vector independent too.

The above definition can be clarified easily through an example. In Figure 4.2,
let us assume that all primary inputs are stabilized at 0 ns, the propagation de-
lay of each gate is 1 ns and all signal delays are 0 ns. Then, along the path
P=B-1-F-3-G—-4—-H —35-Y, some of the timings are:
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minimal time for F to be stabilized = min(minimal time of B,minimal time of C)
+ propagation delay of gate (1) + signal delay of F = min(0,0) +1 +0=0+1 +
0=1ns.
maximal time for F to be stabilized = max(maximal time of B,maximal time of C)
+ propagation delay of gate (1) + signal delay of F = max(0,0) +1 +0=0+1
+0=1 s
maximum signal delay of F along path P = maximum signal delay of B along path
P + propagation delay of gate (1) + signal delay of F =0+ 1 + 0 = 1 ns.
minimum signal delay of F along path P = minimum signal delay of B along path
P + propagation delay of gate (1) + signal delay of F =0+ 1 + 0 = 1 ns.
maximum signal delay of G along path P = maximum signal delay of F + propa-
gation delay of gate (3) + signal delay of G =1+ 1 + 0 = 2 ns.
minimum signal delay of G along path P = minimum signal delay of F + propaga-
tion delay of gate (3) + signal delay of G =1+ 1 + 0 = 2 ns.

Also, along the path P, the following sets of signals with respect to signal A and
G are defined:
Early_arrive_signals(A4,*) = @, because there is no input signal whose maximal
time to be stabilized is less than the minimum signal delay of A along P (0 ns).
Late_arrive_signals(A,*) = {F}, because the minimal time for F (1 ns) to be
stabilized is greater than the maximum signal delay of A along P (0 ns).

Early.arrive_signals(G,«) = {D}, because the maximal time for D (0 ns) to be
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stabilized is less than the minimum signal delay of G along P (2 ns).
Late.arrive_signals(G, *) = ®, because there is no input signal whose minimal time
to be stabilized is greater than the maximum signal delay of G along P (2 ns).
Definition 2: A path P = sq, g0, 51,91, ., k-1, Sk, iS a possible sensitizable path if

each signal s;, 0 < i < k, satisfies the following two conditions:

1. Non of the signals in Farly_arrive_signals(s;, *) set has a control value of g;.

2. If Late_arrive_signals(s;,*) # ®, s; should have a control value of g;.

Algorithm Description

Based on the above definitions, the false_path_detection (FPD) algorithm can be
described as follows. As shown in Figure 4.4, the algorithm receives the path P and
returns false_path = true if P is a false path, or false_path = false if P is a possible
sensitizable path. This algorithm is divided into two phases. The first phase is the
events generation phase and the second is the events propagation phase. The value
assigned to the signal forms an event and it is denoted as (signal, value). In the first
phase, the path P is traversed, starting from the primary input and stops at the pri-
mary output, and each signal is set to a certain logic based on the definitions stated
earlier. All the events are stored in the queue QUEUE. In the second phase, these
setting events are propagated as in the D-algorithm. During the propagation of the
event (s,value), if the signal s is found to be inconsistent then the algorithm stops
and designates P as a false path. Otherwise, the VEW _EVENTS_CREATION
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procedure is called to check whether new events have been created or not. If new
events are created, they are inserted in QUEUFE and the propagation process con-
tinues. After all events are propagated and non of thera cause any signal to become
inconsistent (assigned more than one logic value), then path P is claimed to a
possible sensitizable path [DYG89].

All the steps of FPD are straightforward except the step of new events creation.
This step is derived from D-algorithm. During a signal propagation, the values
assigned to this signal can induce values to the input signals of its driving gate
and to the output signals of its driven gates depending on the gate type, the signal
value, and other conditions. The original algorithm considers only basic cells, AND,
NAND, OR, NOR, and NOT. We have modified the propagation phase to handle
other types of cells such as XOR, XNOR, and most of the other block structures of
standard cells. Let us call those cells as non-basic cells. Therefore, there are five
cases for the new events to be generated as follows: (all the terms refer to a gate g,

s is the output of gate g and sy, so, ..., s¢ are the input signals to gate g)

* Gate g is an AND (NAND) gate, the event (s,1) (event (s,0)) can generate
the following events: (s;, value = non-control value of gate g), 1 <i<k. A

similar case holds for OR (NOR) gate and NOT.

¢ Gate g is an AND (NAND) gate, the event (s;, value = control value of gate

g) creates new event (s,0), (event (s,1)). A similar case holds for OR (NOR)
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ALGORITHM FALSE_PATH_DETECTION(P, false_path)

Notation

P: the path to be checked, P = sg, go,51,91,.-.,5i,Giy- .-, Sk

So: primary input

Sg: primary output

e = (si,value): the format of the event e where value is the logic value assigned to signal s;

QUEUE: the queue to store the events

new_events: set of events

LIST: the data structure to store the logic values assigned to signals

signal_state: the state of signal: consistent or inconsistent

CHECK_LIST_.CONSISTENCY (signal_state): procedure to check signal
consistency in LIST

NEW_EVENTS_CREATION(e,new_events): procedure to check whether
the event e creates new_events

PUSH (e): procedure to push the event e in QUEUFE

POP(e): procedure to pop the event e from QUEUFE

ADD_TO.LIST(e): procedure to add the event e to LIST

begin
The Events Generation Phase

Initialize QUEUFE
for each s; along the path P do

begin
for each s; € Early_arrive_signals(s;,*) do
begin
PUSH(s;, value = non-control value of gate g;)
end
if Late_arrive_signals(s;,*) # ® then
begin
PUSH(s;, value = control value of gate g;)
end
end

Figure 4.3: The false path detection algorithm (cont.).
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The Events Propagation Phase
Initialize LIST
while QUEUF is not empty do
begin
POP(s;, value)
ADD_TO_LIST(s;, value)
CHECK_LIST_.CONSISTENCY(signal_state)
if signal_state = inconsistent then
begin
false_path — true
Exit
end
else
begin
NEW_EVENTS_CREATION((s;, value),new_events)
if new_events # ¢ then
PUSH(new_events)
end
end
false_path — false
end{ Algorithm}

Figure 4.4: The false path detection algorithm [DYG89).



and NOT.

e Gate gisan AND gate whose input signals have values value;,value,,. . . ,value;
except s;, then the event (s;, non-control value of gate g) creates new event

(s, value = AND(value,,value,,. .. ,valuey). A similar case holds for NAND,

OR, NOR.

o Gate g is an AND gate whose input signals have non-control values except s;,
then the event (s, 0) creates the event (s;, control value of gate g). A similar

case holds for NAND, OR, NOR.

e Gate g is a non-basic cell, two conditions are applied. If all input signals are
already assigned values except s;, then the event (s;, 0 or 1) creates the event
(s, output value of the logical function of gate g). If all input signals have
values except s;, then the event (s, 0 or 1) creates the event (s;, 0 or 1 based

on the logical function of gate g).

Example

The following example gives better understanding of how the FPD algorithm works.
Consider the circuit shown in Figure 4.1.

We will assume that all primary inputs are stabilized at 0 ns, each gate delay
equals 1 ns and each signal delay equalsOns. Let P=C~-1-FE1-2-F—-3-H-—

5—I~6-Y be the path to be checked. Before we start executing the algorithm, it



is preferable to get the two sets, Early.arrive_signals and Late.arrive_signals for
each signal along the path P. Using the Equations 4.9 and 4.10, Table 4.1 shows
the two sets for each signal along path P.

Then the algorithm starts with the event generation phase. Initially QUEUE =
(. Then for each signal along the path P, the algorithm checks its Early_arrive_signals
and Late_arrive_signals. For signal C, no early or late arrive signals exist, hence no
action. Signal E'1 has only D1 as an early arrive signal. Therefore, the event (DI,
non-control value of gate 2 = 1) is pushed in QUEUE. Now QUEUE = [(D1,1)].
For signal F, B is an early arrive signal, and therefore the event (B, 0) is pushed in
QUEUE to become [(D1,1),(B,0)]. Signal D2 is the only early arrive signal of H.
Therefore, (D2,0) is pushed in QUEUE. Signal I has signal G as an early arrive
signal. Therefore, (G, 1) is pushed in QUEUE. Since Y has no any early or late
arrive signals, no action is taken. Now QUEUE = [(D1,1),(B,0),(D2,0),(G,1)).
After the completion of events generation phase, the event propagation phase starts.
Initially, LIST is set to []. Then the events in QUEUE are popped according to
FIFO strategy. The event (C1,1) is popped first and stored in LIST. Since no
events exist in LIST other than (D1, 1), consistency check is not applicable and the
algorithm jumps to execute new events creation step. However, the event (D1,1)
does not create any new event based on the conditions of new events creation cri-
teria. Next, the event (B,0) is popped from QUEUE and stored in LIST. Now

LIST has two events [(D1,1),(B,0)], and QUEUE has two events [(D2,0), (G, 1)].
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Signal | Early_arrive_ | Late_arrive_
signals signals
C - -
E1l D1 -
F B -
H D2 -
I G -
Y - _

Table 4.1: Early_arrive_signals and Late_arrive_signals of the path P=C — 1 —
El1-2-F-3-H-5-1-6-Y.



Obviously, no inconsistent events exist in LIST and no new events can be created
as a consequence of adding (B, 0). Next, (D2,0) is popped and stored in LIST to
become [(D1,1),(B,0),(D2,0)]. By checking consistency in LI ST, it is clear that
the two events (D1, 1) and (D2,0) are inconsistent because D1 = D2 = D which
is assigned two different values. Then, the algorithm assigns false_path signal as

true and exits.

4.3.2 Implementation Details

Below the used data structures and the implementation method are described.

Data Structures

The input circuit is modeled as two single linked lists. In the first list, each
element consists of a gate number, gate type (AND, OR, etc.), list of gate
inputs, gate delay and signal delay. In the second list, each element consists

of a gate number and its list of fanout gates.

o The library of gates is stored in a linked list in which each element consists of

a gate type, base delay, load factor and input capacitance.

e Linked list of signals with maximum and minimum arrival time.

¢ The input path is modeled as a linked list of gates. Each element consists of

a gate number, its type, list of early arrive signals, list of late arrive signals,
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and maximum and minimum delay of signals along the path.

e A queue to store the events that are generated during the event generation

phase. The queue element consists of a signal numoer and its assigned value.

o A Linked list to store the logic values assigned to each signal during the event

propagation phase.

In all data structures, each signal is represented by its driving gate number.

Implementation Method

The algorithm has been implemented through four steps:

1. The input circuit, gates library, and other related information are read into
the data structures mentioned above. Although this may require extensive

memory, it is necessary to speed up the process.

2. The circuit is traversed to calculate the maximum and minimum arrival time
and identify the early and late arrive signals for each signal. From the defi-
nitions mentioned earlier, it is obvious that prior to determining these timing
parameters and signals for a given gate, all its driving gates have to be pro-
cessed first. To achieve that, we should traverse the circuit from its primary
inputs to its primary outputs more than once. In each traversal, those gates

whose inputs have been already processed will only be subjected to processing.
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Since the circuit is traversed in the order of its occurance in the netlist, the

number of traversals is less than or equal to the depth of the circuit.

3. The input path is read into its corresponding data structure. Then it is tra-

versed to generate the events to be stored in the queue.

4. The events in the queue are propagated along the path, consistency check is

made, and new events are generated according to the algorithm.

Steps 3 and 4 are repeated for all input paths. We have implemented this algo-

rithm in the C language and called the program as FPFIND.

4.4 Experimental Results

The a-critical algorithm has been implemented using C language as described in [AF93].
The algorithm has been tested on different combinational and sequential circuits.
In order to use these timing analysis tools, the given circuit should be described
in VPNR? format. Since the ISCAS'85 benchmark circuits we used for testing are
in SLIF format, we had to convert them into VPNR. This task was accomplished
through two steps. First, we developed a C program (TRANS) that translates SLIF
format to RNL? format. Second, we used OASIS package to convert the RNL format

into VPNR.

2refers to Vanilla Place aNd Route circuit description
3refers to Net List circuit description
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Figure 4.5 shows the process of generating the critical paths of a given circuit
in SLIF format using various tools that have been described earlier. A detailed
description of these tools and how they are used are presented in Appendix A. In
order to test functionality and performance of all developed tools, nine different
benchmark circuits were used for this purpose.

Table 4.2 lists these circuits indicating some of their characteristics and shows
the results of applying a-critical algorithm. As seen from the table, we have used
small confidence level values (< 3) for large circuits and high confidence level values
(100) for small circuits (highway and fract) in order to generate reasonable number
of critical paths. Some circuits (such as c432 and c499) have large number of critical
paths even for small values of confidence factor. For those circuits marked with “*”,
we used 500 as a sealing value to limit the reported critical paths.

Table 4.3 shows the results of applying false path detection algorithm on the
selected benchmark circuits. As clear from the table, some circuits have a large
number of false paths and some do not have false paths at all. This is based on the
critical paths that have been inspected. Also it is shown that most of the detected
false paths of the circuits (except for ¢3540) did not affect the maximum circuit
delay because these circuits are well-designed [CD93]. Nevertheless, these results
match with those reported in [CD93]. In addition, these results are very good for
speeding up the optimization process by reducing the number of paths meant for

processing specially in the case of ¢6288 and ¢3540 circuits which have large number
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Figure 4.5: Critical paths generation process for a circuit in SLIF format.
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Circuit | No. of | Confidence [ No. of critical Max Min
Name | Nodes Factor Paths Delay (ns) | Delay (ns)
c432%* 395 1 900 171911 171.911
c499* 283 1 500 65.344 65.344

c880 784 1 175 125.506 115.444
c1355 14353 1 151 109.860 94.467

c3540%* 2243 3 300 192.188 172.800

c6288%* 6672 1 500 675.646 675.646

struct* 1952 1 500 121.894 113.508

highway o4 100 61 32.348 22.946
fract 149 100 169 76.574 3.734

Table 4.2: Results of applying a-critical algorithm on some selected benchmark
circuits.
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Circuit | No. of | No. of Crit. | No. of False % of Ckt. Delay
Name | Nodes Paths Paths False Paths | after FPD
c432 395 500 120 24% 171.911
c499 283 500 0 0 65.344
c880 784 175 0 0 125.506
c1355 1453 151 4 2.65 109.860
c3540 2243 500 460 92 185.201
c6288 6672 500 412 82 675.646
struct 1952 300 0 0 121.894

highway 54 61 0 0 32.348
fract 149 169 0 0 76.574

Table 4.3: Some application results of the adopted false path detection algorithm.
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of gates.

4.5 Summary

The a-critical algorithm effective in generating critical paths and estimating circuit
timing. It considers the net delays based on the data of interconnection capacitance
of previous designs. It is because of this capability, we adopted this algorithm as a
first phase of our proposed optimization process. We applied this algorithm on some
benchmark circuits to generate critical paths that will be used as an input to the sec-
ond phase to eliminate false paths from the generated critical paths. The integration
of a-critical algorithm and false paths detection algorithm to extract the K longest
sensitizable paths has produced a reasonably an efficient approach. Both techniques
are very important for minimizing the effort and time for circuit optimization pro-
cess. In addition, more accurate results are obtained using a combination of these

algorithms



Chapter 5

Circuit Optimization Problem

Using Tabu Search

5.1 Introduction

The main contribution of this work is the application of Tabu Search (TS) technique
on COP as an independent optimization technique. In order to accomplish this, COP
has to be modeled to fit the requirements of TS technique. Since TS is a heuristic.
experiments with different parameter values are recommended to find out the most
optimal solution. In this chapter TS is explained in detail with emphasis on how
COP has been formulated. A Detailed description of TS is presented in Section 2 of
this chapter. In Section 3, the problem formulation is explained. Intermediate and

long term memory structures of TS are discussed in Section 4. Section 5 talks about
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our proposed diversification strategy. Use of some Simulated Evolution concepts

with TS in COP is presented in Section 6. Finally, we conclude in Section 7.

5.2 Algorithm Description

TS was proposed by F. Glover for finding good solutions to combinatorial optimiza-
tion problems [Glo90]. This technique is conceptually simple and elegant. It is a
meta-heuristic which can be superimposed on other procedures to prevent them from
becoming trapped at a locally optimal solution. The method can be used to guide
any process that employs a set of moves for transforming one solution into another,
and provides an evaluation function for measuring the attractiveness of these moves.

TS is based on three primary ideas:[Glo90]

1. It uses flexible attribute-based memory structures in order to get benefit of
the search history. This feature allows TS to exploit the historical informa-
tion more thoroughly than the techniques using rigid memory such as branch
and bound, and A" search, or the memoryless techniques such as simulated
annealing. The memory structures include: Short Term, Intermediate Term,

and Long Term.

2. It controls the search process by applying two mechanisms: tabu restrictions
and tabu aspiration criteria. They constrain and free the search in attempt-
ing at finding better solutions. This strategy uses the short term memory
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structure.

3. It implements two strategies: intensification and diversification by incorporat-
ing memory functions of different time span. Intensification strategies refer to
procedures for reinforcing move combination and solution features historically
found good , while diversification strategies refer to driving the search into
new regions (Glo90]. The intensification and diversification are applied in the

intermediate and long term memory structures respectively.

The link between different types of memory and their associated strategic com-

ponents in TS are illustrated in Figure 5.1.

5.2.1 Tabu Restriction

TS goes from one trial solution to another by making moves. Several candidate
moves are generated to give different solutions. The best solution is selected for
current iteration and it may not be better than the best solution found so far. If
this strategy is applied alone, it is possible to reach a local optimum, ascend, and
then come back to the same local optimum. Thus there is a possibility of cycling.
To avoid this trap, tabu restriction is used. In tabu restrictions, some attribute of
moves are made tabu (forbidden) to avoid move reversal.

Tabu restrictions are enforced by a tabu list which stores the move attributes to

avoid move reversal. Tabu list looks like a window on accepted moves (Figure 5.2).
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Figure 5.1: The relationship between memory functions of Tabu Search [Glo90].
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Once an attribute is removed from the list, it is released from its tabu status, and
the move containing this attribute again becomes free to be selected. The window

or tabu list size can be any number depending on the problem.

5.2.2 Aspiration Criteria

Aspiration criteria of TS free the search process to allow some moves to be reselected
again. They override the tabu restriction if the reverse move produces a better
solution than the previous one. If a move is made tabu in iteration i and its reversal
comes in iteration j, where j > i + ¢, then it is possible that the reverse move takes
the search into a new region because of the effect of ¢ intermediate moves.

Many aspiration criteria can be identified for this purpose. The simplest aspira-
tion criterion is to override the tabu status if the reversal produces a solution better

than the best found so far.

5.2.3 How the Algorithm Works

Figure 3.3 shows a simplified description of TS. Initially the current solution is
the best one. A list of candidate solutions is generated from the current solution
by making some moves. The size of this list is a trade-off between quality and
performance. The best among these solutions is selected and if it is not tabu, then
it becomes the current solution for next iteration. Otherwise, its aspiration criterion

is checked. If it passes the aspiration criterion then it becomes the current solution.
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Figure 5.2: Tabu list visualized as a window over accepted moves.
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otherwise moves are regenerated to get another set of new solutions. The best
solution is updated to the current solution if it is better than the best found so far.

A more detailed algorithmic description of TS is given in Figure 5.4.

5.3 COP Formulation

To use TS for any particular problem, one has to perform the following tasks:

e Choose a proper initial solution.

Define a neighborhood for a given solution.

Generate moves.

e Formulate and maintain tabu list.

Define a proper restriction criterion.

Define a proper aspiration criterion.

Formulate the cost function to evaluate alternative solutions.

Below we explain how each task can be handled in our case.

5.3.1 Initial, Current and Best Solution

Although in theory the initial solution can be any feasible solution, it is found that
TS may take longer if it is given a poor initial solution [Ali94]. In our case, the initial
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Figure 5.3: Block diagram of tabu search procedure.
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:Set of feasible solutions.

:Current solution.

:Best admissible solution.
:Objective function.
:Neighborhood of s € X.

:Sample of neighborhood solutions.
:‘Tabu list.

:Aspiration level.

Start with an initial feasible solution s € X.
Initialize tabu lists aspiration level.
FOR fixed number of iterations DO
Generate neighborhood solutions S(s) € N(s).
Find best s' € S(s).
IF move s to s is not in T THEN
Accept move and update best solution.
Update tabu list and aspiration level.
Increment iteration number.

ELSE
IF AL is satisfied THEN
Accept move and update best solution.
Update tabu list and aspiration level.
Increment iteration number.
ENDIF
ENDIF
ENDFOR

Figure 5.4: Algorithmic description of Tabu Search (TS).
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solution is a set A of CMOS nodes covered by the K longest sensitizable paths. As
TS proceeds, in each iteration we will generate a number of current solutions by
swapping some CMOS gates by BiCMOS gu:es randoml-. Then each solution is
evaluated according to the cost function. A solution that is better than the best
solution found so far will be assigned as the best solution. TS stops if one of the

following is satisfied:

o TS executed exactly m iterations.

o A user specified objective improvement in circuit delay is achieved.

¢ The circuit delay has been reduced by AD where,
AD =T — Thin (3.1)

where Trax = MaXeep(Tx), Tmin = Mingep(T,), and P is a set of sensitizable

paths.

5.3.2 Generation of Moves

One possible move in the COP is to swap a CMOS gate by its equivalent BICMOS
gate or a BiCMOS gate by it equivalent CMOS gate. Each move will generate one
neighbor solution. Another way of generating neighbor solution is by making more
than one move. This approach has fewer chances of finding the global optimum as
the solution may be disturbed too much. The selection of the gate to swap follows

a random strategy.



Another method of generating moves is based on some characteristics and at-
tributes of nodes such as its location, type and delay. One of the techniques used for
this purpose is Simulated Evolution (SE) which consists of evaluating the goodness
(fitness) of each node in the set. The goodness of a node in our case can be identified
by how much is its contribution to the circuit delay. More details about SE and how
it is integrated with TS for generating moves are presented in Section 5.6. A move
e can be:
illegal: when the move is improving but violating the constraints.
legal: when the move is non-improving and not violating the constraints.

Good: when the move is improving and not violating the constraints.

The constraints are presented later in this section.

5.3.3 Tabu List

Formulation of the tabu list is one of the main steps in using TS to solve a particular
problem. Since we have only one type of move we will use only one tabu list. Each

entry in the tabu list comprises the following information:

¢ Gate number in the path. As will be shown later each gate is represented by

a number in the circuit description.
¢ Gate type: AND, NAND, ... etc.

e Cost associated with this move.
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e Frequency of this move. The frequency is defined as the number of times the

move has been admitted since the starting of the search process.

¢ Gain bit (0 or 1): this field is used only with one of the adopted aspiration

criteria as will be explained later.

The tabu list size is an important parameter. Some researchers use the magic
number 7 [Ali94]. However, the size depends on the problem under consideration.
Therefore, in our implementation of TS, we have experimented with several sizes

and chosen the one that produced the best solution.

5.3.4 Restriction Criteria

The adopted tabu restriction for COP is to forbid reversing a move that is already
in the tabu list. To achieve this, the gate number in the current move is compared
with each gate number in tabu moves. If both are equal, this means that this gate
has been selected recently for swapping and it is forbidden to swap it again. The

gate in tabu list can be CMOS or BiCMOS.

5.3.5 Aspiration Criteria

After all the candidate moves are generated for iteration i, the best is selected,
which may not be better than the current solution. If this best move is not tabu, it

is accepted and becomes the current solution for the next iteration. If the move is

~I
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tabu, its aspiration criterion is checked.

We carried out experiments with two aspiration criteria. The first one is to
override the tabu restriction in case the swap produces a new current best solution.
The second criterion is called Aspiration by Search Direction. In this criterion, if an
improving (non-improving) move e is made and it is tabu, then the reverse move
€ is accepted if it is also improving (non-improving) move. A gain bit G is used
where G(e) is set to a value “1” (improving) or “0” (non-improving) depending on
the move. The value of G(e) is updated in each iteration. That is, aspiration level
of a move e is satisfied if both the move and its reversal lead to a solution with a
higher cost or both lead to a solution with a cost lower than the current solution. For
convenience, we shall call the first aspiration criterion AS; and the second aspiration

criterion AS,.

5.3.6 Evaluation Function

In order to select the best solution among several solutions that are generated by
certain moves, we have to evaluate each solution according to some cost function.
The evaluation function should be formulated in such a way as to incorporate
all the parameters meant for optimization. The aim is to minimize circuit delay
with minimal increase in power. Since power is proportional to capacitance, the
evaluation function should be a measure of the effect of a move in the delay and

capacitance.
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Let E(s) be the cost function of a solution s. Then,

E(s) = f(delay, capu.citance) (5.2)

As mentioned earlier, the delay of a circuit is determined by the delay of its
longest sensitizable path. However, Since there are no changes in interconnection
delays when a certain node is swapped from CMOS to BiCMOS or vice versa, only
the circuit delay D,,, which is the summation of switching delays of those gates
constituting the longest path P;, would be affected. We adopted the same switching
delay model as in Equation 4.2.

Let i be the gate number. Then its switching delay CD; is expressed as:

CD; = BD; + LF; x AcL; (5.3)

Let F; be the number of fan-out gates of gate i. If Cy is the input capacitance

of a loading gate £, then:

Fy
ACL,‘ = Z Ck (54)

k=1

Now, we can compute Dy,. Let m be the number of gates in the longest path.

Then:



The total capacitance of the circuit is given by:

Ci=) G (5.6)
where n is the total number of gates in the circuit and C; is the input capacitance

of gate i.
As stated earlier in Chapter 3, the objective is as follows:

maximize Y ;.sAD;
(5.7)

subject to ¥ ;s AC; < Cr

Recall that AD; is the circuit delay gain due to changing gate i implementation
from CMOS to BiCMOS. Therefore, in order to compute AD;, we can simply use
Equation 5.5. The capacitance constraint may be expressed as a penalty in the cost
function when there is an illegal move. Then, the evaluation function of a neighbor

solution s’ to a solution s can be expressed as:

E(s') = E(s)+ AD; — X (5.8)

where
penalty if the move is illegal
X =
0 otherwise
The penalty X differs from problem to problem depending on the circuit delay

as will be shown later.
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For the initial solution so, E(sg) = 0. Then as TS proceeds, the cost of the
subsequent solutions will be expressed in terms of the cost of the current solution
plus the gain in the delay subject to the penalty value.

The evaluation function in Equation 5.8 is meant only for short term memory
component and does not incorporate any historical information that can be used
in long term memory. In the next section we will show how a record of history of

moves is used to diversify the search to improve results.

5.3.7 Example

Consider the simple combinational circuit shown in Figure 5.5 Let us use the fol-
lowing data:
Number of sensitizable paths = 3.
Tabu list size = 3.
Candidate list size = 3.
Capacitance constraint = 10% of the total capacitance.
By applying phase 1 and phase 2 of our approach using the data presented in
Appendix A, we find that the three longest sensitizable paths are:
Py: 4,9,10,11,13,6 with D, = 10.987 ns.
Py: 2,7,10,11,13,6 with D,, = 10.467 ns.
P: 3,7,10,11,13,6 with D,, = 10.467 ns.

Therefore, the circuit delay is 10.987 ns and its total capacitance is 2.075 pF. If we
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Figure 5.53: A simple combinational circuit.
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examine the nodes satisfying CL > CX among all the nodes within P, P,, and P;,
we will find the following set: 4 =2,3,4,7,9,10,11,6.

Now let us apply TS on this circuit for two iterations only. Initially, the tabu
queue is empty and the current solution consists of CMOS gates only with cost =
0. The best cost initially = 0. For convenience, the current solution is represented
in a tabular form which consists of the set A of nodes and their types (CMOS or
BiCMOS).

Iteration #1: In each iteration, 3 neighboring solutions are generated by selecting
3 nodes randomly. Table 5.1(a) shows a list of 3 solutions generated by random
selection of 3 nodes: 4, 7 and 9. The “New Cost” in the table indicates the solution
cost after swapping the corresponding gate from CMOS to BiCMOS. For example,
according to Equation 5.3, the CMOS delay of gate number 9 is 3.823 ns. If we
swap this gate to BiICMOS, its delay becomes 1.796 ns. Since node number 9 is
in the longest semsitizable paths, then AD = 0.52ns. The increase in the circuit
capacitance = 0.102 pF which does not violate the capacitance constraints. There-
fore, according to the evaluation function (Equation 5.8), the cost of this solution
= 0.52. As shown in the table, from the list of admissible candidates, the swap of
gate 9 marked with “*” corresponds to the best move, and therefore it is chosen as
the move to new current solution and inserted in the tabu list. The swap of gate 7
produces solution with cost = 0 because it is not in the longest path of the current

solution and therefore it has no contribution to the circuit delay. The new solution
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produced by the accepted move is given in Table 5.1 (c). The cost of the current
solution and best solution is 0.52. Now the delays of the three longest paths P;, P,

and P are 8.96 ns, 10.465 ns, and 10.465 ns respectively.

Iteration #2: As in the previous iteration, once again 3 new neighbors are
generated by selecting 3 gates randomly as shown in Table 5.2(a). The best move
is the swap of gate 11. This move increases the cost to 2.51. Therefore the best
solution becomes 2.51. Since this move is not tabu, it is accepted and inserted in
the tabu list as shown in Table 5.2(b). The current solution now in Table 5.2(c)

consists of two BiICMOS nodes 9 and 11 with circuit delay = 8.477 ns.

5.4 Intermediate and Long Term Memory

In many combinatorial problems, especially large and hard problems, application of
short term memory alone does not produce a good solution. Several studies reported
in [Glo90] show that the intermediate and long term memory functions can be very

important for obtaining best results.

5.4.1 Intermediate Term Memory: Intensification Strategy

If we look at a tabu list in the short term memory of TS, we can find that it has an

intensification role by temporarily “locking in” certain locally attractive attributes.
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Current Cost = 0

Best Cost = 0

gate | AD | AC | New Cost
4 10.17 | 0.002 0.17
7 0 1.36 0
9 [0.52(1.796 0.52

(a) 3 Neighbors of Current Solution

9

BiCMOS

(b) Tabu Queue

*

2

3

4 7

9

10

11

CMOS

CMOS

CMOS

CMOS

BiCMOS

CMOS

CMOS

CMOS

(c) Current Solution

Table 5.1: Iteration # 1.




Current Cost = 0.52
Best Cost = 0.52

gate | AD | AC | New Cost
2 0.17 | 0.002 0.69
10 [ 1.66 | 1.36 2.18
11 |1.985 | 0.167 2.51

(a) 3 Neighbors of Current Solution

9

11

BiCMOS

BiCMOS

(b) Tabu Queue

2

3

4

7

9

10

11

CMOS

CMOS

CMOS | CMOS

BiCMOS

CMOS

BiCMOS

CMOS

(c) Current Solution

Table 5.2: Iteration # 2.
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Another way of intensifying the solution using the tabu list is to change the attribute
of the move when aspiration criterion is satisfied rather than re-inserting it again
into the list. By this way the move may be kept in the .ist for shorter period
and thereby getting more opportunity for re-selection. However this action is not
sufficient to direct the solution to most preferable attributes due to a short record
of move history [AF935].

Many intensification strategies have been reported in the literature. Target Anal-
ysis (TA) is a procedure for creating improved problem-solving methods in artificial
intelligence. The main idea of TA is the use of learning process of which rules are
best to solve a particular class of problems. This capability of TA can be beneficial
to heuristic techniques such as TS as a means of creating more effective forms of
intensification and diversification [Glo90].

Another technique of intensification reported in [SY98] operates as follows. After
a number of iterations, number of best trial solutions are selected and their features
are recorded and compared. Then the common features are taken as new attributes
of good solutions. Then to find out such good solutions, those moves which do not
reveal the new attributes are penalized.

Although an intensification is an improving method to produce better solutions,
it is not as important as diversification due to the fact that short term memory
component most of the time directs the search into a regional space creating the

necessity to transfer the search to another area (diversification) rather than restrict-
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ing the search to the same region (intensification). In our case, we used only one
move attribute (technology type) which can hardly be used to propose an efficient
and useful intensification technique. However, using Simulated Evolution to gen-
erate moves is considered as a form of intensification. Only the gates having high

goodness will have higher probability to be selected than other gates.

5.4.2 Long Term Memory: Diversification Strategy

As a tabu list has intensification role, it has diversification role too by compelling new
choices to include or exclude attributes that are not among those recently discarded
or incorporated.

In spite of this, as mentioned earlier, there is often a need to apply other methods
that use some historical data to diversify the search. Because of its importance
in producing better optimal solutions than those produced by other techniques,
diversification component of TS attracted many researchers to develop different
diversification strategies for solving different combinatorial problems. Gendreau
modeled TS method to solve the maximum clique problem[KLG94]. Two tabu lists
are used, one for move selection and the second for avoiding any move that would
lead to a solution visited in the past T iterations, where T is set to values as large
as 130 for solution attempts of 300 iterations. Fiechter applied parallel TS on large
traveling salesman problem as reported in [KLG94]. To diversify the search, he used

super-moves which correspond to reallocating key portions of the tour to an extent
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that a re-staring mechanism is not necessary.

Woodruff and Spearman introduced the use of what is called diversification pa-
rameter d [KLG94]. This parameter is equal to the reciprocal of a Lagrangian
multiplier. The low values of d results in nearly infinite costs for constraint viola-
tion while high values allow searching through infeasible regions. In addition, the
parameter d is given a role similar to that of the temperature in simulated annealing
to control the amount of randomization.

Frequency-based diversification strategies has been proposed in solving differ-
ent optimization problems. In attempting to optimize the quadratic assignment
problem, Skorin-Kapov used n x n matrix to record the number of times a pair of
objects exchange locations. The frequencies are weighted to modify the distance be-
tween every pair of locations and force the construction to diverse solutions during
a re-starting phase [KLG94].

Glover and Laguna used frequency based strategy in number of ways. In [LG93b],
frequency counts are used to modify the selection of moves when there are no improv-
ing moves available. Applied to single machine scheduling problem, the frequency
count is multiplied by a penalty parameter and added to the cost function of ev-
ery non-improving move. Then the move with the least penalized value is selected.
This strategy can successfully avoid long term cycling and find improved solutions.
Frequency counts have also been used in bandwidth packing problem where the fre-

quency count is a function of the candidate list size, the maximum tabu list size
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(since dynamic sizes are used) and the current iteration number [LG93a]. Another
frequency-based strategy proposed by Glover and Laguna is used in quadratic as-
signment problem [KLG94]. Two simple memory components are applied: recency-
based memory that achieves a first order form of diversification and frequency-based
memory that achieves a second order form of diversification. After the construction
of initial solution and applying a series of moves to lead to a local optimum, the algo-
rithm enters a first order diversification stage in which two concepts are employed.
First, two solutions are increasingly diverse if their separation distance increase
which is defined as the minimum number of moves required to reach one solution
from another. The second concept is related to the difficulty of getting one solution
from another. Using these two concepts, a set of new swaps is made after hitting a
local optimum. Then, from among these swaps, the best solution is chosen and the
algorithm switches back to short term memory phase. After a selected number of
local optima are generated during the first order phase or a selected cutoff rule is
satisfied, the algorithm enters the second order phase. In this phase, the evaluation
function is replaced by a new one which incorporates the move frequency term to
favor the exchanges of moves with low frequencies. Then the algorithm switches
back to the first order phase.

Other reported diversification strategies include: use of learning process of Tar-
get Analysis [Glo90], [LG93a], application of some features of Strategic Oscilla-

tion {Glo90], and Influential Diversification [HG94].
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5.5 Proposed Frequency-based Diversification St-

rategy

To apply frequency-based diversification strategy, we have to keep track of the num-
ber of times a certain move has been selected so far. Therefore, in our approach we
assign a frequency counter for each gate which is incriminated each time the gate is
selected.

We proposed and adopted the following diversification method:

1. When the short term TS algorithm hits a local optimum. the following actions

are taken:

(a) All BiCMOS gates are swapped to CMOS. Denote the number of those

gates as NUM_OF _BiCMOS

(b) Search for least frequent CMOS gates and swap them by BiCMOS type.
The search and swap process continues till the objective load threshold
is reached or till the number of swapped gates is equal to
NUM_of BiCMOS. By doing this, the search process is transferred to

another region where the search might lead to a better solution.

2. Re-start the short term memory component and continue till a local optimum

is hit, then repeat step 1.
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Determining when the algorithm hits a local optimum is not easy because we
don’t know for how long the algorithm should run. One way to overcome this
problem is to inspect the best solution for a fixed number of iterations z; if there
is no change in the best solution cost for the last z iterations, then we state that
the algorithm has reached a local optimum. However, the value of r depends on
the size of the circuit and the number of sensitizable paths. Therefore, we have to
experiment with several values of z in order to obtain the best result.

In step 1(b), the stopping criterion has two parts: either a load threshold is hit
or NUML_OF BiCMOS is reached. The latter makes sense because as the number of
BiCMOS nodes of the new solutions equals the number of BiCMOS nodes in recent
solution, then the achieved delays and loads of both solutions may be close. The
load criterion is used to prevent the load of a new starting solution from exceeding
the objective load. By applying this method, better solutions have been produced

as shown in the next chapter.

5.6 Evolutionary Tabu Search

As mentioned in Section 5.3.2, moves can be generated based on evolutionary aspects
of Simulated Evolution heuristic. Before explaining how this can be done, let us give

a brief overview about SE.
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5.6.1 Simulated Evolution Overview

Simulated Evolution (SE) is one of the iterative heuristic techniques for solving
combinatorial optimization problems. It was proposed by Kling and Banerjee in
1987 [KB87]. SE simulates the natural evolution process where organisms try to
adapt to their environment by developing or changing some features such location,
size and color. The main idea of SE is that the selection of components to change
to improve the solution is done according to a stochastic rule. The components not
located in a proper manner need to change their locations to improve the solution
while those components already well located have a high probability to stay in their
locations [SY9§].

The algorithm starts with the initialization phase where various parameters are
set to the desired values. Some of these parameters include: number of iterations
and a selection bias B. Then the algorithm enters the iterative phase which consists
of three steps: Ewvaluation, Selection and Allocation. The three steps are executed
repeatedly until the stopping criteria are met. One possible stopping criterion is to
run the algorithm until no improvement is observed for a number of iterations or
the objective improvement in solution cost is achieved. Another possible stopping
criterion is to run the algorithm for a prefixed number of iterations. Let us explain
each step briefly [SY98].

Evaluation:
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In this step, the goodness of each element e; in the population P is evaluated.

Goodness is defined as follows:
g9i = = (5.9)

Where O; is an estimate of the optimal cost of the element e;, and C; is the
actual cost of e; in its current location. Accordingly, the O;’s do not change from
generation to generation, and therefore, are computed only once while the C;’have
to be recomputed at each call to evaluation step.

The above equation assumes a minimization problem and it should be in the
range of [0,1]. The goodness measure must be strongly related to the target objective
of the given problem.

Selection:

After evaluating goodness of all individuals in the population, some of them
are selected to be allocated in new locations. The selection is based on a selection
function Fs which has two parameters: goodness g; and Selection Bias B. Values of
B are recommended to be in the range of [-1;0.1]. In many cases a value of B =0
would also be a reasonable choice.

The higher the goodness value of the element, the more likely that it will not
be selected and hence the higher is the probability of the element to remain in its
current location.

Allocation:

In the Allocation step, locations of selected elements in S are altered according
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to an allocation function F4. The choice of a suitable allocation function is problem
specific. The allocation function may be a nondeterministic function which involves
a choice among a number of alternative moves for cach element The order and type
of alteration of elements are problem specific. This is why, in many cases, Sorting
step is important to achieve better solutions. Since the goodness of the elements
are so tightly coupled with the target objective, superior alterations are supposed
to gradually improve the individual goodnesses. Hence, Allocation allows the search
to progressively converge towards an optimal configuration where each element is

optimally located [SY98].

5.6.2 Evolutionary Tabu Search

In our approach of applying TS to COP, we used two functions of SE as an alternative
stochastic method for generating moves. The two functions are: Evaluation and
Selection. Let us show how each function is formulated for COP.

Evaluation:

Let A = (91,92,-.., gn) Where each g; satisfies CL;, > CX;. For each gi In A, we
compute AD; which is the gain delay due changing gate i implementation from
CMOS to BiCMOS, that is,

— Nf< b -
AD; = D%, - D (5.10)



This computation is done only once. In this case,
0; =AD; (5.11)

Let T be the current delay of the circuit and T} be the delay of the circuits after

swapping gate i. Then the actual circuit delay gain (cost) is

C;=T. -T (5.12)

Let G; be the goodness of gate ;. Since COP is a maximization problem, then
the goodness function should be derived in such a way as to show that if the gate
goodness is high, its fitness should also be high so that the gate will most likely not

get swapped. Therefore G; is defined as follows:

Gi=1-05 x(1+%) (5.13)

For example, if swapping gate i from CMOS to BiCMOS produces maximum
gain in the circuit delay, then C; = O, resulting in G; to be 0. In this case, gate i is
not in its optimal state and it needs to be swapped.

Using the above equations and definitions, the evaluation step of SE can be

applied as follows:

FOR EACH ¢; € A DO
C,’ = T‘: el T

Gi=1-05x(1+&):

END FOR EACH
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Selection:
After computing the goodness of all gates in A, we select from A a subset R of size
NV for the purpose of generating N moves. The selection of those gates is made as

follows:

REPEAT
select gate g; randomly;
generate a Random number between “0” and “17;
IF Random < Min(1,1 — G; + B) THEN R = RUg;;
ENDIF;

UNTIL |R| = N;

The bias B is used only when gate g; is already BICMOS and needs to be swapped
to CMOS. This is because when a low goodness CMOS gate is swapped to BICMOS,
its goodness becomes high. Therefore, in order for a gate g; to be re-selected as a
mechanism to escape from the trap of local optima, the bias B is used to maximize
the gate re-selection probability. Since the value of B is problem dependent, we
experimented with different values.

The expected advantage of generating moves based on SE approach is that the
search will be biased to drift towards better solutions faster than generating moves

randomly. However. the evaluation and selection steps are done during every itera-

97



tion which means that each iteration in this approach takes much more time than
the iteration in the classical approach. Therefore, SE based approach usually takes
longer time than the classical approach. For convenience, we shall call the TS based
on generating moves randomly as Classical Tabu Search (CTS) and the TS based

on the SE to generate moves as Evolutionary Tabu Search (ETS).

5.7 Summary

Tabu Search algorithm is a heuristic technique that can be applied as a stand alone
or can be superimposed on other techniques to solve particular combinatorial opti-
mization problem. In this thesis, we applied TS for COP as a stand alone technique
where the solution is constructed by swapping some CMOS gates by BiCMOS gates
from a given description of a circuit which consists of CMOS gates only. Since the
problem has been formulated to be similar to Knapsack problem, the objective is to
maximize the reduction in circuit delay subject to capacitance increase constraints.
Accordingly, the evaluation function has been derived to satisfy the objectives. In
optimization problems where the search space is very large as in our case, apply-
ing short term memory component of TS is not sufficient to find a good solution.
Rather, the search has to be diversified to cover other regions where the global opti-
mal solution may exist. For this purpose, we proposed and applied frequency-based

diversification strategy as previously explained. In addition, we proposed Evolu-
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tionary Tabu Search technique which applies some features of Simulated Evolution

on the move generation process to intensify the search.
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Chapter 6

Implementation, Results and

Discussion

6.1 Introduction

In this chapter, we provide the implementation details of the TS heuristic for solving
COP. We also present experimental results of several benchmark circuits. Section
2 of this chapter presents the implementation details including input and outputs
of the programs, data structures that have been used and implementation method.
Section 3 describes the tools and languages used in the whole optimization process.
Then we discuss the experimental results of the TS with different parameter values
(tabu list size, candidate list size, number of iterations,etc.,) in Section 4. The results

of short TS versus long term TS, TS with AS, versus TS with AS,, and CTS versus
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ETS are presented and discussed in detail in Section 5. Section 6 summarizes the

contents of this chapter.

6.2 Implementation Details

6.2.1 Inputs/Outputs of the Program

The TS program for COP receives three types of input files:

1. A modified VPNR format circuit description where each node is described by a
unique number, its equivalent AHPL! type and its inputs. This description is
generated using the tools developed in [AF95]. For example, Figure 6.1 shows

the modified VPNR description of the circuit CK'T shown in Figure 3.5.

2. A fanout file which consists of all nodes where each node is represented by
a number (given in modified VPNR file) and its fanout nodes. Also this
file is generated by the tools reported in [AF93]. Figure 6.2 shows a fanout

description of CKT.

3. A set of sensitizable paths generated by a-critical path and false_paths_detection
algorithms. Each path is represented by its number, delay, and the nodes
making this path. For example, the sensitizable paths of CKT are given in

Figure 6.3.

Irefers to A Hardware Programming Language
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domain begin fadd swap=0
profile top (0,0) (0,0);
profile bottom (0,0) (0,0);
iolist
1 0 4018 IN1 T:(0,100) pintype=pi
2 0 4018 IN2 T:(0,100) pintype=pi
3 0 4018 IN3 T:(0,100) pintype=pi
4 0 4018 IN4 T:(0,100) pintype=pi
51 4019 OUTS B:(0,100) pintype=po
6 1 4019 OUT6 B:(0,100) pintype=po
row 1
74202 ai2s INSI7 2 3 7
84202 ai2s INSI8 1 7 8
94105 i1s INSI9 4 9
104202 ai2s INSI10 7 9 10
11 4205 oi2s INSI11 9 10 11
124202 ai2s INSI12 8 10 5
134205 o0i2s INSI13 8 11 6

domain end fadd

Figure 6.1: Modified VPNR format of CKT.
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INPUTPADs= 4 OUTPUTPADs=2 FLIPFLOPS=0
1>8;
2>7;
3>7;
4>9;
7>810;
8>1213;
9>1011;
10>1112;
11> 13;
12>5;
13>6;
5>;

6>;

Figure 6.2: Fanout description of CKT.
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13

PATH 1

Dcell 10.987 Dnet -0.987 LRAT 10.000 v=0.076
491011136 ;

PATH 2

Dcell 10.467 Dnet -0.467 LRAT 10.000 v=0.072
371011136;

PATH 3

Dcell 10.467 Dnet -0.467 LRAT 10.000 v=0.072
271011136 ;

PATH 4

Dceli 8.265 Dnet 1.735 LRAT 10.000 v=0.049
4910125;

PATHS

Dcell 7.921 Dnet 2.079 LRAT 10.000 v=0.048
378136;

PATH 6

Dcell 7.921 Dnet 2.079 LRAT 10.000 v=0.048
278136;

PATH7

Dcell 7.745 Dnet 2.255 LRAT 10.000 v=0.045
2710125;

PATH 8

Dcell 7.745 Dnet 2.255 LRAT 10.000 v=0.045
3710125;

PATHS

Dcell 7.745 Dnet 2.255 LRAT 10.000 v=0.045
278125;

PATH 10

Dcell 7.745 Dnet 2.255 LRAT 10.000 v=0.045
378125;

PATH 11

Dcell 7.403 Dnet 2.597 LRAT 10.000 v=0.066
4911136;

PATH 12

Dcell 4.705 Dnet 5.295 LRAT 10.000 v=0.037
18136;

PATH 13

Dcell 4.529 Dnet 5.471 LRAT 10.000 v=0.034
18125;

Figure 6.3: Sensitizable paths of CKT.
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The specification of each gate type is given in a library. Two libraries are used:
one for CMOS gates and the other for BiCMOS gates. Table 6.1 shows a sample
of CMOS library, where each line shows a gate in AHPL code, its base delay, load
factor, input capacitance, and its CX value. For other mixed technologies, similar
library structure can be used. For BiCMOS, the same structure is used with the
difference that the BiCMOS gate is represented by CMOS AHPL code with addition
of “0” as a least significant digit. For example, the INV BiCMOS gate is represented
as 41050 (see Table A.4 in Appendix A).

The output of the circuit optimization program consists of the following:

e Estimate of the reduction gain in the circuit delay (real value in ns).

e Estimate of the total increase in overall circuit load capacitance (real value in

pF).

e Set of nodes (node number and its AHPL code) that have to be swapped to

BiCMOS to get the optimized circuit.

6.2.2 Data Structures

We have adopted the following data structures to implement TS algorithm for COP:

1. Node List: is a dynamic list of elements where each element consists of a node

number, its AHPL code and its selection frequency when the diversification



Gate Base Load Input CcCX

Type | Delay (ns) | Factor | Capacitance (pF)

4105 0.315 4.525 0.255 0.105
4103 0.32 2.05 0.455 0.234
4202 0.585 3.87 0.340 0.226
4302 0.88 3.715 4.15 0.355
4402 1.35 3.805 0.435 0.532
4102 0.275 0.579 1.670 0.751

Table 6.1: Sample of CMOS library.
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strategy is applied. This list is constructed from the modified VPNR input

file.

. Fanout List: is a dynamic list of elements where each element consists of a
node number and a set of fanout nodes. This is constructed from the fanout

input file.

. Initial/Current Solution: is an array of the longest sensitizable paths. Each

element in the array consists of the following:

e Path number.
e Path delay.

e Dynamic list of the path nodes. Each element of the list consists of a

node number, node delay, and node type.

The initial solution is constructed by reading the input sensitizable paths file
and using other constructed data structures. This structure is also used for
current solution where only the type and delay of the selected node are up-
dated. We have used a static array for this structure because of two reasons.
First, the average number of sensitizable paths (= 500) considered for opti-
mization is not large enough to justify the use of a more complex dynamic
structure. Second, the use of a static structure simplifies the implementation,

and speeds up data manipulation and searching.
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4. Candidate List: is an array of V elements representing N moves (swap of a
gate from CMOS to BiCMOS or vice versa). Each element consists of a node
number, type, node delay, new solution cost, and the move frequency when

diversification strategy is applied.

Tabu List: is a queue of tabu moves. Each element represents a move and

(1}

consists of move attributes including node number, its type, solution cost as-
sociated with this move, and the move frequency when diversification strategy

is applied.

6. Best Solution: is a dynamic list of elements consisting of a set of nodes that
need to be implemented in BiCMOS in order to obtain the best solution. The
best cost (delay reduction and capacitance increase) is also recorded in this

list.

7. Admissible Solution: is a record consisting of information about the ad-
missible solution to be used for updating the best solution, updating the tabu

list, and constructing the new current solution.

6.2.3 Implementation Method
The implementation of the algorithm proceeds in three stages as follows:

o Stage 1: Initialization: In this stage all three input files (modified VPNR
circuit description, fanout description, and sensitizable paths) are read. Also
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CMOS and BiCMOS libraries are read. While reading, Node List, Fanout List

and Initial Solution data structures are constructed.

o Stage 2: Circuit Optimization: In this stage tabu search algorithm is processed.
User defined data such as number of iterations, objective delay reduction per-
centage, capacitance threshold percentage, tabu list size, and candidate list

size should be provided.

e Stage 3: Output Generation: The output of the program is written to a file
that contains general information about the circuit, user defined inputs, and

the Best Solution list.

Figure 6.4 shows a flowchart of the adopted TS based circuit optimization algo-
rithm. The parts in the figure having a dashed outline correspond to those functions

which are processed in the long term memory phase only.

6.3 Optimization Tools

In order to obtain an optimized mixed CMOS/BiCMOS circuit, different tools have
to be used based on the given circuit description. Figure 6.6 shows all tools in-
volved in the optimization process for ISCAS’85 benchmark circuits. Below is a

brief description of each tool:
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Figure 6.4: The adopted TS based circuit optimization algorithm.
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TRANS: this tool is used to convert the ISCAS’85 circuit format (SLIF ) to

RNL format.

OASIS: this tool has been developed by MCNC and is heavily used on most
of VLSI research and development processes because it has the capability of
constructing circuit layout from the high level description (RNL). We have
used this tool only to convert RNL circuit description to VPNR description.
This step can be eliminated if a tool is available to convert SLIF format directly

to VPNR format.

PP2: this tool has been developed by Al-Farrah K. as reported in [AF99]. It
is used just to assign a positive integer number and AHPL code to each node

in the circuit to ease referencing and manipulation.

NEW: this tool has also been developed by Al-Farrah. This is a Timing
Analyzer of a given circuit to generate critical paths of a circuit based on

a-critical algorithm described earlier.

FPFIND: as previously described, this tool is used to eliminate false paths

from given critical paths generated by the Timing Analyzer.

MIXER-S & MIXER-L: both tools form the heart of the whole optimization
process. MIXER-S is the implemented circuit optimization algorithm based

on TS short term memory and MIXER-L is the implementation of long term
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memory of TS based on the proposed diversification strategy. Both tools have
different versions based on the aspiration criterion (AS; or AS5) and move

generation method (CTS or ETS).

The figure also shows all other necessary inputs and outputs of these tools. A
more detailed description of the tools and how they are used is given in Appendix
A. All the tools mentioned above (except OASIS) have been developed using C++
programming language. The development has been made on PC and SUN SPARC
stations. However the results have been obtained using SUN SPARC workstations

only.

6.4 Experiments

Our approach for COP using TS can be applied for any two technologies as long as
it is feasible to mix them in one circuit. We applied this approach on optimization of
mixed CMOS/BiCMOS circuits as discussed before, hence standard cell libraries for
both technologies have been used. To simplify the timing computation, a modified
version of the standard CMOS 1.0 library has been used. The following modification

have been made:
o Only the average of rising and falling values have been considered.
e Input capacitance has been made to be five times greater than the original

input capacitance in order to show the effect of the optimization for small
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Figure 6.5: Mixed CMOS/BiCMOS circuit optimization tools (cont.).
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Figure 6.6: Mixed CMOS/BiCMOS circuit optimization tools.
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circuits where the fan out of each gate is very small.
e CX parameter has been added.

Since BiCMOS technology library was not available during the work, we have
created a new library based on the following facts from CMOS and BiCMOS speci-

fications [EBE93], [BAB94]:

¢ Base delay of BICMOS cell > Base delay of its equivalent CMOS cell.
¢ Load factor of BICMOS cell < Load factor of its equivalent CMOS cell.

¢ Input capacitance of BICMOS cell > Input capacitance of its equivalent CMOS

cell.

The question is: By how much is it greater or smaller? Based on the library

used in [BAB94], the following equations have been derived:
o BiCMOS_Base_Delay = CMOS _Base_Delay x 2
¢ BiCMOS _Load_Factor = CMOS_Load_Factor/3
¢ BiCMOS_Input_Capacitance = CMOS Input_Capacitance x 1.4

Based on the above values, C X; of a gate g; has been calculated as follows. CX
is the capacitive load value of a gate when its CMOS delay is equal to its BICMOS

delay. That is. at CX;:



CMOSDelay(g;) = BiCMOS Delay(g;) (6.1)

Using Equation 4.2 for the calculation of gate delay,

BD,+LR XCX,=BD, X2+%‘ X CX, (62)
Then,
3 BD;

The modified CMOS library and the new BiCMOS library are shown in Appendix

We carried out different experiments with different values of objective delay, ob-
jective load, tabu list size, candidate list size, etc. We can classify these experiments

into two categories:

1. Experiments to show the actual gain in terms of circuit delay and total load.
For these experiments we used the following data:
e Capacitance threshold = 5%.

¢ Objective delay reduction = the difference between maximum and mini-

mum delay as shown in Table 4.2.

e Number of iterations = 2000.
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2. Experiments to show the difference, in terms of quality and performance, be-
tween short and long term of TS, TS with AS; and TS with ASj,, and between
Classical TS and Evolutionary TS. For these experiments, the following data

have been used:

e Capacitance threshold = 10%.
o Objective reduction in the delay = 30%.

¢ Maximum number of iterations = 2000.

Reference to equation 3.8, the penalty value has to be identified. The purpose
of the penalty is to penalize a solution which violates the capacitance constraints
so as to forbid selection of such solution. To achieve that, the penalty value has to
be larger than the maximum solution cost of the inspected circuit. Although this
choice does work, it needs to be provided for each circuit. In our experiments on
the selected benchmark circuits, we have used 1000 as the penalty value based on
the knowledge that the maximum cost function of all those circuits can not exceed
a value 1000.

In attempting to find the best results and observe the behavior of TS, experi-
ments have been conducted with varying values of tabu list size T_SIZE and can-
didate list size CAN_SIZE. The following data have been used:

T SIZE =4,5,6,7,8,9

CAN_SIZE =10,12,14, 16, 18, 20.
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In the long term TS, according to our diversification strategy, the algorithm
should switch to diversification step when a local optimum is hit. Based on several
experiments on the benchmark circuits, we identified that the local optimum is hit
when there is no change in the best solution value for the last z iterations. The
value of r varies with different circuits. For each circuit, we have experimented with
z = 100, 200, 300, 400, 500 and recorded the best results.

Several versions of TS have been implemented to show the difference between

the proposed strategies:

Short term Classical Tabu Search with AS,

Long term Classical Tabu Search with AS

Long term Classical Tabu Search with AS,

Long term Ewvolutionary Tabu Search with AS,

6.5 Results and Discussion

In this section, the results of applying the circuit optimization tools on the selected
benchmark circuits are presented and analyzed. First, we show the delay improve-
ment results of applying long term TS. Next we present and discuss the results
of applying the different strategies mentioned in the previous section. Finally, a

detailed discussion regarding TS behavior for COP is presented.
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6.5.1 Circuit Delay Improvement Results

Table 6.2 shows a summary of the results of circuit delay improvement obtained
by applying long term TS with AS; on some of the benchmark circuits. Three
circuits, c499, c432, and c6288 are not considered because there is no difference
between the maximum and minimum delay of their sensitizable paths. From this
table, we can observe that considerable improvement in the performance of mixed
CMOS/BiCMOS circuits as compared to pure CMOS versions has been achieved.
The improvement ranges approximately from 7% to 24%. The overhead in the
capacitance (which reflects overhead in the power) is very small, about 0.1% to 3%.
In addition, the increase in the total area is minimal due to the small number of
selected BiCMOS gates compared to the overall number of gates. It is clear that
for the first four circuits, the objective delay reduction has been achieved whereas it
has not been achieved for “highway” and “fract” because of the low load threshold
constraint. More speed improvement could be achieved if more sensitizable paths are

considered (which means higher objective delay reduction) and the load threshold

is increased.
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Circuit Max Delay | % Total Cap. | % No. of
Name | Delay(ns) | Red. Cap.(pF) | Incr. BiCMOS
c880 125.506 10.062 | 8.02 215.111 0.244 [ 0.11 3
cl13355 109.860 15.393 | 14.01 399.564 0.606 | 0.2 6
c3540 185.201 12.4 6.7 683.401 0.204 | 0.3 2
struct 121.894 8.386 | 6.89 750.081 1.102 | 0.15 9
highway 32.438 7.939 | 24.47 15.15 0.355 | 2.34 12
fract 76.575 16.994 | 22.19 43.405 1.311 | 3.02 12

Table 6.2: Circuit delay improvement results for some circuits.
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6.5.2 Results of Short Term TS vs. Results of Long Term

TS

In this section and the following sections, all results have been obtained by conduct-
ing the second category of experiments where the obiective delay may exceed the
range between maximum and minimum delay of the inspected sensitizable paths.
‘Therefore the results in this case show the delay improvement within the inspected
sensitizable paths and do not reflect the actual improvement in the circuit delay.

Table 6.3 shows a summary of the best results obtained by applying short term
TS with AS;. From this table, we can observe that a very large improvement of
about 10% to 29% of the circuit delay has been achieved. The overhead of capac-
itance (which reflects overhead in the power) is very small, about 0.4% to 6%. In
addition, the increase in the total area is minimal due to the small number of selected
BiCMOS gates as compared to overall number of gates. These results are constrained
by the chosen capacitance threshold which is 10% of the total capacitance of the
set A (recall that A is the set of nodes that are covered by the selected sensitizable
paths and satisfy CL > CX). More speed improvement could be achieved if the
capacitance threshold is increased.

As we have explained earlier, long term memory phase of TS is very important
to escape from local optima in which the short term memory phase may fall. The

results shown in Table 6.4 illustrate the effect of this feature. Most of the results
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Circuit | No. of Nodes | T_SIZE] CAN_SIZE | No. of
Name |with CL>CX BiCMOS
c432 35 6 20 19
c499 41 7 18 13
c880 79 4 16 22
cl1355 265 9 16 65
c3540 39 4 16 21
c6288 267 5 20 77
struct 67 9 16 26
highway 29 7 20 7
fract 93 4 20 24
Circuit Max Delay | % of Delay Total Cap. | % of Cap.
Name | Delay(ns) | Red. Red. Cap.(pF) | Incr. Incr.
c432 171.911 43.342 25.2 109.260 1.514 14
c499 635.344 9.875 15.1 101.717 1.388 14
c880 125.506 | 25.212 20.1 215.111 2.122 0.99
c1355 109.860 | 26.677 24.3 399.564 7.266 1.8
c3540 185.201 48.207 26.03 683.401 1.732 0.25
c6288 657.646 | 68.234 10.4 1983.395 | 7.854 04
struct 121.894 | 25.899 21.25 750.081 2.534 0.34
highway 32.438 8.109 25 15.15 0.762 3.0
fract 76.575 22.3 29.1 43.405 2.642 6.1

Table 6.3: Best results of short term memory of TS with AS,.
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Circuit | Nodes with | T_SIZE | CAN_SIZE | No. of | Hit Local
Name CL>CX BiCMOS | Opt. Iter.
c432 35 6 18 19 500
c499 41 7 18 21 200
c880 79 9 16 23 400
cl1355 265 4 20 63 400
c3540 29 6 20 18 500
c6288 267 7 10 166 100
struct 67 4 20 26 100
highway 29 7 16 17 100
fract 93 7 16 23 200
Circuit Max Delay | % of Delay Total Cap. | % of Cap.
Name | Delay(ns) | Red. Red. Cap.(pF) | Incr. Incr.
c432 171.911 43.342 25.2 109.260 1.478 1.0
c499 65.344 13.357 20 101.717 1.384 1.0
c880 125.506 | 25.212 20.1 215.111 2.122 0.99
cl1355 109.860 26.677 24.3 399.564 7.266 1.8
c3540 185.201 48.645 26.3 683.401 1.796 0.26
c6288 657.646 98.103 14.9 1983.395 7.856 0.4
struct 121.894 26.106 214 750.081 2.534 0.34
highway 32.438 8.815 27.2 15.15 0.762 5.0
fract 76.575 22.497 29.38 43.405 2.691 6.2

Table 6.4: Best results of long term memory of TS with AS;.
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produced by long term phase show higher speed improvement than what is produced
by short term phase especially in the case of c499 and c6288 where 20% and 15.2%
improvement has been achieved as compared to 15.1% and 10.4% improvement
respectively. Also it is shown from the table that best results for each circuit are
obtained at different diversification factor (number of iterations where the proposed
diversification strategy is applied). This is expected due to the fact that those

circuits have different sizes and search spaces.

6.5.3 Results of TS with AS; vs. Results of TS with AS,

Table 6.5 shows the best results obtained by applying long term memory TS with
AS,. If we compare the results of TS using AS) with those of TS using AS,, we find
that TS with AS, performs better than TS with AS; for the circuits c6288, highway,
and fract, while it generates almost the same results as TS with AS) for the other
circuits. In the case of “fract”, the delay reduction objective has been achieved which
means that the run time (2000 iterations) is enough to reach the stated objectives.
Let us look at the AS; again to explain why TS with AS, produces better results.
Using AS,, a move e is accepted if it is tabu and both e and its reverse move € are
improving or both are non-improving. This means that the solution tries to follow
a certain direction to seek a better solution than the current one. By following a
certain direction during the search, TS tries to climb the hill to escape from local

optima. Of course for some cases, TS with AS; does not produce better results than
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Circuit | Nodes with | T_SIZE | CAN_SIZE | No. of | Hit Local
Name CL>CX BiCMOS | Opt. Iter.
cd432 55 5 20 19 500
c499 41 4 18 10 200
c880 79 o 18 21 300
c1355 265 4 20 62 200
c3540 39 5 14 18 400
c6288 267 5 20 175 100
struct 67 7 20 26 200
highway 29 9 20 12 400
fract 93 6 18 23 300
Circuit Max Delay | % of Delay Total Cap. | % of Cap.
Name | Delay(ns) | Red. Red. Cap.(pF) | Incr. Incr.
c432 171.911 43.342 25.2 109.260 1.516 1.4
c499 65.344 12.276 18.8 101.717 1.434 1.4
c880 125.506 25.257 20.1 215.111 2.144 1.0
c1355 109.860 | 26.712 24.3 399.564 7.164 1.8
c3540 185.201 | 48.645 26.3 683.401 1.796 0.26
c6288 657.646 99.712 15.2 1983.395 7.906 04
struct 121.894 26.130 21.4 750.081 2.334 0.34
highway 32.438 8.542 26.3 15.15 0.762 2.0
fract 76.575 22.975 30.0 43.405 2.667 6.1

Table 6.5: Best results of long term memory of TS with AS,.




TS with AS; because the TS algorithm is nondeterministic, hence several runs have

to be conducted to get the best.

6.5.4 Results of Classical TS vs. Results of Evolutionary

TS

Table 6.6 shows a summary of the best results obtained by applying long term
ETS. If we compare these results with results of CT'S (Table 6.4), we find that
ETS performs better than CT'S in four cases; namely in ¢880, c1355, struct, and
fract. On the other hand, CTS produced better results than ETS in case of ¢432,
c499, c6288, and highway while both of the strategies produced the same results in
case of ¢3540.

This reflects the fact that the Evolutionary TS could generate good results be-
cause it tries to select and replace only those gates which have low fitness; i.e., those
that are good to replace. However it may get trapped in a local optimum some-
times as is clear from some results that are worse than those of random generation
strategy. Let us explain the reason behind this kind of behavior.

In the selection step of Simulated Evolution, a node i is selected if the following

inequality is satisfied:

Random < Min(1,1 — G; + B) (6.4)

If the goodness G; is low, the probability of selecting the node ¢ will be high. Ac-
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Circuit | Nodes with | T_SIZE | CAN_SIZE | No. of | Hit Local
Name CL>CX BiCMOS | Opt. Iter.
c432 55 4 20 19 300
c499 41 4 20 20 100
c880 79 2 20 22 500
c13355 265 6 20 65 500
c3540 29 d 16 19 400
c6288 267 4 20 135 500
struct 67 8 18 26 500
highway 29 b} 16 13 500
fract 93 6 14 21 100
Circuit Max Delay | % of Delay Total Cap. | % of Cap.
Name | Delay(ns) | Red. Red. Cap.(pF) | Incr. Incr.
c432 171.911 43.308 25.2 109.260 1.516 14
c499 65.344 12.463 19 101.717 1.43 1.4
c880 125.506 25.273 20.1 215.111 2.16 1.0
cl1355 109.860 27.016 24.6 399.564 7.228 1.8
c3540 185.201 48.645 26.3 683.401 1.796 0.26
c6288 657.646 71.13 10.8 1983.395 7.902 0.4
struct 121.894 26.54 21.8 750.081 2.534 0.34
highway 32.438 8.720 26.9 15.15 0.777 5.1
fract 76.375 22.976 30 43.405 2.675 6.16

Table 6.6: Best results of long term memory of Evolutionary TS.
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cording to our goodness function, if a CMOS gate with low goodness is selected for
swapping, then its goodness will be high. Then the probability of re-selecting this
gate again (as a mechanism of TS to escape from local optima) will be very low.
Therefore, once some of the gates are swapped to BiCMOS, they are unlikely to
be selected again resulting in a local optimal solution. In order to avoid that, we
used the bias B only in the case when a gate is BICMOS to increase its selection
probability even if its goodness is high. But the question is what value of B should
be used to achieve this purpose?. We experimented with different values from 0.1 to
0.7 with interval of 0.1. By doing so we achieved some good results as shown in the
table with the values 0.5 - 0.7. However, the use of bias B only still is not enough to
avoid trap of local optimality. Therefore, we have to modify our goodness function
or selection criterion in such a way as to enable TS to escape from local optimality
as the Classical TS does.

As another method of measuring the quality and performance of Evolutionary TS
versus Classical TS, we calculated the average delay reduction for several executions
of both algorithms. These results are shown in Table 6.7 for some of benchmark
circuits. For each circuit. both CTS and ET'S have been executed for 2000 iterations
for different values of tabu list size, candidate list size, and the iteration value where
a local optimum is hit as mentioned in the previous section. Then the average value
has been computed for each.

It is obvious that ETS produces better solutions (i.e., more delay reduction)
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Classical TS Evolutionary TS
Circuit | Average Delay Run Average Delay Run
Name | Reduction (ns) | Time (s) | Reduction (ns) | Time (s)
c432 42.39 313 42.42 544
c499 7.47 133 7.49 471
c880 23.87 167 24.11 566
cl1355 23.82 379 24 .47 1578
highway 7.72 52 7.83 35
fract 21.44 99 22.72 135

Table 6.7: Comparison between Classical TS and Evolutionary TS in terms of quality
and performance.
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than CT'S on the average. This means that to achieve a certain objective solution,
it is better to apply ET'S for a few trials. However, ET'S takes more time to finish
executing 2000 iterations or to achieve objectives than what C'T'S takes. There are
two reasons behind this. First, the step of computing the goodness of all nodes
each iteration (not present in the Classical TS) in Evolutionary TS is an expensive
step. Second, each iteration in Evolutionary TS takes much more time than the time
spent in each iteration in Classical TS. Let us compare the move generation step in
both approaches to clarify the point. In Classical TS, in each iteration /V moves are
generated by selecting only N nodes randomly and then the necessary processing
and evaluation is done. In Evolutionary TS, in order to generate N moves, we ran-
domly select a node and check if its goodness satisfies the inequality 6.4 or not. If
the inequality is satisfied, then the node is accepted as one of candidates; otherwise
another node has to be selected randomly again and the process is repeated. There-
fore, generating V moves in this case requires selection of M nodes where M > N.

Obviously this step is more expensive than its equivalent step in Classical TS.

6.5.5 Tabu Search Behavior

In this section, a discussion on TS behavior in terms of the effect of tabu list size,
candidate list size and diversification strategy on the solution cost are presented.
The behavior of Classical TS versus Evolutionary TS is also addressed. First, we

discuss the effect of tabu list size and candidate list size on the solution cost, hence

130



on the delay reduction. In order to observe this behavior, the following experiment
has been conducted. One benchmark circuit c499 has been chosen for this purpose.
Then the results for different tabu list sizes as well as different candidate list sizes
have been obtained. The average solution cost of CAN_SIZE = 10,12,14,16,18,20
for a particular T_SIZE has been computed. Finally, the results have been plotted
in Figure 6.7 for short term phase. The same has been made for CAN_SIZE
versus cost for the average values of T_SIZE = 4,5,6,7,8,9. The plot of the effect of
candidate list size on the solution cost is shown in Figure 6.8. If we look at Figure 6.7,
we find the highest values occur at T.S/ZE = 4 and T_.SIZE = 7. From these
results, it is difficult to deduce what the best tabu list size is. However, from the
results shown in previous tables, we can conclude that for COP applied on the
selected benchmark circuits, good values for T_SIZ E are from 4 to 7. Nevertheless,
tabu list size depends heavily on the type of the problem, problem size, and other
factors as reported in previous research. But generally the tabu list size should not
be very small. If not, the feature of using memory component to keep the history of
selected moves will not be applicable. Also it should not be very large as the idea
of move reversal for hill climbing will not be applied properly.

For the candidate list size effect, most of the best results occurred at CAN_SIZE
between 16 to 20 as shown in Figure 6.8 as well as in the tables of best results. This
means that for COP, it is better to inspect large number of neighbor solutions which

constitute a very small percentage of the whole solution space.
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Effect of T-SIZE on Delta Delay

for average resuits of CAN-SIZE = 10,12,14,16,18,20
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Figure 6.7: Effect of T_SIZE on delta delay for short term memory.
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Effect of CAN-SIZE on Delta Delay

for average results of T-SIZE = 4,5,6,7,8,9
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Figure 6.8: Effect of CAN_SIZE on delta delay for short term memory.
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To show the behavior of short term memory phase of TS in terms of current
solution cost and the best solution cost, we chose as an example the results obtained
for the circuit c499 at T . SIZE = 5 and CAN_SIZE = 14. The plot of these results
are shown in Figure 6.9. Figure 6.10 shows the behavior of long term memory phase
of TS in terms of the current and best cost for the same circuit.

From Figure 6.9, it is obvious that after small number of iterations (short term),
the algorithm reaches a local optimal solution, as expected, and gets trapped at that
level for the rest of running time. Actually we can see also that when an illegal move
is made, the solution cost is penalized which hardly improves again. The solution of
this trap is to diverse the search as shown in Figure 6.10. From this figure we can see
that when the solution hits a local optimum (no change of best solution for the last
200 iterations), the proposed diversification strategy drives the search to another
region where the cost of the new solution gets improved. It is clear that after 409
iterations where that current solution cost was approximately 4, the diversification
produced better solution with cost around 6. As diversification is a procedure of
long term memory, the longer TS runs, the better would be the result. This fact is
clear in the figure where after 1700 iterations, the solution got also improved.

For easy comparison between the behavior of short term and long term phases, we
combined the plots in Figure 6.9 and Figure 6.10 in one plot as shown in Figure 6.11.
The penalty value we have chosen is 1000 as mentioned before. However, in the plots,

it has been scaled to 30 just to give better layout. Some of the values of solution cost
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Behavior of Short Term Memory of TS
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Figure 6.9: Behavior of short term memory TS in terms of current and best cost.



Behavior of Long Term Memory of TS
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Behavior of Short and Long Term Memory of TS
for c499, T-SIZE=5,CAN-SIZE=14, diverse after 200 itr.
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are negative even though their associated moves are not penalized. This is because
of the fact that at some instances, the current solution may consist of BiCMOS gates
which are not on the longest paths and their driving CMOS jates are on the longest
paths making the CMOS delay of those gates greater than their original delay, hence
the overall delay is increased.

In order to compare the behavior of CTS versus ETS, both algorithms have
been applied on c499. The data of current cost and best cost for 2000 iterations
have been collected and plotted in Figure 6.12 and Figure 6.13 respectively. As
clear from Figure 6.12 that ET'S finds good solutions (in this example, good delay
reduction is around 7 ns.) quickly in a few iterations (in this example, around 200)
because it examines small set of gates having low goodness. This means that some
gates with low goodness are swapped to BICMOS to get better solution. Then, ETS
tries to look for any gate with low goodness to swap. But since most of the gates
now are having high goodness, ET'S will swap some of these gates producing worse
solutions than before. Therefore, it will get trap at local optimal solution. On the
other hand, CT'S requires more number of iterations to find good solutions because
it examine all gates in the critical paths. However, after finding a good solution
(delay reduction around 6 ns in this case), it continues in generating good solutions
and even better solutions found so far. This is clear from the figure where ET'S
produced good solutions with the following reduction in the delay, around 5 ns after

900 iterations, around 6.5 ns after 700 iterations, around 5 ns after 1200 iterations,
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Behavior of Classical TS vs. Evolutionary TS in Terms of Current Solution Cost
for c499, T-SIZE=5, CAN-SIZE=14, diverse every 200 itr.
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Figure 6.12: Comparison between the behavior of Classical TS and Evolutionary
TS in terms of current solution cost.
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and around 7.5 ns after 1800 iterations. This reflects the fact that CTS is capable
of escaping from local optimum trap. Figure 6.13 gives more clearer idea about the
quality of both CT'S and ETS. Obviously, ET'S jumps quickly to a good solutions
and stuck there while CT'S gradually produces better solutions as it runs for more
time.

Figure 6.14 shows the distribution of solutions for 2000 iterations for the circuit
c499 at T SIZE = 5 and CAN_SIZE = 14. For each interval in the X-axis, it is
shown how many solutions have achieved the designated delay reduction within that
interval. Obviously, more than 80% of the solutions have delay reduction greater
than 4.0 which represents 50% of the maximum delay reduction. This means that
TS tries to achieve the objective as quick as possible. In addition, from the figure we
can see that most of the solutions occur between the values 5.5 and 7.0, and a few
occur between the values 7.0 and 8.0. This distribution, particularly for this circuit,
reflects the fact that the former values in delay reduction can be easily achieved
through the short term TS whereas the latter values require long term phase. Again
we can see for almost all solutions that ET'S has visited, they almost have the same
cost meaning that ETS quickly hits a good solution. Therefore, in general, TS is
very effective and efficient in generating a desired solution for COP.

One last comment on the behavior of TS for COP is related to the running time.
The running time is dependent or 2 number of factors including circuit size, number

of iterations, move generation strategy, tabu list size, and candidate list size. In our
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Behavior of Classical TS vs. Evolutionary TS in Terms of Best Solution Cost
for c499, T-SIZE=5, CAN-SIZE=14, diverse every 200 itr.
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experiments we applied TS for 2000 iterations. Therefore, for 2000 iterations, the
Classical TS short term takes around 10 - 120 seconds while the Classical TS long
term takes around 50 - 600 seconds. Evolutionary TS in the long term takes much

more time, around 50 - 1600 seconds, than Classical TS as clear from Table 6.7.

6.6 Summary

The proposed tabu search based algorithm for solving COP has been implemented
using C programming language (MIXER-S and MIXER-L). The integration of these
tools with the format conversion tools (TRANS and OASIS) and longest sensitizable
paths generation tools (NEW and FPFIND) forms an easy and efficient approach
for optimizing mixed CMOS/BiCMOS circuits. To find out a good or a near optimal
solution for COP using this approach, we experimented with different values of tabu
list size, candidate list size, and diversification factor because specific values for these
parameters are unknown to produce an optimal solution. The best results have been
presented with our observations and discussions on the difference between classical
aspiration and aspiration by search direction, and the difference between random

and SE based move generation methods.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

The Circuit Optimization Problem is one of .V P-Complete class problems. Basically
the problem is to optimize mixed technology circuits for performance and power.
Merging different technologies into one circuit takes the advantage of both technolo-
gies. In mixed CMOS/BiCMOS circuits, the new circuit takes the advantages of
the high speed and high driving capabilities of BICMOS, and the regularity and low
power consumption of CMOS.

In this thesis, we have proposed an efficient technique to achieve high perfor-
mance mixed CMOS/BiCMOS circuits with very small overhead in terms of area

and power. The technique consists of three phases:

1. Generate the critical paths of the input circuit. a-critical path algorithm has
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been adopted for this purpose.

2. Eliminate false paths from the generated critical paths. D-algorithm based

technique has been adopted to accomplish this phase.

3. Apply TS algorithm to select a set of BiICMOS gates among those covered by
the sensitizable critical paths. Basic components and mechanisms have been

used and two new techniques have been proposed including:

¢ An effective frequency-based diversification method used in long term

memory phase.

¢ Simulated Evolution based move generation technique as an alternative

to the random generation method.

Applying the above approach on different benchmark circuits, we came up with

the following conclusions:

¢ The proposed solution technique produces very good results for COP in a
reasonable running time, 30s-100s for small circuits, 200s-400s for medium

circuits, and 500s-800s for large circuits.

e Significant reduction in circuit delay (10% to 30%) with very small capaci-
tance overhead (0.25% to 6.2%) for mixed CMOS/BiCMOS circuits have been
achieved. In addition the number of BICMOS gates, in most of the cases, is
minimal (1.0% to 5.0%) which reflects the small area overhead.
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e The integration of a-critical paths algorithm, the adopted false paths detection
algorithm and tabu search is a very easy, efficient and accurate process. The
accuracy has been accomplished through consideratioi. of the interconnections

delays in both false path and critical path algorithms.

e The proposed technique is modular and independent of the technology type.

e TS is very effective and efficient in achieving a good or a desired solution for

COP.

e The proposed diversification strategy is very efficient in getting out of local

optima trap and producing effective results.

e The use of Search by Direction aspiration criterion produces better solutions

than the classical one.

o Generally, the proposed Evolutionary Tabu Search produces local optimal so-
lutions. However, it produces better average results compared to Classical
TS. In addition, Evolutionary TS takes much longer time than Classical TS.
Therefore, to obtain a certain objective within few executions regardless of the

time, Evolutionary TS may be applied.
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7.2 Future Work

7.2.1 Other Mixed Technologies

The proposed optimization technique presented in this thesis is independent of the
technologies to be merged. We have selected CMOS/BiCMOS type of mix because of
the feasibility of this process in terms of manufacturing. Other type of technologies
or different templates of same technology can be mixed using this approach as long
as the merge is feasible and practical.

Our future work in this field may include the following:

¢ Applying the same technique using actual values of CMOS and BiCMOS li-
braries; not the approximated values as we have done in this thesis. This will

produce more accurate results which can be used for further research.

¢ Including power and area in the optimization process. This requires a power

model for BICMOS technology and accurate computation of CMOS and BiC-

MOS areas.

¢ Investigating the possibility of merging ECL with CMOS or ECL with BiC-
MOS or all using our approach. ECL logic family has the lowest propagation
delay of any family and used mostly in systems which require very high speed
operation. However, its power dissipation is the worst of all other logic fam-

ilies. Therefore, mixing this technology with others like CMOS or BiCMOS
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may give a very good performance with reasonable overhead in power and

area.

7.2.2 Selection of Critical Paths for Optimization

In our approach, we select the longest K sensitizable paths for optimization. This
choice is right but it restricts the optimization to the boundary values within those
paths. If more delay reduction is targeted, then more paths need to be considered
which is costly in terms of effort and run time, especially that the value of K is
randomly selected. Several techniques have been proposed to select small number of
critical paths for efficient optimization as much as possible. One of these techniques
is reported in [CDL93]. In this paper, the researchers proposed a technique which
considers selection of sensitizable paths as well as false paths. They deduced that a
long false path may need to be selected because after optimizing the long sensitizable
path, a long false path may become a long sensitizable path. In addition, they show
that a long sensitizable path may not need to be selected in some cases when a part
of this path is shared with another long path having the same delay.

Accordingly, as a future work we may replace phase I and phase II of current

approach by an efficient method of paths selection for better optimization.
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7.2.3 Some Tabu Search Issues

There are some issues related to generation of moves and node selection methods
that need to be addressed and discussed in the future. The first issue is related to
the method of generating the neighbor solutions. The proposed method is to make
one single move to produce one neighbor solution. Another way that can be applied
in the future is to make more than one move at a time. However this may perturb
the search too much in a way that approaching the optimal solution will take longer
time.

Determination of tabu list size and candidate list size is another issue of concern.
We have experimented with different sizes to obtain the best results. However, this
depends on the problem size. So if we have bigger circuits, the selected sizes may not
work. One possible solution that can be adopted in the future is to derive functions
for tabu list size and candidate list size in terms of some parameters and attributes

such as problem size, number of critical paths, and capacitance threshold.
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Appendix A

A.1 Limitations of the Tools

NEW: This is a timing analyzer which generates critical paths based on a-critical

algorithm. The limitations of this tool are as follows:

e It uses static data structure which does not work for large circuits.

e It does not work in the case of a circuit having output nodes used as input
to some internal nodes. To overcome this limitation, new dummy nodes have
to be introduced and connected to the output nodes in the circuit to serve as

new output nodes.

e It reads from ASCII files having lines of width 80 characters only. To overcome

that, the lines with more than 80 characters should be truncated.

FPFIND: This is a program to detect false paths in a circuit out of critical paths.

It works with any combinational circuit. For sequential circuit, the circuit has to be
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converted first to combinational in which input of flip flops used as primary output
and output of flip flop used as primary input.

MIXER-S & MIXER-L: These are the implementation of mixed CMOS/BiCMOS
circuits optimization algorithm using tabu search short term phase and long term
phase respectively. Both tools are limited to be used for CMOS/BiCMOS technol-
ogy even though the algorithm is independent of the technology. This is because
of the delay model and libraries of CMOS/BiCMOS technology. In addition, both

tools use the format of the files generated by NEW program.

A.2 Libraries

As shown in Figure 6.6, the following libraries are used in the optimization process:
codes: this is a library of standard cells and their equivalent AHPL codes. It is
shown in Table A.1.

cint: this library has been obtained from [AF95] and it consists of an estimated
mean interconnection capacitance and standard deviation for different nets sizes. It
is used in NEW and FPFIND for the calculation of the delay of signals. It is shown
in Table A.2.

cmlib: this is a modified standard CMOS 1.0 library. It consists of standard cell
characteristics including: average base delay, average load factor, input capacitance,

and capacitive load crossover CX. The complete library that have has used is shown
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in Table A.3.

clib: it is similar to cmlib, but does not have CX parameter. It is used only by the
NEW program.

biclib: this is a new library constructed as explained before, that consists of BiC-
MOS characteristics of some cells. The complete library that has been used is shown

Table A.4.
table: this table consists of controlling and non controlling values of some standard

cells. It is used as look up table in FPFIND in the signal propagation phase.

A.3 How to Use the Tools

All the tools used in this work run under DOS and UNIX. They are available in
CCSE Design Automation Laboratory in KFUPM. For the proper use of tools, the

following should be considered:
e The input circuit should be in VPNR format or in SLIF format.
e Same libraries mentioned above with the same names should be used.

e The versions of MIXER-S and MIXER-L with built-in fixed data use the fol-
lowing data: T SIZFE = 4,56,7,8,9, CAN_SIZFE =10, 12, 14 ,16 ,18,20, and
I_NUM = 2000. If different values of T_SIZE ,CAN_SIZE, and I NUM

need to be applied, interactive versions are used as explained below.
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e Limitations of the tools have to be taken into account.

e The libraries required for a particular program should be in the same directory

of that program.

The following procedure explains the use of the tools:

1. Execute PP2 to convert the VPNR circuit (for example test) to testut. The
VPNR circuit should be in the same directory of PP2. Another file is generated
test.map which consists of the original names of nodes and their assigned

numbers.

2. Execute NEW and enter the following: testvt and test.map. After some time,
the program asks to enter the clock period and confidence factor. When it is
done, testvt.pth and testvt.grf are generated. testvt.pth includes the generated

critical paths. testut.grfconsists of fan out nodes of each node.

3. Then FPFIND is executed to get sensitizable paths file testvt.sen. Only the

testut file should be entered because the other files will be read automatically.

4. Once the three files testvt, testvt.grf and testvt.sen, are generated, use either
MIXER-S or MIXER-L. There are six versions for each tool:
MIXER-S-A1l: For short term CTS with AS; and built-in fixed parameters.
MIXER-S-A1-I : For short term CTS with AS; and interactive input data.

MIXER-S-A2: For short term CTS with AS, and built-in fixed parameters.
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MIXER-S-A2-I: For short term CTS with AS; and interactive input data.
MIXER-S-E: For short term ETS with AS; and built-in fixed parameters.
MIXER-S-E-I: For short term ETS witii AS) and i.iteractive input data.
MIXER-L-A1: For long term CTS with AS) and built-in fixed parameters.
MIXER-L-A1-I: For long CTS with AS) and interactive input data.
MIXER-L-A2: For long term CTS with AS, and built-in fixed parameters.
MIXER-L-A2-I: For long CTS with AS, and iateractive input data.
MIXER-L-E: For long term ETS with AS) and built-in fixed parameters.

MIXER-L-E-I: For long ETS with AS; and interactive input data.

If the interactive version is used, the program will prompt to feed in all nec-
essary data such as input files, tabu list size, etc. When the execution is

completed, the output will be written to the specified output file.



[AHPL Code | Standard
Call Name

4108 ils
4444 138
4103 128
4202 u2s
0244 a2sf
4302 ails
4402 ads
4102 188
4205 oi2s
4305 0ile
4408 oids
4204 exors
0344 exoef
4104 xors
4004 exnors
4106 dr2s
4009 dsr2s
4006 dsr2s
4201 als
4301 als
4401 ads

4203 oZs
4303 ole
4403 ods
4422 oa122s
4522 os1221s
4622 0a12211s
4431 oaills
4532 0ail2s
4633 0a133s
4321 oai2ls
4421 oai2lls
4521 oai2llls
5521 a0i2llls
5522 20i221s
5422 201223
5622 2012228
5621 20122118
5321 aoi2ls
5532 201328
5633 20i33s
5421 a0121lls

Table A.1: Names of standard cells and their equivalent AHPL codes.



Net Size | Mean Capacitance (pF) | Standard Deviation
2 0.0496613614 0.0381922414
3 0.0642885151 0.0269860004
4 0.1045077916 0.0474687684
3 0.1239954827 0.0564270349
6 0.1325196250 0.0574357545
7 0.1486822222 0.0440815179
8 0.261911 0.0319537001
9 0.240657 0.0

10 0.2624445 0.0377625

11 0.267 0.04

12 0.27 0.044

13 0.0001 0.0001

15 0.00001 0.00001

16 0.3 0.05

17 0.35 0.05

18 0.001 0.001

19 0.001 0.001

20 0.35 .05

21 0.35 .05

22 0.35 0.05

23 0.35 0.05

23 0.35 0.05

Table A.2: The library of estimated interconnection delays [AF95].
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Gate | BD L¥ | (] CX
4105 0.315 4.525 0.255 0.108
4444 0.315 0.518 4.755 0.917
0244 0.00315 0.00608 0.04755 0.781
0344 0.00318 0.00603 0.0475% 0.781
4103 0.32 2.08 0.455 0.234
4202 0.585 3.87 0.340 0.226
4302 0.88 3.715 0.415 0.353
4402 1.35 3.808 0.438 0.532
4102 0.275 0.579 1.670 0.751
4205 0.76 4.105 0.433 0.278
4204 1.7 3.735 0.635 0.633
4104 1.7 3.735 0.638 0.683
4305 1.28 5.02 0.455 0.371
4405 1.4 6.265 0.425 0.335
4106 3.1% 8.47 0.20 0.730
4006 3.053 4.8 0.235 0.996
4009 3.053 4.6 0.235 0.996
4201 1.33 3.985 0.380 0.500
4301 1.8 4.40 0.340 0.615
4401 1.85 4.58 0.380 0.606
4203 1.38 4.73 0.35 0.428
4303 1.759 3.825 0.40% 0.700
4403 2.45 4.785 0.395 0.768
4018 0.0 1.0 0.005 0.0
4019 0.0 1.0 0.005 0.0
4020 0.0 1.0 0.00S 0.0
4050 0.38 3.10 0.470 0.423
4004 0.845 4.95 0.640 0.256
4422 1.3 4.128 0.445 0.473
4522 2.0 4.473 0.465 0.870
4431 1.6 4.95 0.508 0.48%
4532 1.5% 4.795 0.520 0.488
4633 1.7 4.815 9.530 0.353
4321 0.983 4.130 0.445 0.358
4421 1.465 3.758 0.540 0.585
5521 2.08 8.56 0.475 0.469
5221 1.15 4.03 0.475 0.428
5422 2.38 5.26 0.475 0.670
5621 2.35 8.15 0.0508 0.573
5321 0.97 3.8¢ 0.495 0.377
5532 1.80 4.455 0.475 0.606
5633 1.78 4.30 0.510 0.810
5421 1.45 5.02 0.488 0.433

Table A.3: CMOS library.




Gate BD LF 1C
41050 0.63 1.505 0.357
44440 0.63 0.172 6.657
02440 0.0063 0.00200 0.08657
03440 0.0063 0.00200 0.06657
41030 0.64 0.6833 0.685
42020 1.170 1.290 0.476
43020 1.76 1.2380 0.581
44020 2.7 1.268 0.609
41020 0.55 0.183 2.415
42050 1.52 1.368 0.602
42040 3.4 1.248 0.889
41040 3.4 1.243 0.889
43050 2.5 1.673 0.637
44050 2.8 2.088 0.595
41060 6.3 2.157 0.280
40080 6.110 1.533 0.329
40090 6.110 1.533 0.329
42010 2.68 1.328 0.532
43010 3.6 1.467 0.476
44010 3.7 1.527 0.532
42030 2.7 1.577 0.490
43030 3.59 1.27% 0.567
44030 4.90 1.595 0.553
40180 0.0 0.333 0.007
40190 0.0 0.333 0.007
40200 0.0 0.333 0.007
40500 1.76 1.033 0.495
40040 1.69 1.650 0.165
44220 2.6 1.375 0.470
45220 4.0 1.492 0.490
44310 3.2 1.650 0.530
45320 3.1 1.598 0.535
46330 3.4 1.605 0.555
43210 1.97 1.377 0.470
44210 2.99 2.503 0.565
55210 4.1 2.187 0.500
52210 2.3 1.343 0.480
54220 4.7 1.783 0.500
56210 4.7 2.050 0.075
53210 1.94 1.287 0.520
55320 3.6 1.485 0.500
56330 3.5 1.430 0.535
54210 2.9 1.673 0.510

Table A.4: BiCMOS library.
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