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Chapter 1

Introduction

Complexity of Very Large Scale Integration (VLSI) circuits requires breaking
the design process into various levels of abstraction. These levels are shown
in Figure 1.1 [1]. Architectural design is the task of human experts who
determine the behavior of the product under various circumstances and dif-
ferent inputs. This stage has a great effect on the cost and the performance
of the final product. Logical design phase takes care of defining the data
path and the control path of the circuit to be designed. The fabrication of
the circuit, i.e., Printed Circuit Board (PCB) or VLSI, is also part of this
design level.

Physical design refers to all steps that follow the logical design before
the fabrication of the circuit. These steps include partitioning, floorplanning,
placement and routing. The wire length of the circuit, the overall area, and
the delay, are dramatically affected by how the circuit is laid out. In this
work, placement problem, which is one of the VLSI physical design problems,
is addressed and Tabu Search algorithm, which is an iterative heuristic, is

applied to it.



Figure 1.1: Levels of abstraction for VLSI circuits design.

1.1 VLSI Placement Problem Definition

In VLSI design, placement is the process of arranging components on the
circuit surface {1]. These components are interconnected functional blocks
that vary in size according to their functions.

The process of placement is directed towards satisfying some objectives.
These objectives can be the overall area of the circuit [2, 3|, the total wire
length [4], the delay of the critical paths [3, 6, 7], the routability of the
interconnections {8], or a combination of these.

The problem of cell placement can be defined as finding suitable locations
for all cells in the two-dimensional layout surface of a VLSI circuit. A suitable
location is one that optimizes some objectives like wire length, area, and /or
delay. Cell placement problem can be formally defined as follows. Given a set
of modules M = {my,my,---,m,}, and a set of signals S = {sy,59,--, s},
each module m; € M is associated with a set of signals S,,,, where Sp,, C S.
Also each signal s; € S is associated with a set of modules M,,, where
M,, = {mj|s; € Sm,;}. M,, is called a signal net. Placement problem is
to assign each module m; € M to a unique location such that a given cost

function is optimized and a number of constraints are satisfied. Cost function



and constraints depend on the layout style and the objectives [9].

Even in its simple case, where components and slots are of equal sizes
and one objective is to be satisfied, placement is an NP-hard! problem [8].
Since the number of cells can be in thousands, it is impractical to use brute

force technique to solve it.

1.2 VLSI Design Styles

Various layout styles differ in the structural constraints imposed on the com-
ponents and the layout surface. These styles include the full-custom layout
where no constraints are applied, the automation becomes difficult and the
layout is hand-crafted. Gate array methodology imposes the restriction that
the surface is a two dimensional array of equal-size slots and the compo-
nents have to be equaily sized [1]. Macro cell methodology allows cells to
vary in both dimensions to allow smaller area placement or better routing
of interconnections [1. 11]. Standard cell methodology assumes the cells to
be of same height and variable width to be arranged in rows. Channels
between the rows are of variable height to allow routing of connections be-
tween cells. Connections between cells on the same row or opposite rows
are routed through adjacent channels. Connections between non-adjacent
rows are routed through feed-through cells placed in the intermediate row(s)
[1, 2, 4, 8, 12, 13, 14]. Figure 1.2 shows the configuration of a standard cell

layout.

1.3 Multi-Objective Placement Problem

Modern placement programs usually require the optimization of several ob-
jectives and the satisfaction of several constraints. Typical objectives are

the overall area of the circuit i.e., the functional area and the wiring area

INP-Hard Problems are a class of problems that cannot be solved by a deterministic

algorithm of polynomial complexity [10].
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Figure 1.2: Configuration of a VLSI standard cell layout.

[2. 3], the total wire length [4], the delay of the critical paths [3, 6, 7], the
routability of the interconnections (8], or a combination of some or all of
these. Some of the objectives might be conflicting. For example, to have the
smallest possible area, one might have to accept a larger delay. A similar
conflict might exist between routability and wire length. In order to combine
conflicting objectives in the evaluation function, either weighted sum or fuzzy
evaluation should be used. In this work, interconnection length, overall area,
and critical path delay will be used to quantify the goodness of a specific
solution. The objective of the search is to define the most acceptable solution
and to allow the designer to express her/his preferences for each criterion. In

this work, fuzzy algebra is used to evaluate the overall cost of the solution.

1.3.1 Interconnection Length

One of the most important characteristics of a proposed solution is its wire
length. This is due to the rapid improvement in the switching delay of
the transistors. As a result, the interconnection delay is becoming the bot-
tleneck in VLSI technology. Another reason is that the functional area is
getting much smaller compared to the interconnection area. These factors
led to considering wire length as a critical measure in any proposed layout

configuration.



Different models are used to estimate the length of a given net which
is a set of points or pins that have to be in the same voltage level (connected
points). Half-perimeter bounding box, minimum Steiner tree, and minimum
spanning tree are among those models [1, 8].

Steiner tree approximation is fast and accurate enough in modeling
actual wire length and it has been used in this work [15]. To apply this model,
the bounding box, which is the smallest rectangle bounding a net, is found
for each net. The average vertical distance Y and horizontal distance X of all
cellsin the net are computed from the origin which is the bottom left corner of
the bounding box of the net. A central point (X,Y) is placed at the computed
average distances. If X is greater than Y then the vertical line crossing the
central point is considered as the bisecting line. Otherwise, the horizontal
line is considered as the bisecting line. Steiner tree approximation of a net
is the length of the bisecting line added to the summation of perpendicular
distances to it from all cells belonging to the net. Steiner tree approximation
is computed for each net and the summation of all Steiner trees is considered
as the interconnection length of the proposed solution.

n ) n .
X=2Zmlo oy sl (1.1)
n n

where n is the number of cells contributing to the current net.

k
Steiner Tree = B+ )_ P; (1.2)

i=1
Where B is the length of the bisecting line, k¥ is the number of cells con-
tributing to the net and P; is the perpendicular distance from cell j to the

bisecting line.

Interconnection Length = Z Steiner Tree (1.3)
=1

Where m is the number of nets.



1.3.2 Area

In standard cell placement, cells (or blocks) of fixed heights are placed in
rows. It is the width of these rows that varies with the proposed solution
according to the type and number of cells placed in the row. Heights of
routing channels are initially estimated and assumed to be fixed because
routing is not in the scope of this work. The overall area of a given solution

1s estimated as follows

A = (n.rows x row_height + (n_rows — 1) x channel_height) x longest_width

(1.4)
n_rows gives the number of rows used in the solution under test. The number
of channels is 1 less than the number of rows. When n_rows and (n_.rows—1)
are multiplied by row_height and channel_height respectively, they give the
overall height of the layout. Multiplied by the longest row, it gives the area
of the bounding rectangle of the proposed solution. Since row_height is
constant and channel_height is assumed to be constant, width of the longest
row will be measured as it is the only thing that differs from solution to

another?.

1.3.3 Critical Path Delay

A digital circuit comprises a collection of paths. A path is a sequence of
nets and blocks from a source to a sink. A source can be an input pad or a
memory cell output, and a sink can be an output pad or a memory cell input.
The longest path (critical path) is the dominant factor in deciding the clock
frequency of the circuit. A critical path makes a problem in the design if it
has a delay that is larger than the largest allowed delay (period) according
to the clock frequency.

The delay of any given path is computed as the summation of the delays

of the nets vy, vg, ..., vx belonging to that path and the switching delay of the

2From here on, in this thesis, width will be used in place of area because the height of

the layout is assumed to be constant.



cells driving these nets. The delay of a given path = is given by

ke
T, = ZI(CDW + IDm') (15)

=]
where C'D,; is the switching delay of the driving cell and ID,; is the inter-
connection delay that is given by the product of the load factor of the driving

cell and the capacitance of the interconnection net, i.e.,
ID,; = LF,; x Cy; (1.6)
SLACK, of path 7 is given by
SLACK, = LRAT, - T; (1.7)

where LRAT; is the latest required arrival time and T is the path delay
(16, 17]. If T, is greater than LRAT,, then the path 7 will have a negative
SLACK which is an indicator of a long path problem. Upper bounds can
be applied to nets belonging to the critical path as constraints not to allow

them to exceed a certain limit beyond which the SLACK will be negative.

1.3.4 Overall Solution Quality Evaluation

The overall quality (or cost) of a multi-objective problem is a vector quantity.
In this work, since we are using three criteria to represent a solution cost,
the cost is a tri-valued vector. To represent this vector as a scalar quantity
for comparison between solutions, weighted sum can be used. The main
disadvantage in using weighted sum scheme is the difficulty in finding the
appropriate combination of weights. The objective of the search is to find the
most acceptable solution with respect to the evaluation criteria. This makes
fuzzy algebra a suitable way for defining the goodness of a given solution
with respect to different criteria [11, 15, 18, 19, 20]. The evaluation function
should allow expressing designer preferences with respect to each evaluation
criterion. For this, the scheme we are using for fuzzification is called Fuzzy

Goal Based Cost Measure which was proposed in [13].

7



Let there be p values in the solution cost vector. For a given solution
z, the cost is given by the vector C(z) = (Ci(z),Ca(z),---,Cp(z)). Let
O = (01,04,---,0,) be a vector representing the optimum quantities for
all cost criteria i.e.,, O; < Ci(z) Vi,Vz € II, where II is the set of possible
solutions. G = (g1,92, --,9p) is a user-specified goal vector representing
the acceptable limits for all cost criteria in the cost vector. A solution z is
considered acceptable by the user if C;(z) < g; X O; ,Vi. Since the acceptable
limit has to be greater than the optimum value, g; > 1.0 V..

Figure 1.3 shows the region of acceptable solutions for a tri-valued cost
vector given O,, O2, O3, g1, g2 and g3. The projection of that figure on our
cost function that has Oy, Ogelay and Oyigen as the optimum values for wire
length, delay and longest width respectively and gui, gdeiay and guiatn as the

goals for those criteria is shown in Figure 1.4.

C2(x)
A
g2*0F ========= C3(x)
A
[}
02 '
]
[}
]
»C1(x)

ot gl*o1

E] Impossible Solutions because they have at least
one criterion that is less than the optimum.

O Acceptabie Solutions.

Figure 1.3: Range of acceptable solutions for a tri-valued cost vector.

In this work, the rule for determining membership in the fuzzy set is
taken as in {15]. The rule is as follows:
Rulel: If a solution is within acceptable wire length AND within acceptable
circuit delay AND within acceptable width, THEN it is an acceptable solution.

8



Cdelay(x)
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.......... Cwidth
gdelay9Odelay dth(x)
]
A
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]
]
'
(]
» Cwi(x)

Owl gwi*Ow!

E Impossible Solutions because they have at least
one criterion that is less than the optimum.

O Acceptable Solutions.

Figure 1.4: Range of acceptable solutions for a the proposed cost vector.

Using fuzzy algebraic notation, while adopting the andlike ordered
weighted averaging (OWA) operator of Yager [21], the above rule is expressed
as follows,

3
K(z) = 3 X min(pn(2), k(@) ws(@) + (L= ) x 3 - milz)  (18)

i=1
where. u(z) is the membership value for solution z in the fuzzy set accept-
able solutions. u; for i € {1,2,3} (or i € {wl,delay, width}) represents the
membership values for solution z in fuzzy sets within acceptable wire length,
within acceptable circuit delay and within acceptable width respectively. 3 is
an averaging constant in the range {0,1]. The solution that results in the
maximum value for Equation 1.8 is considered as the best solution found.
The membership functions used for wire length, delay and width are

the same. They are computed as follows:

1 if C2)/0: <1
pi=q eSO i 1 < Cr)/O; < gi (1.9)
0 if Ci(z)/0:i > g,

Where. i € {1,2,3} (or i € {wl, delay, width}). The membership function is

shown in Figure 1.5.
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Figure 1.5: The membership function within acceptable criterion .

The lower bounds for wire length, delay and width were computed in

[15] using the following formulae:

n
O, =Y OWL,; Vv; € {v1,vs,---,vn}n nets in the circuit (1.10)

=1

k
O2 =Y _CD,; Yv; € {v1,v2,-+-, v}k nets in path 7 (1.11)

Jj=1

(1.12)

% Width;
# of cell rows in layout

03 = I’ i=]

Where, O;, Oz and O3 are taken as lower bounds for wire length, delay
and width respectively.

The value g;, where i € {1,2,3} (or i € {wl,delay, width}), which is

specified by the user allows increasing or decreasing the contribution of the

criterion ¢ to the overall cost because y;(z) is directly proportional to g;.

1.4 Heuristics Applied to VLSI Placement

The number of blocks to be placed in a VLSI circuit is very large (can be
in thousands or more) and this makes a brute force approach an impractical

way for solving such a problem.

10



Heuristics applied to VLSI placement problem can be classified into de-
terministic heuristics, which move towards the solution by making determin-
istic decisions at each step, and stochastic heuristics which make controlled
random decisions. Heuristics can be also classified as constructive heuristics,
which construct the solution by placing one or few cells at a time, and iter-
ative heuristics which start from an initial solution and modify it in several
iterations to improve it with respect to an objective function.

Among the constructive deterministic heuristics applied to placement
problem is the mazimum connectivity strategy (1| and the min-cut algorithm
[9, 22, 23]. Force directed algorithm is an iterative deterministic algorithm
that was applied to placement [24]. Among the iterative stochastic heuristics
are Simulated Annealing (25, 26, 27|, Genetic Algorithm [28, 29|, Simulated
Ewvolution (30, 15] and Tabu Search [11, 31].

Constructive heuristics might trap the search at a solution which does
not meet the constraints. For large problems, they usually lead to a solution
that is far from the global optimum. In such a situation, numerous tedious
manual modifications are needed and that is impractical in case of VLSI
design [32]. Iterative heuristics, on the other hand, try to escape from local
optima searching for a global one by accepting to climb hills in the search
space through making non-improving moves at some stages of the search. In
this thesis, we investigate Tabu Search as one of these iterative heuristics.

In this work, Tabu Search is applied to VLSI standard cell placement
to optimize the wire length, the delay, and the total area of the final layout.
Some standard benchmark circuits are used to test the performance of the
proposed algorithm. The algorithm is parallelized on a network of stations
including heterogeneous architectures and machines of varying speeds. Par-
allel Virtual Machine (PVM) is used to parallelize the algorithm. PVM is a
system that makes a network of stations look like a single distributed ma-
chine for parallel computing using message passing [33] (see Appendix A).
A diversification strategy for Tabu Search is proposed to make each process

investigate a different area of the search space.
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1.5 Organization of the Thesis

In this chapter, VLSI placement was introduced and defined and its complex-
ity discussed. Different VLSI placement methodologies were addressed. The
multi-objective placement problem was introduced. Three criteria for place-
ment solution quality were discussed. Interconnection length, circuit delay
and overall delay of the solution were explained. Combining conflicting ob-
jectives in one evaluation function using weighted sum and fuzzy logic was
presented. Various heuristics that were applied to VLSI placement problem
were presented and classified. The outline of the rest of the thesis was given.

Chapter 2 discusses Tabu Search and its main characteristics and pa-
rameters. The literature available on Tabu Search for VLSI placement prob-
lem and on Tabu Search Parallelization is reviewed in Chapter 3. The pro-
posed Parallel Tabu Search Algorithm for VLSI Standard Cell Placement
problem is explained in Chapter 4. Experimental results of the proposed
methods and comparisons with other earlier approaches are presented and

discussed in Chapter 3. Chapter 6 concludes the thesis.
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Chapter 2

Tabu Search

Tabu Search (TS) is a general iterative metaheuristic that is used for solving
combinatorial optimization problems. The heuristic is based on selected con-
cepts from Al [32]. The rules used in Tabu Search are broad enough to make
it applicable separately or as a guide for other heuristic procedures applied
to combinatorial optimization problems [34].

A key feature of TS is that it imposes restrictions on the search process
preventing it from moving in certain directions to drive the process through
regions desired for investigation [35, 36]. An important component that en-
ables TS to achieve the mentioned feature is the use of an adaptive flexible
memoryv that distinguishes TS from other memorvless optimization heuris-
tics. Various ways for using this memory are possible and applied for different
objectives [34, 37, 36].

Tabu Search is a generalization of a local search. It searches for the
best move in the neighborhood of the current solution. As opposed to local
search, TS does not get trapped in local optima because it accepts bad moves

if they are expected to lead to unvisited solutions [32].
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2.1 Basic Tabu Search Algorithm

In its very basic operation, TS works as follows. It starts with an initial
solution s that is selected randomly or using any constructive algorithm. It
defines a subset V*(s) of its neighborhood N(s). The algorithm evaluates
the solutions in V*(s) and finds the best (in terms of the evaluation function)
among them, call it s* to be considered as the next solution. If the memory
component (tabu list) used does not define the move leading to s* as tabu, it
is accepted as the new solution even if it is worse than the current solution
in terms of the evaluation function. However, if the move leading to s~ is
defined as tabu by the memory component, the solution is not accepted until
it has one or more features that makes the algorithm override its tabu status
to accept it. Aspiration criterion is used to check whether the tabu solution
is to be accepted or not. The basic description of Tabu Search is shown in

Figure 2.1 [32]. A flowchart of the basic algorithm is also shown in Figure 2.2.

X :  Set of feasible solutions.

s :  Current solution.

s* : Best admissible solution.

C :  Objective function.

R(s) : Neighborhood of s € X.

v : Sample of neighborhood solutions.

TL : Tabu list.

AL :  Aspiration Level.

1. Start with an initial feasible solution s € X.
2, Initialize tabu lists and aspiration level.

3. For fixed number of iterations Do

4. Generate neighbor solutions V* C R(s).
3. Find best s* € V*.

6. If move s to s* isnotin TL Then
1.

Accept move and update best solution.

8. Update tabu list and aspiration level.

9. Increment iteration number.

10. Else

11. If C(s*) < AL Then

12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.

15. EndIf

16. EndIf

17. EndFor

Figure 2.1: Algorithmic description of tabu search (TS).
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Figure 2.2: Basic tabu search algorithm flowchart.



2.2 Tabu Search Parameters

2.2.1 Candidate List

Examining all neighbors of the current solution is impossible in case of large
neighborhoods. For this reason, a candidate list, which contains only a subset
of all possible moves from the current solution, is used to select the next move
to be made. It can be constructed by making random moves from the current
solution.

Various strategies for constructing and examining candidate lists are

given in [37, 38]. Some of these are:

e Aspiration Plus: In this strategy, moves from the current solution
are examined until an empirically determined threshold of quality is
achieved by a move. The strategy then continues for plus more moves.
The best move among all examined ones is chosen as the new solution.
In order to make sure that neither too few nor too many moves are
tested, two limits Min and Maz are put on the number of moves to be
tested. The values for Min and Maz are also empirically determined.
The operation of this strategy is shown in Figure 2.3. As shown in the
figure, moves are tried until a quality greater than 'aspiration’ is found.
A number of additional moves between the Min and the Maz values

is examined and the best is taken.

¢ Elite Candidate List: In this strategy, a master list is built by exam-
ining a large number of moves and selecting the k best moves among
them, where k is a parameter of the implementation. At each iteration,
the current best move from the master list is chosen. This continues
until the quality of the move becomes less than a case-dependent thresh-
old. At that point, a new master list is constructed and the process
repeats. The strategy relies on the concept that good moves might have
a good effect if not on the current solution, then on the coming ones.

The operation of this strategy is shown in Figure 2.4. The master list
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Figure 2.3: Aspiration plus strategy.

shown in the figure is constructed first. The best moves in that list are
made one after another. When the next move to be made leads to a
solution of a quality worse than the threshold, the list is rebuilt and

the process continues.
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Figure 2.4: Elite candidate list strategy.

¢ Successive Filter Strategy: This strategy tries to improve the search

efficiency by examining the effects of separate components of the move
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operation on the solution quality. A single component of the operation
is considered at a time and the best moves with respect to that compo-
nent are chosen to join the candidate list. By doing this, a smaller set
of possible combinations of changes are to be examined. For example,
if several criteria are to optimized by the move, moves improving a

criterion at a time join the candidate list successively.

¢ Sequential Fan Candidate List: This strategy is most suitable if
parallel processing is used to construct the list. It works by generating
D best alternative moves. Then a stream of moves is constructed from
each of these moves. Again the best p moves of each stream are con-
sidered. The overall p best complex moves among all examined are the
candidates to join the list. p and the depth of the operation are case-
dependent. The operation of this strategy is shown in Figure 2.5. As
shown in the figure, p moves are made first. From those moves, streams

of moves are tried and only p streams of moves are maintained.
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Figure 2.5: Sequential fan candidate list strategy.

e Bounded Change Candidate List: In this strategy, the domain of
moves is restricted such that no move is accepted if it causes a change

that exceeds a certain limit in a given component of the solution. Such
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a strategy allows intensifying the search in a specific area of the search

space if the designer expects it to be a promising area.

2.2.2 Moves and Move Attributes

In order to construct the candidate list, neighbor solutions must be generated.
These solutions are generated from the current solution by applying what is
called a move. Swapping two elements in the solution configuration can be
considered as a move. It can also be taken as dropping some edges from the
graph representing the current solution (or adding some edges). A move can
be composed of multiple modifications.

In order to utilize the memory concept emploved by Tabu Search, the
move attributes (or the reverse move attributes) are to be stored in a data
structure that corresponds to the memory. Storing complete solutions is not
feasible when the solution representation is large or complex. The infeasibil-
ity is in the storage required and the time needed for future manipulations.

A list of possible attributes to be stored in the memory could be:

e Complementing the value of a selected binary variable z; that repre-

sents a component of the current solution.

e Having a change in the cost that is equivalent to Cost(s™) — Cost(s),

where s™ is the new solution and s is the current solution.

e Another function that depends on the problem under investigation

might be used as basis for the difference mentioned above.

¢ Any combination of the above can also be used as an attribute [32, 39)].

2.2.3 Evaluation Function

The whole process of Tabu Search Algorithm is performed in order to min-

imize/maximize a given function while satisfying given constraints of the
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solution. The targeted function is called Cost Function or Evaluation Func-
tion. This cost might be the implementation cost like the interconnection
length and overall area or the operation cost like the critical path delay as
in the case of VLSI placement problem.

The cost function might have one or multiple objectives to minimize (or
maximize) simultaneously. It might also minimize one variable under some

constraints of another according to the user specification and application.

2.2.4 Tabu List

At any given point of time during the operation of the algorithm, there are
n possible directions for future investigation of the search space, where n
is the number of possible moves at that point and many directions might
be overlapping. One of the objectives of Tabu Search is to prevent cycling
back to previous solutions. Another objective might be to stay around the
same neighborhood of solutions that have specific features (intensification).
Moving to diverse solutions from the current one might be a third objective
during (diversification) phase. In order to achieve these objectives, TS should
use some sort of history.

For the purpose of not cycling back to recently visited solutions, reverse
attributes of the accepted moves are made tabu for a specific number of
coming iterations called Tabu Tenure or Tabu List size. To implement this,
a queue of attributes can be used, or, an array whose entries are the remaining
iterations during which the attribute will remain tabu where the array size
is the number of attributes.

Tabu tenure depends primarily on the size of the problem as well as the
objective of the search whether it is intensification, diversification or normal
continuation of the search process. Generally, the size can be determined
using experimental runs.

If the objective varies during various stages of the search, then a dy-

namic tabu list (variable tabu tenure) can be used [37]. The concept of a
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variable tabu tenure showed better performance in general even when the
objective of the search was constant as in [36, 40, 41]. In case of a variable
tabu tenure, empirically determined bounds are used to control the change

in the tenure.

2.2.5 Aspiration Criteria

Saving on storage and computation time achieved by storing only attributes
of accepted moves is paid for in the accuracy. By preventing the complement
of an attribute to occur right after that attribute, cycling back is prevented.
However, preventing the reverse attribute of the n** recent move might cause
a state that was never encountered to be considered tabu. Of course, this
contradicts with the algorithm initial objective that is defined as trying to
investigate the unseen parts of the search space. In order to give the algo-
rithm a chance of not loosing good solutions because of this misuse of the
tabu list, an aspiration criterion is used. This criterion is used to override the
tabu status of a specific move attribute if the move leads to a solution that
is desirable as far as the objective of the search at that stage is concerned.
The following are some of the possible aspiration criteria and their

corresponding objectives:

1. Global Objective Aspiration: If the objective of the search is to
continue normal operation searching for the best solution, then the
aspiration criterion can be taken as achieving a cost that is better than

all of those solutions encountered so far.

AC = Cost(s™) < Best_Cost (2.1)

(3]

. Regional Objective Aspiration: The previous aspiration criterion
can take a regional shape if the target is the best solution in the current

neighborhood of size R.
AC = Cost(s™) < Best_Cost(R) (2.2)
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3. Aspiration by Search Direction: If the current objective of the
search is to traverse the search space towards a local optimum i.e.,
intensification, then aspiration by search direction can be used. In this
case, if the tabu move is improving i.e., Cost(s*) < Cost(s) and the
reverse of that move that caused the tabu status was also improving
then the solution is considered to be satisfying the aspiration criterion.
To implement this, a bit per entry in the tabu list can be used. If
the move accepted is improving, the bit is set to 1. When the reverse
attribute is found tabu but improving the bit is checked. If it is 1, the

attribute is accepted. Otherwise, it is rejected.

AC = (improving == 1)&&(Cost(s") < Cost(s)) (2.3)

4. Aspiration by Influence: If the current objective of the search is to
go to a diverse point in the search space, then aspiration by influence
can be used. In this method, a tabu move is considered to be satisfying
the aspiration criterion if its reverse attributes that established the tabu
status had a low influence and occurred before a considerable change
in the current solution. To implement this aspiration technique, a bit
per entry in the tabu list is used to represent influence. If the accepted
attribute causes a change greater than L in the cost of the current
solution, then influence bit is set. An array Latest of size 2 is used to

store the latest iteration that had influence of level 0 and 1.
AC = ((influence(e) == 0)&&(tabu_start(e) < latest(L))) (2.4)

where e is the tabu attribute and tabu_start(e) is the iteration where e
joined the tabu list. This can be generalized to include various levels of
influence by increasing that size of the array Latest and satisfving that
influence(e) < L such that tabu_start(e) < Latest(L) [32, 37, 39).
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2.3 Tabu Search Classes

According to the way memory is used, Tabu Search can be classified into

three categories:

1. Short Term Memory Tabu Search
2. Intermediate Term Memory Tabu Search

3. Long Term Memory Tabu Search

1. Short Term Memory Tabu Search
The Tabu Search algorithm where a list of attributes of n recently
accepted moves is maintained to prevent accepting any of them in the
next iteration until and unless it satisfies the aspiration criterion is
called short term memory class. It is called so because it uses the
memory as a recent short history to prevent cycling back to visited
points. This class shows good performance where the search space is
not of huge size. Otherwise, it might be trapped in a specific proximity

of the search space.

2. Intermediate Term Memory Tabu Search
The main function of the intermediate term memory tabu search is to
intensify the search by aggressively forcing some common features of

good solutions in the new solution.

The algorithm records the common features between the most recent
best m solutions or the most recent m local optima and forces the
new solution to satisfy those features in order to be considered for
acceptance. A move leading to a solution that does not satisfy these

features may not be included in the candidate list.

3. Long Term Memory Tabu Search
It might be the objective during some stage of the search process to

move to a diverse point in the search space. The motivation behind
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this is the observation that the search has been trapped in a certain
region i.e., several features have been repeated in most of the recent
solutions. It might also be that the search has not been giving good re-
sults after running for a comparatively long time. A third motivation,
in case of parallelization, might be to make sure that a set of proces-
sors are not searching in the same areas of the search space. One of the
distinct features of tabu search is the fact that its memory component
can be modified such that it supports this objective by making deter-
ministic diversification steps. The frequently repeating features could

be avoided by storing them in a special memory component.

In the diversification stage, the evaluation function can be modified

to include a term that penalizes frequent moves as follows

F(s") = Cost(s") if Cost(s™) < Cost(s)
= Cost(s™) + a x Freg(M(s")) if Cost(s") > Cost(s)
(2.5)

where F is the evaluation function, « is a positive constant that depends
on the range of the evaluation function values, the number of iterations,
the history, etc. The value of a should be chosen such that cost and
frequency are appropriately balanced. M is the move attribute that

leads to the new solution s~.

2.4 Summary

In this chapter, Tabu Search as a stochastic iterative heuristic to be
applied to VLSI placement was presented. The basic algorithm was
introduced. Various parameters of Tabu Search were discussed. Can-
didate List strategies were presented and explained. Different moves
and move attributes were discussed. The evaluation function and the

Tabu List were mentioned. Aspiration Criteria of different types were
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presented. Finally, Tabu Search classes and their objectives were dis-

cussed.



Chapter 3

Literature Review

Section 3.1 of this chapter reviews the heuristics applied to VLSI placement
problem. In Section 3.2, the application of Tabu Search to VLSI placement
problem is reviewed in the literature. In Section 3.3, the parallelization of

Tabu Search algorithm is addressed.

3.1 Heuristics Applied to VLSI Placement

Heuristics that have been applied to placement problem include Mazimum
Connectivity strategy which is a constructive deterministic strategy that works
by placing a cell at each iteration. The selected cell for placement should
have the maximum connectivity to the already placed cells. The complexity
of this strategy is O(n3) [1]. The main disadvantage of it is that it can be
easily trapped at a local optimum.

Another constructive deterministic heuristic that has been applied to
placement is called Min-cut Placement (9, 22, 23]. This algorithm is based
on the observation that minimizing the number of horizontal and/or vertical
lines that are cut when the layout is partitioned in gate-array placement or
standard cell placement improves the routability and reduces the number of
feedthrough cells. This heuristic suggests partitioning the layout at each step
and dividing the cells between the partitions such that the number of lines
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cut by the partitioning is reduced. This heuristic also suffers from the local
view of an optimum solution rather than a global view.

Force-directed Placement is a technique that belongs to the class of
deterministic iterative heuristics. This heuristic starts from an initial solution
and then starts taking a cell at a time and moving it to a more appropriate
location according to its connectivity [24].

Iterative stochastic heuristics have been giving better results than con-
structive deterministic ones in placement problem. A reason for that is the
global view of the optimum solution and the ability to escape from local
optima through the controlled randomness introduced in these heuristics.

Among the iterative stochastic heuristics applied to placement is Sim-
ulated Annealing (25, 26, 27]. Simulated Annealing starts from an initial
solution and keeps modifying the solution with random moves. It accepts a
large portion of moves at the beginning of the search and then it becomes
restricted to accept only improving moves towards the end.

Another heuristic which was applied to placement is Genetic Algorithm
[28. 29]. It starts from a set of initial solutions called initial population. It
then tries to combine features from good solutions to come up with better
generations of solutions.

Simulated Evolution is another heuristic that was applied to placement
[30. 13]. It depends on goodness of particular cells. At each iteration, a
group of cells that are relatively badly placed are selected to be moved to
better locations.

A common feature between all of the mentioned stochastic iterative
heuristics is that they are memoryless. They don’t utilize any memory struc-
ture to look at previous moves. On the other hand, Tabu Search, which was
also applied to placement [31, 11], utilizes some memory to make decisions
at various stages of the search process. This memory structure can be used
to prevent reverses of recent moves by putting their attributes in a tabu list
such that the algorithm does not cycle back to solutions that have been al-

ready investigated. It can be used to force the new solution to have different
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features than previously seen solutions (diversification). It can also be used
to force the new solution to have some features that have been seen in recent
good solutions (intensification). It is up to the user to specify what it is that

is required from Tabu Search at various stages of the search process.

3.2 Tabu Search in VLSI Placement

VLSI Placement is an NP-hard problem as discussed earlier. Tabu Search is
a heuristic that was invented to be applied to NP-hard problems.

In [42], performance driven VLSI placement with global routing algo-
rithm for Macro-Cell placement was presented. Quad partitioning approach
was applied using Tabu Search Algorithm. The objective of the implementa-
tion was to minimize the delay.

Their algorithm obtains a placement for macro-cell layout with consid-
eration of global routing. The overall delay is the main goodness criterion
they used for a given solution. The overall delay is computed as the sum-
mation of the module delays and the interconnection delays in the path.
Quad-partitioning is applied using Tabu Search and used weighted sum to
find the overall cost of the solution considering imbalance of area usage, num-
ber of edges crossing boundaries, imbalance of edges passing boundaries, the
largest net delay and the number of long paths in a region. Their results
showed improvement in delay and run time compared to [43].

In [44], Tabu Search was applied to capacitor placement problem in
a radial distribution system. Their design considered operating constraints
of capacitor placement problem, load growth, the upper and lower bound
constraints of voltage at different load levels, etc. The objective was to
minimize the investment cost of capacitors and the system energy loss. The
algorithm they applied was short term memory tabu search and the candidate
list was generated randomly.

Their results showed improvements in energy and voltage loss. Their

results were compared to previous results generated using Simulated Anneal-
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ing (45, 46, 47] and the observation was that Tabu Search achieved the same
quality of solution in much less time.

In [48], Short term memory tabu search was applied to placement of
analog LSI chip designs. The objective was to minimize the overall inter-
connection length and layout area under the constraint of making routing an
easy next step. Tabu Search was applied separately in one experiment and
imposed on Genetic Algorithm in another experiment. Short term memory
tabu search did not show good results when compared to Genetic Algorithm
with dynamic adjustment of mutation rate.

In [11), Tabu Search was applied to quad-partitioning VLSI Macro-
cell placement problem. The objective was to minimize the interconnection
length which in turn minimizes the delay. The results showed that using
fuzzy cost function provided up to 43% improvements in the cost.

The cost function applied was a fuzzy cost function that included delay
and interconnection length. The results were compared to [42] and [43] and

significant cost improvement over both was observed.

3.3 Tabu Search Parallelization

Saving in time to achieve the same quality of solution is the main goal be-
hind distributing Tabu Search on a set of processors. Another goal can be
achieving a better solution quality in the same time. The ideal improvement
in investigation time is given by the following formula

Tn + Tu

tdeal_speedup = i’_/p—-f-T

(3.1)

where T, is the sequential time for achieving the computation to be paral-
lelized, T, is the non-parallelizable part and p is the number of processors
[34]. One way of parallelization is to distribute the component that requires
the most CPU time. In Tabu Search, this is neighborhood examination com-

ponent.
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If TS behaves like a memoryless algorithm i.e., if the interarrival of a
solution of a specific quality is exponentially distributed, then the probability
of providing the desired solution quality during time ¢ is given by

p(t)=1- ¢ (3.2)

with A > 0. In this case, it is probabilistically equivalent to perform one
search for time t or p searches for time t/p {49]. If this is the case, many
independent searches can be performed starting each one from a different
initial solution.

According to Toulouse et. al taxonomy [37], a possible parallelization
strategy of tabu search is to distribute the component that requires the most
CPU time on available machines ( functional decomposition). Another strat-
egy is to perform many independent searches (multi-search threads). A third
strategy, is to decompose the search space among processes (domain de-
composition). A different taxonomy by Crainic et. al., classifies TS on the
basis of three dimensions. The first dimension is control cardinality where
the algorithm is either I-control or p-control. In a I-control algorithm, one
processor executes the search and distributes numerically intensive tasks on
other processors. In a p-control algorithm, each processor is responsible for
its own search and the communication with other processors. Control and
communication type is the other dimension where the algorithm can fol-
low a rigid synchronization (RS), a knowledge synchronization (KS), a col-
legial (C), or a knowledge collegial (KC) strategy. The third dimension is
search differentiation where the algorithm can be single point single strat-
egy (SPSS), single point different strategies (SPDS), multiple points single
strategy (MPSS), or multiple points different strategies (MPDS) [37).

In [50], a mechanism for parallelizing tabu search by dividing neighbor-
hood examination among a number of slaves for solving flow shop sequencing
problem was presented. A master process is used to send an initial solution
to all slaves. At each iteration, each one of the slaves examines part of the

neighborhood and reports the best move to the master process. The master
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process chooses the best move among all and sends it to all slaves as the next
move to be performed if it is not tabu. The process then continues for a fixed
number of iterations or until no improvement is observed for a given number
of iterations. The algorithm presented uses domain decomposition strategy.
It is a I-control, RS, SPSS algorithm.

Garcia et. al [51] presented a parallel implementation of tabu search for
vehicle routing problem. In their work, a master process applies Tabu Search
and calls slaves which (with the master) investigate the neighborhood of the
current solution. Each process identifies its best move and sends it to the
master. The master process selects a set of the best moves and broadcasts
them to all slaves. Processes exchange only sequence of moves rather than
exchanging complete solutions which causes redundant communication over-
head. The algorithm uses domain decomposition strategy. It is a I-control,
RS, SPSS algorithm.

In [52, 33|, evolution principles were included to improve parallel Tabu
Search. In the given strategy, short term memory tabu search was applied
on a set of machines. After a specific number of iterations, each machine
exchanges best solutions with its neighbors. At each machine, If the received
solution is better than the local best, it replaces it. The algorithm uses
multi-search threads strategy. It is a p-control, C, MPSS algorithm.

Niar and Freville [54] proposed a parallel Tabu Search algorithm for
the 0-1 multidimensional knapsack problem. In their algorithm, they had a
master process that generates initial solutions for slaves. The initial solution
for process i is taken as its previous best solution except in two cases: (1) if
the quality of the best solution is less than a fraction a of the overall best
solution or, (2) if the best solution of process i has not been modified for a
given number of iterations. For each slave, the master generates a different
strategy where the strategy is represented by the tabu list size, the number
of local iterations and the number of successive drops at each iteration. The
algorithm uses multi-search threads strategy. It is a p-control, RS, MPDS
algorithm.
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In 53], a parallel tabu search algorithm for voltage and reactive power
control in power systems was presented. Two schemes were implemented in
that work. In the first one, the neighborhood was decomposed for parallel
processing at each iteration. This is a domain decomposition strategy. The
algorithm is I-control RS SPSS search. In the second scheme, tabu search
was replicated with various tabu lengths at different processes. This is a
multi-search threads strategy. The algorithm is p-control, RS, SPDS search.

In this work, tabu search algorithm is parallelized on a network of
heterogeneous stations using Parallel Virtual Machine (PVM) [33]. The pro-
posed algorithm uses two strategies simultaneously. It parallelizes the candi-
date list construction and examination at the low level (functional decomposi-
tion), and also coordinates several concurrent searches synchronously (multi-
search threads). The algorithm also imposes some restriction on processes
such that domain decomposition is probabilistically applied. The algorithm
falls into p-control class at the higher parallelization level and into 1-control
class at the lower level. It belongs to the rigid synchronization category on
the control and communication type dimension. It is a multiple points

single strategy (MPSS) search on the search differentiation dimension.

3.4 Summary

In this chapter, a literature review was presented for three topics. The
heuristics applied to VLSI placement problem were discussed. The applica-
tion of tabu search to VLSI placement problem was reviewed. Parallelization
of tabu search algorithm was introduced and some previous work addressed.

The proposed parallel algorithm was identified.
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Chapter 4

Parallel TS for VLSI
Standard-Cell Placement

In this chapter, we describe our parallelization of the TS algorithm for VLSI
standard-cell placement. First, we present a sequential version of TS for the
placement problem in Section 4.1. Section 4.2 addresses parallelization of
the algorithm. Applying the algorithm in a heterogeneous environment is
presented in Section 4.3. Diversification of the search in the algorithm is

investigated in Section 4.4.

4.1 Proposed Tabu Search Algorithm

As an essential starting step for this work, tabu search was applied in its very
basic operation to VLSI standard-cell placement.

The algorithm starts by reading a randomly generated initial solution
and storing it in a data structure that stores each cell with its size, the row
where it is initially located and its index in the row i.e., the number of cells
placed before it in the same row. It then starts from that solution as an initial
solution s. It considers it as the best solution and sets the aspiration level
to its cost. For a fixed iteration count, that is proportional to the number

of cells in the circuit, the algorithm runs the simple short-term memory tabu
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search.

The algorithm constructs a candidate list by examining a number of
moves. A move is taken as swapping the locations of two cells that are
generated randomly. The move attribute stored in the tabu listis the numbers
of the swapped cells. The change in the cost is computed after relocating
the two cells. N, cells are tried for swapping and the best swap is considered
for the next move. A compound move is made where NV, other moves are
tested for d times, where d is the desired move depth, and the best move is
taken each time. NV, an d are functions of the circuit size. By doing this, the
algorithm applies Sequential Fan Candidate List Strategy with one stream
(see Section 2.2.1). When the algorithm is parallelized it will be generating p
streams, where p is the number of processes investigating the neighborhood
of the current solution s. If the move gives improvement over the cost of the
current solution, then the process does not need to proceed further in depth.
It just considers the reached solution as the best it found and gives it to the
algorithm as the next neighbor of the current solution.

If any of the cells to be swapped has been moved in the recent history,
then the move is considered tabu. The algorithm checks if the move is tabu
by considering only the two cells that were swapped first in the compound
move. If the move is found tabu, the aspiration criterion is checked. If the
move satisfies it, it is accepted. Otherwise, it is rejected and the process
repeats.

The tabu tenure (tabu list size) used is a parameter of the circuit size.
An array of size equal to the number of cells in the circuit is used. Whenever
a swap is accepted, the swapped cells entries in the array are updated with
the value of the tabu tenure. All other non-zero entries are decremented by
one. When a tabu status of a cell is to be checked, its entry in the array is
read. If it is non-zero, then the associated move is considered tabu.

The aspiration criterion used in the algorithm is Aspiration by Objective
(see Section 2.2.3). If the tabu move leads to a solution whose cost is better

than all of those seen so far, then the algorithm overrides the tabu status
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and the move is accepted. This is a quite restricted criterion especially for
huge search spaces. It is to be relaxed to a Regional Aspiration by Objective
when the algorithm is parallelized as discussed in Section 4.2.

The cost function used by the algorithm is the same as the one proposed
by Ali [15]. It computes the wire length, the circuit delay, and the width of
the layout. It then computes the overall cost using Fuzzy Goal Based Cost
Measure. The optimum values for wire length, delay and width are computed
for each circuit as explained in Section 1.3.4. The goal values are taken as
2.0-3.0, 3.0-4.0, and 1.1-1.5 for wire length, delay and width respectively. It
was experimentally found that the best combination of weights for weighted
sum cost computation is 0.6, 0.1 and 0.3 for wire length, delay and width
respectively [13]. Those weights are used in the experiment where weighted

sum is applied.

4.2 Parallelization of the Algorithm

Tabu search is parallelized on a network of stations using PVM (see Appendix
A). The purpose of parallelization in this work was saving some of the time
required to achieve a certain solution quality (search speedup) and to achieve
a better quality of solution in the same search time.

The algorithm is parallelized on two levels simultaneously. The higher
one is at the tabu search process level where a master starts a number of Tabu
Search Workers (multi-search threads) and provides them with the same ini-
tial solution. The lower level is the Candidate List construction level where
each TSW starts a number of Candidate List Workers (functional decom-
posttion). The paradigm of the parallel algorithm is shown in Figure 4.1.
The algorithm falls into p-control class at the higher parallelization level and
into I-control class at the lower level. It belongs to the rigid synchronization
category on the control and communication type dimension. It is a multiple
points single strategy (MPSS) search on the search differentiation dimension

because TSWs diversify from the initial solution at each global iteration using
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the diversification scheme proposed by Kelly et. al [36] (see Section 4.4).

Candidate . | Candidate Candid: .| Candid Candid Candid.
List Worker List Worker List Worker List Worker ListWorker § ° | List Worker

Figure 4.1: Paradigm of tabu search parallel implementation.

Because of memory component used by TS, the algorithm has to ex-
change information other than the best solution. This is unlike memoryless
iterative algorithms such as SA, GA, and SE where best solution is all that
is required to be exchanged. The algorithm proposed communicates the best
solution as well as the associated tabu list between the master and the TSWs.

The parallel algorithm works as follows. The master starts the process
by initializing the data structures, the tabu list and the aspiration level. It
also reads the initial solution from a file. After that, it starts a number
of Tabu Search Workers (TSWs) to perform Tabu Search starting from the
given initial solution. The implementation has an option to start from the
initial solution or from a previous best solution. It sends all parameters of
the search to the workers and tells each worker about a range of cells within
which that worker should diversify from the initial solution (diversification
is discussed in Section 4.4). It broadcasts the same initial solution to all
workers. Each TSW then initializes the aspiration level and the tabu list.
After that it performs a diversification step. The TSW then starts a number
of Candidate List Workers to investigate the neighborhood of the current
solution. It sends the parameters and the initial solution to each CLW. It
also gives each CLW a range of cells to search the neighborhood with respect
to those cells as follows. The TSW divides the number of cells n by the k
CLWs it has started. Each CLW gets the n cells of the circuit and is informed
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about the % cells belonging to its range.

For every move it makes, the CLW has to choose one of the cells from its
range and the other as any other cell. The probability that it take the other
cell from its range is % The probability that two Candidate List Workers
performing the same move is the probability that the 1%* CLW chooses its
second cell as a specific cell from the range of the other CLW and the other
CLW does the same. The probability that two CLWs select the same two
cells is given by -1 x L5 = (_n-l_l)z The probability that more than two
CLWs select the same two cells is 0.

Note that we should not restrict each CLW to choose both cells from
its range because that will cause a big portion of the neighborhood to be
ignored without investigation. In our case, to choose two cells for swapping
from n cells, we have (“{") X ("Il) =(n-1)xt= ""‘—,:11 distinct choices
for each CLW. For k& CLWs, we have k x -"-(-"I:—Q = n(n — 1) choices. If we
restrict each one of k CLWs to choose only from a range of % cells, then the
number of choices will be ("ék) X k. Take a small case where the number of
cells n = 100 and the number of CLWs k = 4. Then 100 x (100 — 1) = 9900
and (wg/ 4) x 4 = 1200. This implies that the number of ignored swaps is
9900 — 1200 = 8700 which makes 88% of the whole neighborhood.

The restriction imposed by our scheme that one cell must be taken from
the range belonging to the CLW implies that the probability that the two
selected cells are taken from the same range is given by :—:11 Let us assume

that the restriction is not imposed. In this case, the probability that the two

k=1 _ k(k=1)
n-1 " n(n-1)"

This means that by imposing our restriction, the probability of choosing the

selected cells belong to the range of the CLW is given by f X

two cells from the range of the CLW is increased by the factor £. Equivalently,
the probability of choosing one cell from outside the range is reduced by %.
Outstanding moves might peacefully reside in the area of reduced probability
of selection. This explains why it is not always good in our scheme to keep
increasing the degree of parallelism. The effect might not only be in the

efficiency but also in the quality of the solution as some experiments show in
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Chapter 5.

Each CLW makes a compound move of a predetermined depth and
keeps computing the gain. If the current cost is improved before reaching
the maximum depth, the move is accepted without further investigation.
Otherwise, the move is completed to the maximum depth hoping to climb
the hill that is currently faced. At each point towards the maximum depth,
a number XV, of neighbors is checked. After finding the compound move that
improves the cost the most (or degrades it the least), the Candidate List
Worker sends its best solution to the TSW that started it. The TSW gets
the best solution from the CLW that achieves the maximum cost improve-
ment (or the least cost degradation). It then checks if the move is tabu as
mentioned in Section 4.1. If the move is not tabu, it is accepted. Otherwise,
the cost of the new solution is checked against the aspiration criterion. If it
satisfies it, it is accepted. Otherwise. it is rejected and the process continues
for a number of local iterations between the TSW and its CLWs. At the
end of the local iteration count, each TSW sends its best cost to the mas-
ter process. The master asks the TSW who got the overall best solution to
report it. It then broadcasts that solution to all TSWs who perform their
diversification steps and the process continues for a number of global itera-
tions. An algorithmic descriptions of the master and the worker processes
of the parallel implementation of Tabu Search are given in Figures 4.2 and
4.3 respectively. An abstract scenario of the complete process is shown in

Figure 4.4.

4.3 Applying the Algorithm in a Heteroge-
neous Environment

Normally, a network of workstations is composed of heterogeneous machines.

Heterogeneity can be of various types like machine architecture, data for-
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Number of iterations.
Set of feasible solutions.
Current best solution.
Current best cost.
Tabu list.
: Number of workers.
Start with an initial {easible solution bs € X.
Initialize TL and bc.
Spawn N,, workers to perform Tabu Search.
Send(bs, TL, be) to all workers.
For N; Do
Wait for best cost from all workers.
Ask for bs and TL from the worker that has the overall best.
Receive(s,TL).
Update be.
Send(bs, TL, bc) to all workers except sender.
Increment iteration number.
EndFor

:gP@."?’?‘?P!"!‘;&:;X‘&'X;_z

...
o

Figure 4.2: Algorithmic description of master process of paralle] TS.

N ¢ Number of iterations.

X :  Set of feasible solutions.

s :  Current solution.

s Best admissible solution.

bs :  Current best solution.

C :  Objective function.

R(s) : Neighborhood of s € X.

v :  Sample of neighborhood solutions.
TL :  Tabu list.

AL :  Aspiration Level.

1. Receive(s,TL, AL} from master.

2. For N; Do

3. Perform a diversification step.

4. Apply short term memory TS for a fixed number of iterations.
3. Send AL to master.

6. If the master asks for bs Then
7. Send(bs, TL) to master.
8. Else

9. Receive(bs, TL, AL) from master.
10. s = bs.

11. EndIf

12. EndFor

Figure 4.3: Algorithmic description of worker process of parallel TS.
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[Send Cureat Solution Receive Initial
1o CLWs Solution from TSW
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all CLWs and best
solution as the
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If the move is not
tabu or the aspiration
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reject it
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Figure 4.4: A scenario of the master, the TSW and the CLW processes.
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mat, computational speed, network type, machine load, and network load.
PVM can take care of machine architecture heterogeneity and data format
conversion.

In our implementation of parallel tabu search, we account for speed and
load heterogeneity by letting the master receive the best cost from any Tabu
Search Worker that has finished the local iterations. Once the number of
Tabu Search Workers who gave their best cost to the master reaches half the
total number of TSWs, the master sends a message to all other Tabu Search
Workers asking them to report whatever best cost they have achieved. Tabu
Search Workers check for such a message in their buffers frequently (every
10 iterations). Once they receive the message, they kill the currently running
Candidate List Workers and report to the master with their best achieved
costs.

The same principle applies in the communication between Tabu Search
Workers and their own Candidate List Workers who check for a message
from their parents frequently. That message either kills them, if it is the
TS master who is asking the TSW to report, or asks them for their best
achieved solutions if half of the CLWSs have reported their best. By applying
this principle, machine load. machine speed and network load heterogeneity
are accounted for.

Our experiments are tested on three different speed levels of machines
and four different architectures. These architectures are IPX/SPARC, Sparc-
Station 10, LX/SPARC and UltraSparc 1. All machines have the same op-

erating system (which is Solaris 2.5).

4.4 Diversification of the Search Process

Diversification is the process of driving the search into regions that have not
been visited before. As mentioned in Section 2.3, one of the motivations
behind diversification is to make sure that a set of processes in a parallel

implementation are not applying tabu search in the same region of the search
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space.

A simple strategy for diversification is to penalize frequent moves as
shown in Equation 2.5. This strategy is acceptable if the search is sequential.
In case of several parallel processes, this strategy will give the same evalua-
tion function value in all processes. In that case, all processes may end up
searching in the same region.

In this work, we applied a deterministic diversification strategy that
was first applied by Kelly et. al., to Quadratic Assignment Problem (QAP)
[36]. In this strategy, local search with pair-wise swapping is applied until
a local minimum is reached. After that, one of the following two forms of

diversification is used:

1. First Order Diversification: This diversification scheme is applied
to take the search to a point that is maximally diverse from the recent
local minimum. This diversity is taken with respect to distance i.e.,
the number of moves needed to go from one solution to another. If
the most recent minimum solution is given by the permutation I1,;, =
{Tmin(1), Tmin(2),- - -, Tmin(n)} and the current solution has the permu-
tation Ieyr = {Feur(l), Teur(2)," - Teur(n)}, then all swaps 7eur(z) —
Teur(Y) such that 7o (T) = Tmin(T) OF Teur(y) = Tmin(y) are considered.
The swap that leads to highest improvement (or least degradation) in
the objective function is performed. Such diversifying moves are made

until no more moves belonging to the specified category exist.

2. Second Order Diversification: Since local search is a greedy ap-
proach that considers only the highest improvement in cost at each
iteration, moving from a solution to another solution that has a close
or worse objective function value has a low probability. This diversifica-
tion scheme is presented to allow moving between such solutions. The
diversity in this scheme is taken with respect to difficulty of reaching
from a solution to another. To apply this scheme, they use a matrix M

whose entries m;; count the number of times object i occupied location
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7 in the history; m" represents the number of local optima encountered
so far. Another matrix M* whose entries are m;; = m;;/m" is main-
tained too. Two possible uses of M and M~ are presented in [56].
Restarting: In this technique, a cutoff rule is used to stop first-order
diversification. Another starting solution is generated by solving a lin-
ear assignment using the coefficients ¢;; = m;;. After that, first-order
diversification resumes until meeting the cutoff rule condition again.
Periodic Second-Order Evaluation: In this technique, the first-order
diversification is terminated when a given number of local optima is
encountered. In the next sequence of moves, the objective function is
changed to minimize the quantity m;, + mi, where i = 74,(z) and
k = mar(y). The idea is to move objects out of high frequency loca-

tions.

In this work, the first order diversification is applied because it can be
modified to give a chance to every TSW to diversify in a different direction. In
our work, every time a TSW receives a solution from the master it diversifies
from it according to the range that was assigned to it by the master. Within
that range, it performs swaps to a predetermined diversification depth. At
every swap. it makes N, trials and accepts the most improving (or least
degrading) one.

The first cell to be swapped has to be from the diversification range
but the second does not have to. A condition for the swap to be made is that
the new locations of the cells have to be different from their locations in the

initial solution.

4.5 Summary

In this chapter, we presented a detailed description of our parallel TS algo-
rithm for standard cell placement. Parallelization is achieved at two levels.
The parallelization scheme used for the algorithm was addressed with a full
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scenario of the parallel process. In order to minimize subspaces searched by
various concurrent processes, each process is confined to work with a subset
of the cells. Applying the algorithm in a heterogeneous environment was
presented and the scheme used to account for speed heterogeneity was dis-
cussed. Diversification of the search in the algorithm was investigated and

the proposed scheme for diversification in different directions was explained.



Chapter 5

Experimental Results

In this chapter, we present and discuss various experiments that are per-
formed using the proposed parallel tabu search algorithm for VLSI standard
cell placement. In Sections 5.1 and 5.2, we study the effect of the degree of
low-level and high-level parallelization on the algorithm performance, namely
quality of best solution and speedup. The definition of speedup for non-
deterministic algorithms such as TS is different from that used for deter-
ministic constructive algorithms. For this category of algorithms, speedup is
defined as follows

t
Speedupn z) = tL”- (3.1)

(n.z)
where ¢() ;) is the time needed to hit an r-quality solution using one Candidate

List Worker (or Tabu Search Worker ) and t(, ) is the time needed to hit
the same solution quality using n CLWs (or TSWs). Speedup(n z) in this case
can be greater than n because investigating the neighborhood with n CLWs
(or making n independent searches) might cause the stochastic search to hit
an r-quality solution more than n times faster. The efficiency is defined as

follows
Speedup(n.z)

= (5.2)

Efficiency o) =

where n is the number of CLWs (or TSWs) used to hit an z-solution quality.

Efficiency, . in this case can be greater than one. In Section 5.3, we
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compare the results of an implementation that accounts for heterogeneity
to an implementation that does not. In Section 3.4, we see the effect of
diversification performed by Tabu Search Workers by comparing the results
to a run of the algorithm were diversification is not performed. In Section 3.3,
an experiment is conducted to check whether the algorithm is memoryless
or not. In Section 3.6, we compare the performance of the algorithm using
fuzzy cost evaluation to the performance using weighted sum technique. In
Section 5.7, we compare our results to the results of previous work done on
the same circuits using Simulated Evolution.

In our experimentation, we used four ISCAS-89 benchmark circuits.
Table 5.1 shows the number of cells, the number of IOs, the number of cell
rows, the layout height, the routing channel height, the optimum wire length,

the optimum delay, and the optimum width for all circuits used.

Circuit Layout
Name | Cells [ IOs|Rows| LH | Avg. RCH | Ow | Odetay | Owidin
highway | 36 11 3 284 35.0 7156 3.91 212
fract 149 | 24 3 336 66.5 28207 | 7.97 784
c499 283 | 73 6 750 80.4 43583 | 8.17 | 1176

¢332 395 | 43 49.5 64674 | 17.83 | 1132

=1
-~
[en]
[J%]

c880 84 | 86 9 1034 64.0 123616 | 16.8 | 1824

cl355 | 1451 | 73 13 | 1557 66.9 273138 | 13.62 | 2304

struct | 1952 | 64 15 | 2102 88.0 432096 | 13.54 | 3280

c3540 | 2243 | 72 17 | 2480 93.4 300157 | 23.26 | 3096

Table 5.1: Characteristics of circuits and layouts used. (LH = layout heights

and Avg. RCH = average routing channel height in microns).
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5.1 Effect of Degree of Low-level Paralleliza-
tion

In this experiment, different numbers of CLWs are tried starting from 1 to 4
for each circuit. The change in the best solution quality is monitored as the
number of CLWs is changed. All other algorithm parameters are fixed. The
number of TSWs is 4 in all experiments. 12 machines are used as a parallel
virtual machine. The number of global iterations, number of local iterations,

N., move depth, and T-tenure are all fixed as in Table 5.2.

Name | Cells| GI | LI | N, | Move Depth | Div.Depth | T_Tenure
highway | 96 |500] 37 | 7 3 7 7
fract 149 |[300| 61 | 12 3 18 7
c499 283 | 160 ( 70 | 17 4 70 8
¢332 395 (120 {100 { 20 4 100 9
c880 784 | 120 | 200 | 28 3 200 9
c1355 | 1451 | 80 {120 9 2 60 9
struct | 1952 | 80 [ 120 9 2 60 10
c3540 | 2243 | 80 | 120 9 2 60 10

Table 5.2: Parameters of parallel experiments. (GI = Global Iterations and
LI = Local Iterations).

Figure 5.1 shows the effect of changing the number of CLWs on the
best solution quality for all circuits. For most of the circuits, it is clear that
increasing low level parallelization degree is beneficial. The cost used here is
the fuzzy cost mentioned in the introduction based on the optimum values
shown in Table 3.1 for wire length, delay and width. For highway, the circuit
size is small. That makes adding CLWs beyond 2 not useful. Using 4 CLWs
gives bad solution quality. A reason for this is the restriction imposed on

choosing cells when more CLWs are used as mentioned in Section 4.2. For
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¢880, adding CLWs beyond 2 did not change much the quality. The reason
is that the starting solution quality was good enough where adding CLWs
did not have much to do.

Figure 5.2 shows the time needed to achieve a specific solution quality
for all circuits. This quality is chosen according to the best quality achieved
by the worst strategy. Adding more CLWs resulted in reaching better solu-
tions in less time except for highway and c499 where increasing the number
of CLWs to more than 2 was causing communication overhead more than
speeding up the search.

Figure 5.3 shows the speedup achieved in reaching a specific solution
quality for all circuits. It is clear from the figure that in most of the experi-
ments, as the number of CLWs increases from 1 to 4, the speedup increases.
The sharpness of the speedup increase depends on the circuit size and the
goodness of the initial solution. For fract and ¢532, the initial solution is
too far from the best reached. As a result, increasing the number of CLWs
results in a sharper change in the speedup. For struct, the same behavior was
observed because the circuit size is large. For ¢880 and c1355, the circuit size
is moderate and the initial solution is not that far from the best reached as
in the case of fract and ¢532. As a result, the rate of change in the speedup
goes down as the number of CLWs is increased. In all experiments except
highway and c499, the critical point, where the speedup starts to degrade,
is not reached but it is clear in some curves that it is being approached.
For highway and c499, the critical point occurred at 2 CLWs because the 2
circuits are small.

Figure 5.4 shows the efficiency of using more CLWs in reaching a specific
solution quality for all circuits. The highest efficiency point differs from a
circuit to another according to its size, complexity and initial solution. For
highway, c499, and c880, the highest efficiency point occurred at 2 CLWs.
For ¢1355, and ¢3540, it occurred at 3 CLWs. For fract, ¢352, and struct, it

occurred at 4 CLWs or more.
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Figure 5.1: Effect of number of CLWs on the solution quality.
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5.2 Effect of Degree of High-level Paralleliza-
tion

In this experiment, Different numbers of TSWs are tried starting from 1 to
8 for each circuit. The change in the best solution quality is monitored as
the number of TSWs is changed. The number of CLWs is fixed to one in
all experiments. 12 machines are used as a parallel virtual machine. The
number of global iterations, number of local iterations, N,, move depth, and
T-Tenure are all fixed to the values shown in Table 5.2.

Figure 5.5 shows the effect of changing the number of TSWs on the best
solution quality for all circuits. For fract, c499, c1355, struct, and c3540, it is
clear that using more TSWs gives better solution quality in all iterations. For
highway, the circuit size is small. This makes adding Tabu Search Workers
beyond 4 not useful. For ¢532, Using 8 TSWs started to give good solutions.
However, as iterations continued, it gave similar solutions to 4 TSWs. That
is because the circuit needed more investigation and less diversification. For
c880, adding TSWs beyond 2 degraded the quality. The reason is that the
starting solution quality was good enough where adding TSWs caused the
search to diversify to undesired regions.

Figure 5.6 shows the time needed to achieve a specific solution quality
for all circuits. This quality is chosen according to the best quality achieved
by the worst strategy. Adding more TSWs proved to be beneficial with
respect to runtime except for highway, fract, c532, and c3540 where increasing
the number of TSWs to more than 4 was causing communication overhead
more than speeding up the search. For ¢880, even two TSWs were not worth
being added because the starting solution was good.

Figure 3.7 shows the speedup achieved in reaching a specific solution
quality for all circuits. For highway, fract, 532, and ¢3540, the critical point,
occurred at 4 TSWs. Adding more TSWs degraded the speedup. For c880,
one TSW was enough. For the other three circuits, the critical point was

approached but not yet reached.
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Figure 5.5: Effect of number of TSWs on the solution quality.
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Figure 5.8 shows the efficiency of using more TSWs in reaching a specific
solution quality for all circuits. The highest efficiency point differs from a
circuit to another according to its size, complexity and initial solution. For
c1355, and ¢3540, the highest efficiency point occurred at two TSWs. For
the other circuits, the highest efficiency occurred at one TSW.

Generally speaking, increasing the number of CLWs performed better
than increasing the number of TSWs because the CLW is an inner loop for
all TSWs running. As a result, the speedup critical point was approached

using low-level parallelization faster than high-level parallelization.

5.3 Accounting for Speed and Load Hetero-
geneity

In this experiment, we try to see the effect of accounting for speed and load
heterogeneity of various machines by performing two runs. In the first one, we
run our algorithm that accounts for speed and load heterogeneity by making
the master ask for best solutions from all TSWs once half of them complete
all assigned iterations and report their best to the master. TSWs do the
same by asking their CLWs to submit their best solutions once half of them
report their best to the parent. In all experiments we use twelve machines
to make the Parallel Virtual Machine. These machines include seven high-
speed machines, 3 medium-speed machines and 2 low-speed machines. PVM
takes care of distributing processes between machines. In both runs, we
use 4 TSWs and 4 CLWs per TSW. The run that does not account for
heterogeneity is supposed to give better solutions because the parent waits
for all of its children to give their best solutions and does not force any one
to stop searching because others have finished. However, the time needed to
run the experiment that accounts for heterogeneity is expected to be far less
than the time needed by the other experiment. As a result of that, if the

solution quality is comparable, then the experiment is worth being performed
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to speed up the search.

Figure 5.9 shows the best quality of solution achieved versus global
iterations for the run that accounts for heterogeneity and the one that does
not for seven circuits. For most of the circuits, such as highway, c532, ¢880,
c1355 and struct, there is no big difference in the solution quality between
the homogeneous and the heterogeneous runs. In fract, the solution quality
of the heterogeneous run starts to be worse but as iterations proceed, both
runs converge to the same quality. For c499, there is a solution quality
difference that should be compensated for by the runtime needed in order
for the heterogeneous run to outperform the homogeneous run.

Table 5.3 shows the runtime needed for heterogeneous and homoge-
neous runs for the seven circuits to complete. Based on the runtime for
the heterogeneous and the homogeneous runs, another set of curves given
in Figure 5.10 show the best cost achieved versus run time in seconds for

heterogeneous and homogeneous runs for the seven circuits.

Circuit | Hom. Runtime | Het. Runtime | Improvement

highway 2316 1631 1.42
fract 11194 5626 1.99
c499 5722 3060 1.87
¢332 8615 1839 1.78
c880 32361 19550 1.66
cl335 42560 27822 1.53
struct 76954 43332 1.78

Table 5.3: Runtime of homogeneous and heterogeneous runs in seconds for

seven circuits.

Figure 5.10 shows that towards the end of the experiment, the heteroge-
neous run is doing either better than or at least as good as the homogeneous

run. It never performs worse. For some circuits like highway, ¢532, c880
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and c1355, the heterogeneous run keeps performing better than the homoge-
neous run throughout the execution. For c499, the heterogeneous run starts
by performing worse and afterwards it outperforms the homogeneous run.
For fract and struct, the homogeneous run outperformed the heterogeneous
run initially. However, they converged to the same quality finally. The rea-
son is that more investigation of the neighborhood is required in these two
circuits and that could be clearly seen from Figure 3.1.

In the following experiment, we try to see whether it is useful or not to
include the slow machines in the parallel virtual machine because the master
keeps stopping them once the other machines report their best solutions.
To see the contribution of the slow machines in our strategy, we conduct
an experiment where one high-speed, one medium-speed, and one low-speed
machine are used as a parallel virtual machine. A single TSW is spawned
on each machine with one CLW per TSW. Once a TSW reports its best
solution to the master, the master asks all others to stop and report their
best solutions to it. By monitoring the number of solutions reported by each
TSW within various cost ranges, we can tell which machine is contributing
more to the search with useful results. Figure 5.11 shows the results of the
experiment ran on c499 for 500 global iterations. The results show that the
contribution of the three machines is almost equal in all cost ranges. This is
an expected result of the broadcasting step performed by the master at each

global iteration.

5.4 Effect of Diversification

In this experiment, we try to see the effect of the diversification step per-
formed by the TSWs at the beginning of each global iteration. As mentioned
in Section 4.4, the diversification step is performed to make every TSW in-
vestigate a different region of the search space.

Each TSW performs a number of successive moves up to a predefined

diversification depth at each global iteration. The diversification depth used
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within various solution ranges.

in all experiments for each circuit is shown in Table 3.2. At each move,
the TSW tries N, different swaps and picks the most improving (or least
degrading) one. One of the cells to be swapped has to be from the range
belonging to the TSW.

Figure 5.12 shows a comparison between two runs of four TSWs and one
CLW per TSW. In one run, diversification is done to the diversification depth
mentioned in Table 5.2. In the other run, no diversification is performed. It is
clear from the figure, that the diversified run outperforms the undiversified
run significantly. For highway and struct, the undiversified run starts to
outperform the diversified run because it is more greedy. However, in the
long term, the diversified run always performs better.

Some diversification is always useful as shown in Figure 5.12. However,
too much diversification without enough local investigation might mislead the
search by making it jump from place to another without enough investigation

any where. The only way to decide how much local investigation versus
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diversification is enough is through experiments.

Figure 5.13 shows the results of an experiment where the number of
global iterations is decreased as the number of local iterations is increased
for all circuits. As we decrease the number of global iterations and increase
the number of local iterations, we make more diversification and less local
investigation. It is clear from the figure that no general conclusion can be
made about the best number of global iterations versus local iterations. It all
depends on the problem instance itself. This experiment is used as a guide
for the most suitable number of local and global iterations that should be
used to continue searching for the best achievable solution.

5.5 Interarrival of a ¢g-Quality Solution

In this experiment, we try to see whether TS is a memoryless algorithm or
not by performing a large number of runs (100 runs). In all of these runs,
only one TSW and one CLW are used. This means that it is a sequential TS
run. In each run we make 200 global iterations. Over all runs, we find the
number of runs where a solution of a specified quality, call it g, was achieved
in less than a number of iterations ¢.

Figure 5.14 shows the fraction of runs where a specific solution quality
was achieved within a specific number of iterations or less. The curves are
taken for highway and fract. For highway, the curve almost fits to the CDF
of an exponential plot with a A of 0.04. For fract, it almost fits to the CDF
of an exponential plot with a A of 0.03. This means that the interarrival
time of a solution of quality ¢ is exponentially distributed. A conclusion out
of this is that TS is memoryless algorithm over a long run if the points are

taken on a compressed scale.
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Figure 5.14: CDF for getting a solution of quality < gq.

5.6 Fuzzy Cost Evaluation vs. Weighted Sum

In this experiment, we try to compare the results obtained from fuzzy cost
evaluation with those obtained from weighted sum evaluation. As mentioned
in Section 1.3.4, weighted sum evaluation has the disadvantage of difficulty in
deciding the weights to be used. A previous work that used the same circuits
and the same evaluation function found experimentally that the best weights
combination is 0.6, 0.1 and 0.3 for wire length, delay and width respectively
[13]. The same combination is used in this work. For the fuzzy evaluation,
the goal vector values were changed according to the initial solution in order
to limit the number of iterations spent in searching within solutions that
are outside the acceptable range. Table 5.4 shows a comparison of the best
solution achieved using four TSWs and one CLW per TSW in a run that
used fuzzy evaluation and a run that used weighted sum for all circuits. It
shows the wire length in microns, the delay in nanoseconds and the width in
microns.

It is clear from the table that since we give very high weight to the wire
length in the weighted sum run, it gives most of the time better wire length
than fuzzy evaluation. Since low weights are given to the delay and the

width, the fuzzy evaluation run is outperforming the weighted sum run in
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Fuzzy Evaluation Weighted Sum % Gain

Circuit WL Del. w wL Del. w WL Del. w

highway 8448 5.78 520 7948 6.12 544 -6.28 5.35 | 4.41
fract 40331 14.90 792 42917 14.58 | 792 6.03 -2.19 | 0.00
c499 85376 16.50 1264 82546 1748 | 1304 | -3.43 5.61 3.07

c532 118790 36.37 1368 105677 | 38.13 | 1360 | -12.41 | 4.62 | -0.39
c880 229800 35.64 2048 286023 | 37.44 | 2248 | 19.66 | 4.81 | 8.90
c1355 1028118 44.77 2576 910075 | 41.88 | 2488 | -12.97 | -6.90 | -3.54
struct 1359976 36.41 3312 | 1462027 | 34.65 | 3344 | 6.98 | -5.08 | 0.96
c3540 2345763.2 | 85.807 | 3200.0 | 2186335 | 94.64 | 3256 | -7.29 | 9.33 | 1.72

Table 5.4: Best solution achieved by fuzzy evaluation run vs. weighted sum

run.

delay and width. This shows the difficulty in deciding the weights for the
weighted sum run. If we compute the total gains from Table 5.4, They are
-9.71 for wire length, 15.75 for delay, and 14.93 for width.

5.7 Comparison with Previous Work

In this section, we compare the best results obtained for each circuit with
results obtained from a previous work done by Ali [15]. The purpose is to
verify that the results obtained by the proposed algorithm are comparable to
previous work results such that we make sure that the algorithm is working
fine as far the placement solutions provided for the problem are concerned.
The purpose of this section is not to compare the performance of Simulated
FEvolution to parallel Tabu Search for standard cell placement, rather it is to
make sure that the solutions provided by the proposed algorithm fall within
close limits achieved before. In his work, Ali performed three experiments.
In his 1% experiment, he used Classical Simulated Evolution (CSE). In the
second experiment, he used Fuzzy Allocation (Fa_SE). In the last experiment,
he fuzzified the evaluation step of the algorithm (Fe_.SE). In all experiments,

he used a Fuzzy cost function. Tables 5.3, 5.6 and 5.7, show the best layout
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found by our Parallel Tabu Search vs. those found by the mentioned three

experiments for all circuits.

Parallel Tabu Search Classical SE % Gain

Circuit WL Del. w WL Del. w WL Del. w

highway 7544 3.35 520 9919 6.15 520 | 23.94 | 9.76 | 0.00
fract 32451 | 1346 | 792 37285 | 14.58 | 800 | 12.96 | 7.68 1.00
c499 49676 | 14.13 | 1208 | 59278 | 14.51 | 1200 | 16.20 | 2.62 | -0.67
¢332 77944 | 34.78 | 1168 | 72789 | 38.55 | 1184 | -7.08 | 9.78 1.35
<880 136289 | 30.70 | 1848 | 135509 | 30.92 | 1848 | -0.58 | 0.71 | 0.00
cl335 | 281065 | 26.63 | 2336 | 335589 | 28.41 | 2344 | 16.25 | 6.27 | 0.34
struct 631770 | 28.81 | 3376 | 685328 | 26.65 | 3312 | 7.81 | -8.11 | -1.93
¢3540 842566 | 50.16 | 3184 | 844069 | 54.03 | 3152 | 0.18 7.16 | -1.02

Table 5.5: Best solution achieved by parallel tabu search vs. classical simu-

lated evolution.

Parallel Tabu Search Fuzzy Evaluation SE % Gain

Circuit WL Del. w WL Del. w WL Del. W

highway 7544 3.55 520 9503 6.74 528 | 20.61 | 17.66 | 1.52
fract 32451 | 1346 | 792 35635 | 13.50 | 808 8.94 0.30 1.98
c499 49676 | 14.13 | 1208 | 60964 | 14.83 | 1192 | 18.52 | 4.72 | -1.34

€532 77944 | 34.78 | 1168 | 75216 | 35.80 | 1200 | -3.63 | 2.85 | 2.67
c880 136289 | 30.70 | 1848 | 137838 | 29.03 | 1852 | 1.12 | -5.75 | 0.22
c1355 281065 | 26.63 | 2336 | 349953 | 28.23 | 2368 | 19.68 | 3.67 | 1.35
¢3340 842566 | 50.16 | 3184 | 883503 | 32.59 | 3128 | 4.63 | 4.62 | -1.79

Table 5.6: Best solution achieved by parallel tabu search vs. simulated evo-

lution with fuzzy evaluation.

It is clear from the three tables that the proposed parallel Tabu Search
algorithm is providing solutions comparable to previous work results if not

better.
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Parallel Tabu Search Fuzzy Allocation SE % Gain
Circuit WL Del. w WL Del. w WL Del. w
highway 7344 5.35 520 7735 5.56 520 2.47 0.18 | 0.00
fract 32451 | 13.46 | 792 31528 | 13.62 | 784 -2.93 1.17 | -1.02
c499 49676 | 14.13 | 1208 | 56506 | 14.13 | 1200 | 12.09 | 0.00 | -0.67
¢332 77944 | 34.78 | 1168 | 80779 | 37.96 | 1160 3.51 8.38 | -0.69
c880 136289 | 30.70 | 1848 | 137309 | 29.46 | 1872 0.74 -4.21 | 1.28
c1353 281065 | 26.63 | 2336 | 290221 | 27.05 | 2320 3.15 1.55 | -0.69
struct 631770 | 28.81 | 3376 | 667850 | 28.8 | 3336 3.40 | -0.03 | -1.20
c3540 842566 | 50.16 | 3184 | 750153 | 46.01 | 3152 | -12.32 | -9.02 | -1.02

Table 5.7: Best solution achieved by parallel tabu search vs. simulated evo-

lution with fuzzy allocation.

5.8 Summary

In this chapter, we presented and discussed various experiments that were
performed using the proposed parallel TS algorithm. The effect of degree of
low-level parallelization and high-level parallelization on the algorithm per-
formance and speed was studied and the results were analyzed. The effect of
accounting for speed and load heterogeneity on the algorithm speed and per-
formance was studied and analyzed. The effect of diversification performed
by TSWs was presented by comparing the results of a diversified run to a
run of the algorithm were diversification was not performed. Performance of
the algorithm using fuzzy cost evaluation was compared to the performance
using weighted sum technique. For the purpose of verification, experimental
results were compared to results of previous work done on the same circuits

using Simulated Evolution.



Chapter 6

Conclusions

In this thesis, VLSI standard cell placement was addressed as one of the
VLSI physical design problems. The problem was formally defined and its
complexity was discussed. Various VLSI placement styles were presented.
Standard cell layout methodology was explained as the style adopted in the
work. Heuristics applied to VLSI placement were classified.

The criteria according to which a specific placement solution is eval-
uated were presented and discussed. Interconnection length was discussed
and the model used to approximate it was explained. Area was estimated as
proportional to the width of the longest row. The critical path delay was de-
fined and formulated. Two evaluation schemes of the overall solution quality
were presented and compared. The fuzzy goal based scheme was applied in
this work.

Tabu Search was presented, its parameters were discussed, and their
effects were explained. These parameters are the candidate list, moves and
move attributes, the evaluation function, the tabu list, and the aspiration
criteria.

A comprehensive literature review of the heuristics applied to VLSI
placement was conducted. The application of TS to VLSI placement was
separately investigated in the literature. Parallelization of TS algorithm was

introduced, reviewed in the literature, and classified according to two known
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taxonomies.

The algorithm proposed for the problem was presented and the param-
eters chosen were justified. The parallelization scheme applied was explained
and accordingly the algorithm was classified. The algorithm was parallelized
at two levels simultaneously such that it is a multi-search threads algorithm
and a functional decomposition algorithm. A restriction scheme was pre-
sented to make it also a domain decomposition algorithm probabilistically.

The motivation and the strategy of applying the algorithm in a hetero-
geneous environment were discussed. The scheme used to make it account
for heterogeneity in speed and load was explained. The heterogeneous envi-
ronment where the algorithm was run was presented.

The idea of diversification of tabu search was presented. The motivation
and strategy used in the proposed algorithm to diversify the search were
discussed. The main idea of the scheme used was given by Kelly et. al. The
scheme was modified to satisfy the objective of diversification in our work.
This objective is to have different tabu search processes investigating different
areas of the search space.

The benchmark circuits used as well as the parameters used for all
experiments were given. A definition for ‘Speedup’ and 'Efficiency’ was pre-
sented for this category of problems. Two experiments were conducted to
see the effect of low-level and high-level parallelization degrees. It was found
most of the time beneficial in terms of solution quality and runtime to par-
allelize up to some critical point where increasing the parallelization degree
started to cause communication overhead that was not compensated for by
the parallelization. The low-level parallelization produced slightly better re-
sults than the high-level parallelization.

An experiment was conducted to see the effect of accounting for speed
and load heterogeneity in the machines used for parallelization. The experi-
ment showed that the run that accounted for heterogeneity had improvement
in the time required to perform the search and accordingly produced similar

solutions quality in less time than the run which did not account for hetero-
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geneity. Another experiment was run to see if the slow machines are ever
contributing to the search process. It was observed that as far as the solution
quality is concerned, machines of different speeds contributed equally to the
search process.

The effect of the diversification scheme used was studied using another
experiment where the results of a diversified run were compared to results of
an undiversified run with the same parameters. It was found that diversifi-
cation was beneficial for all circuits. The diversified run produced solutions
better than those produced by the undiversified run.

To check whether the algorithm is memoryless or not, an experiment
was conducted over a large number of runs. It was observed that the interar-
rival time of a g-quality solution is almost exponential which supports that
the algorithm is memoryless over a long run and a compressed scale.

In another experiment, the results of a run where weighted sum was
used were compared to results of another experiment where fuzzy cost eval-
uation was applied. The experiment showed the difficulty in choosing the
appropriate weights for the weighted sum run. It also showed overall im-
provement in the solutions when fuzzy cost evaluation was used.

A final experiment was conducted to compare the best results we got for
each circuit with results obtained from a previous work. The purpose was to
verify that the results obtained by the proposed algorithm are comparable to
previous work results such that we make sure that the algorithm is working
fine as far the placement solutions provided for the problem are concerned.
It was found that the proposed parallel Tabu Search algorithm was providing

solutions comparable to previous work results.



Appendix A

Parallel Virtual Machine

A.1 Introduction

In 'Distributed Computing’, several interconnected computers work to-
gether to solve a large problem [33]. Using a Network of Workstations as an
environment for distributed computing has been addressed and investigated

for the following main factors:

o Cost effectiveness compared to an expensive large multiprocessor su-

percomputer alternative [57].

o Utilization of the computation power of workstations that remain idle

for a large fraction of time.

o High usability of workstations since they have different interfaces and
programming tools which might suit more users than a single hard-to-

use supercomputer [58].

¢ Availability of high speed transmission links that have capacities in the
order of gigabits/sec [39].

Due to these factors, the need for a powerful system to allow use of a net-
work as for distributed computing has emerged. A difficulty in that process

is that most of the time, a network is composed of heterogeneous machines.
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This heterogeneity can be of various types such as machine architecture, data
format, computational speed, network type, machine load and network load
[33]. In spite of this difficulty, a team from Oak Ridge National Laboratory,
the University of Tennessee, and Emory University, developed a Parallel Vir-
tual Machine (PVM) system that gives the user the chance to write her/his
program to run on several heterogeneous machines interconnected by a net-
work. The user writes her/his application as a collection of communicating
(tasks) and lets PVM handle all of the message passing, format conversion
and task scheduling problems (33, 60].

A.2 Parallel Virtual Machine (PVM)

PVM consists of two main parts, a message passing library and a daemon.

A.2.1 PVM Daemon (pvmd)

This is the PVM engine that should be running on all machines that
comprise the virtual machine. It serves as a message router and controller
[33. 61, 38].

At startup of any task, pumd of the task configures itself as a master or a
slave according to command line configuration. It establishes communication
channel(s) with all other running daemons.

Master pymd handles virtual machine configuration. Other pvmds han-
dle all tasks running under them. It is also the respomnsibility of the pvmd to

detect any fault and try to recover from it if possible [33].

A.2.2 PVM Library (PVML)

PVML is a set of subroutines allowing a task to communicate with puvmd
through TCP connection and with other tasks through UDP sockets [33, 61,
38].



It consists of two libraries written in C. One supports programs written
in C and the other supports programs written in FORTRAN (33, 61, 60].

The functions provided by LPVM allow a task for spawning one or
more other tasks, killing tasks, getting information about the virtual ma-
chine, adding and deleting hosts to and from the machine, packing messages
to consider format conversion, sending messages, receiving and unpacking

messages and defining and handling groups of tasks [33].

A.2.3 Architectural Description

From the user standpoint, PVM is a general-purpose flexible parallel com-
puter. It handles all conversion of formats and heterogeneity with all of its
tvpes. An application program consists of components each of which might
initiate instances that utilize PVM facilities [58].

PVM can be accessed by the user at three different levels; transpar-
ent level where instances are automatically located at the most appropriate
sites, architectural level where a user can specify the architecture required to
execute his task, and low level where a specific machine can be specified for

executing the task [60].
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